JP2848435B2 - Solid-state imaging device - Google Patents

Solid-state imaging device

Info

Publication number
JP2848435B2
JP2848435B2 JP7087091A JP8709195A JP2848435B2 JP 2848435 B2 JP2848435 B2 JP 2848435B2 JP 7087091 A JP7087091 A JP 7087091A JP 8709195 A JP8709195 A JP 8709195A JP 2848435 B2 JP2848435 B2 JP 2848435B2
Authority
JP
Japan
Prior art keywords
semiconductor layer
photoelectric conversion
type semiconductor
conductive
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP7087091A
Other languages
Japanese (ja)
Other versions
JPH08288491A (en
Inventor
真一 河合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP7087091A priority Critical patent/JP2848435B2/en
Publication of JPH08288491A publication Critical patent/JPH08288491A/en
Application granted granted Critical
Publication of JP2848435B2 publication Critical patent/JP2848435B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、固体撮像素子に関し、
特に縦型オーバーフロードレインを備えた固体撮像素子
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid-state imaging device,
In particular, the present invention relates to a solid-state imaging device having a vertical overflow drain.

【0002】[0002]

【従来の技術】固体撮像素子の信号電荷転送部にCCD
(電荷結合素子)を用いたCCD型固体撮像素子におい
ては、ブルーミングを抑制するために、過剰電荷を掃き
出すための機構が各画素に設けられるのが一般的であ
る。縦型オーバーフロードレインは、過剰電荷を基板に
掃き出す機構である。縦型オーバーフロードレインを有
する従来の固体撮像素子の単位画素の断面構造を、図4
にインターライン転送型、図5にフレーム転送型につい
て示す。以下信号電荷が電子の場合について述べるが、
信号電荷が正孔の場合も、極性を反転させることにより
同様の議論が可能である。
2. Description of the Related Art A CCD is used as a signal charge transfer section of a solid-state image sensor.
In a CCD solid-state imaging device using a (charge-coupled device), a mechanism for sweeping out excess charges is generally provided for each pixel in order to suppress blooming. The vertical overflow drain is a mechanism for sweeping out excess charges to the substrate. FIG. 4 shows a sectional structure of a unit pixel of a conventional solid-state imaging device having a vertical overflow drain.
5 shows an interline transfer type, and FIG. 5 shows a frame transfer type. The case where the signal charge is an electron will be described below.
When the signal charge is a hole, the same discussion can be made by reversing the polarity.

【0003】図4において、N型半導体基板40上にP
型半導体層41があり、その上にN型光電変換部42と
N型信号電荷転送部43が設けられている。N型光電変
換部42は、高濃度P型半導体領域44により定電位に
固定されている。高濃度P型半導体領域47は、N型信
号電荷転送部43とN型半導体基板40のパンチスルー
を防ぎ、かつ、拡散によるスミアを抑制する。N型信号
電荷転送部43の上には電極45があり、その上には、
遮光膜46が設けられている。図5において、N型半導
体基板50上にP型半導体層51があり、その上にN型
信号電荷転送部兼光電変換部52が設けられている。高
濃度P型半導体領域54は、N型信号電荷転送部兼光電
変換部52とN型半導体基板50のパンチスルーを防
ぐ。N型信号電荷転送部兼光電変換部52の上には電極
55がある。
In FIG. 4, a P-type semiconductor
There is a type semiconductor layer 41, on which an N-type photoelectric conversion unit 42 and an N-type signal charge transfer unit 43 are provided. The N-type photoelectric converter 42 is fixed at a constant potential by the high-concentration P-type semiconductor region 44. The high-concentration P-type semiconductor region 47 prevents punch-through between the N-type signal charge transfer section 43 and the N-type semiconductor substrate 40 and suppresses smear due to diffusion. An electrode 45 is provided on the N-type signal charge transfer section 43, and on the electrode 45,
A light-shielding film 46 is provided. In FIG. 5, a P-type semiconductor layer 51 is provided on an N-type semiconductor substrate 50, and an N-type signal charge transfer unit / photoelectric conversion unit 52 is provided thereon. The high-concentration P-type semiconductor region 54 prevents punch-through between the N-type signal charge transfer unit / photoelectric conversion unit 52 and the N-type semiconductor substrate 50. An electrode 55 is provided on the N-type signal charge transfer / photoelectric conversion unit 52.

【0004】[0004]

【発明が解決しようとする課題】図6に、前記した従来
の固体撮像素子の光電変換特性を示す。入射光量が小さ
いときは、出力は入射光量に比例して増加する。ある程
度入射光量が大きくなってI61に達し、N型光電変換層
の容量以上の電荷が発生すると、その過剰電荷はN型半
導体基板に掃き出され、それ以上の光量の増加に対する
出力の増加は抑えられる。この状態を飽和状態と呼ぶ。
飽和状態の出力も情報信号として利用する場合、飽和状
態での光量の変化に対する出力の増加量をある程度大き
くしなければならないが、そうすると小さな光量でブル
ーミングが起こる。
FIG. 6 shows the photoelectric conversion characteristics of the above-mentioned conventional solid-state imaging device. When the amount of incident light is small, the output increases in proportion to the amount of incident light. Reached I 61 become somewhat the amount of incident light is large, the electric charge of more than the capacity of the N-type photoelectric conversion layer is generated, the excess charge is swept out to the N-type semiconductor substrate, an increase in output with respect to an increase of more light intensity Can be suppressed. This state is called a saturated state.
When the output in the saturated state is also used as the information signal, the amount of increase in the output with respect to the change in the light amount in the saturated state must be increased to some extent, but then blooming occurs with a small light amount.

【0005】本発明は、飽和状態での光量の変化に対す
る出力の増加量を大きくし、しかも、ブルーミングが起
こる光量を大きくすることを図るものである。
The present invention aims to increase the amount of increase in output with respect to a change in the amount of light in a saturated state, and to increase the amount of light in which blooming occurs.

【0006】[0006]

【課題を解決するための手段】本発明は、N型半導体基
板にP型半導体層が設けられ、その上にN型光電変換部
とN型信号電荷転送部(電荷結合素子を用いる)が設け
られ、前記N型光電変換部に発生した過剰電荷はN型半
導体基板に掃き出される機構を備えた固体撮像素子にお
いて、各々のN型光電変換部の下のP型半導体層は、不
純物濃度が小さく層厚が厚いP型半導体層1と不純物濃
度が大きく層厚が薄いP型半導体層2とに分けてあるこ
とを特徴とする。また、N型半導体基板にP型半導体層
が設けられ、その上に光電変換部を兼ねたN型信号電荷
転送部(電荷結合素子を用いる)が設けられ、前記N型
光電変換部に発生した過剰電荷はN型半導体基板に掃き
出される機構を備えた固体撮像素子において、各々のN
型光電変換部の下のP型半導体層は、不純物濃度が小さ
く層厚が厚いP型半導体層1と不純物濃度が大きく層厚
が薄いP型半導体層2とに分けてあることを特徴とす
る。
According to the present invention, a P-type semiconductor layer is provided on an N-type semiconductor substrate, and an N-type photoelectric conversion unit and an N-type signal charge transfer unit (using a charge-coupled device) are provided thereon. In a solid-state imaging device having a mechanism in which excess charge generated in the N-type photoelectric conversion unit is swept out to the N-type semiconductor substrate, the P-type semiconductor layer below each N-type photoelectric conversion unit has an impurity concentration of It is characterized in that it is divided into a P-type semiconductor layer 1 having a small thickness and a large thickness and a P-type semiconductor layer 2 having a large impurity concentration and a large thickness. In addition, a P-type semiconductor layer is provided on an N-type semiconductor substrate, and an N-type signal charge transfer unit (using a charge-coupled device) serving also as a photoelectric conversion unit is provided thereon. In a solid-state imaging device having a mechanism in which excess charge is swept out to an N-type semiconductor substrate, each N
The P-type semiconductor layer below the type photoelectric conversion part is characterized by being divided into a P-type semiconductor layer 1 having a small impurity concentration and a large thickness and a P-type semiconductor layer 2 having a large impurity concentration and a small thickness. .

【0007】[0007]

【作用】飽和状態において、出力の大きさで光の強弱を
判断するためには、光量の増加に対する出力の増加の割
合をある程度大きくする必要がある。しかし、そのよう
にすると、比較的少ない光量でブルーミングが起こって
しまう。
In the saturated state, in order to determine the intensity of light based on the magnitude of the output, it is necessary to increase the ratio of the increase in the output to the increase in the amount of light to some extent. However, in such a case, blooming occurs with a relatively small amount of light.

【0008】図3(a)の様に、光電変換の光量に対す
る出力の増加の割合が2段階に変わるような特性をもた
せると、光量の増加に対する出力の増加を大きくし、し
かも、ブルーミングの起こる光量を大きくすることがで
きる。
As shown in FIG. 3A, when a characteristic is provided such that the rate of increase in output with respect to the amount of photoelectric conversion changes in two stages, the increase in output with respect to the increase in light amount is increased, and blooming occurs. The amount of light can be increased.

【0009】[0009]

【実施例】次に、本発明の実施例について図面を参照し
て説明する。
Next, embodiments of the present invention will be described with reference to the drawings.

【0010】図1(a)に、請求項1記載の発明の一実
施例の単位画素の断面図、(b)に同じく平面図を示
す。N型半導体基板40に第1のP型半導体層11と第
2のP型半導体層12が設けられ、その上にN型光電変
換部42とN型信号電荷転送部43が設けられている。
48は出力アンプ、49は水平電荷転送部である。図2
(a)に、請求項2記載の発明の一実施例の単位画素の
断面図、(b)に同じく平面図を示す。N型半導体基板
50に第1のP型半導体層21と第2のP型半導体層2
2が設けられ、その上にN型信号電荷転送部兼光電変換
部52が設けられている。58は出力アンプ、59は水
平電荷転送部である。図1、図2の実施例とも、第1の
P型半導体層と第2のP型半導体層は、一方が不純物濃
度が小さく層厚が厚く、他方は不純物濃度が大きく層厚
が薄い。その境界は、N型光電変換部の下にある。光電
変換特性は、出力が入射光量の増加にともなって2回傾
きの変わるような特性をもつようになる。その理由は、
次のように説明される。
FIG. 1A is a sectional view of a unit pixel according to an embodiment of the present invention, and FIG. 1B is a plan view thereof. A first P-type semiconductor layer 11 and a second P-type semiconductor layer 12 are provided on an N-type semiconductor substrate 40, and an N-type photoelectric conversion unit 42 and an N-type signal charge transfer unit 43 are provided thereon.
48 is an output amplifier, and 49 is a horizontal charge transfer unit. FIG.
(A) is a sectional view of a unit pixel according to an embodiment of the present invention, and (b) is a plan view of the same. A first P-type semiconductor layer 21 and a second P-type semiconductor layer 2 on an N-type semiconductor substrate 50;
2, and an N-type signal charge transfer unit / photoelectric conversion unit 52 is provided thereon. 58 is an output amplifier, and 59 is a horizontal charge transfer unit. In each of the embodiments of FIGS. 1 and 2, one of the first P-type semiconductor layer and the second P-type semiconductor layer has a small impurity concentration and a large thickness, and the other has a large impurity concentration and a small thickness. The boundary is below the N-type photoelectric conversion unit. The photoelectric conversion characteristics have such characteristics that the output changes its slope twice with an increase in the amount of incident light. The reason is,
It is explained as follows.

【0011】強力な光が入射したとき、N型光電変換部
に蓄積しきれなくなった過剰電荷は、N型光電変換部の
下のP型半導体層に形成される電位障壁を越えてN型半
導体基板に掃き出される。飽和状態に達する光量、およ
び、飽和状態での光量に対する出力の増加の傾きは、不
純物濃度分布に依存する。つまり、不純物濃度分布が変
わると、飽和に達する光量も、飽和状態における光量に
対する出力の増加の場合も変わる。
When strong light is incident, the excess charge that cannot be accumulated in the N-type photoelectric conversion portion exceeds the potential barrier formed in the P-type semiconductor layer below the N-type photoelectric conversion portion, and the N-type semiconductor Swept out to the substrate. The amount of light reaching the saturated state and the slope of the increase in output with respect to the amount of light in the saturated state depend on the impurity concentration distribution. That is, when the impurity concentration distribution changes, the amount of light reaching saturation and the case of an increase in output with respect to the amount of light in the saturated state also change.

【0012】そこで、N型光電変換層の下に不純物濃度
と層厚の異なる2つのP型半導体層を設けることによ
り、図3(a)の実線で示したように、光電変換特性の
光量に対する出力の傾きを光量に応じて2段階に変える
ことができる。P型半導体層は、不純物濃度が小さく層
厚が厚いと飽和に達する光量は小さく飽和状態における
出力の傾きは大きくなり、不純物濃度が大きく層厚が薄
いと飽和に達する光量は大きく飽和状態での出力の傾き
は小さくなる。
Therefore, by providing two P-type semiconductor layers having different impurity concentrations and layer thicknesses under the N-type photoelectric conversion layer, as shown by a solid line in FIG. The output slope can be changed in two stages according to the light quantity. In the P-type semiconductor layer, when the impurity concentration is small and the layer thickness is large, the amount of light reaching saturation is small and the output gradient in the saturated state is large. The output slope becomes smaller.

【0013】図3(b)、(c)に1つのP型半導体層
しかない固体撮像素子の光電変換特性を示す。図(b)
はP型半導体層の不純物濃度が小さく層厚が厚い場合、
図(c)はP型半導体層の不純物濃度が大きく層厚が薄
い場合である。(b)の方が(c)に比べ、飽和状態に
達する光量は小さく、飽和状態での光量の増加に対する
出力の増加の割合は大きい。このような2つの不純物濃
度分布のP型半導体層をN型光電変換領域の下に設けた
場合、光量がI31に達すると、過剰電荷はP型半導体層
1を通ってN型半導体基板に掃き出される。更に光量が
増え光量がI33に達すると、過剰電荷はP型半導体層2
を通ってN型半導体基板に掃き出されるようになる。
FIGS. 3B and 3C show photoelectric conversion characteristics of a solid-state imaging device having only one P-type semiconductor layer. Figure (b)
If the impurity concentration of the P-type semiconductor layer is small and the layer thickness is large,
FIG. 3C shows the case where the impurity concentration of the P-type semiconductor layer is large and the layer thickness is small. The light quantity reaching the saturation state in (b) is smaller than that in (c), and the ratio of the increase in the output to the increase in the light quantity in the saturation state is larger. When the P-type semiconductor layer having such two impurity concentration distributions is provided under the N-type photoelectric conversion region, when the light amount reaches I 31 , the excess charge passes through the P-type semiconductor layer 1 to the N-type semiconductor substrate. Be swept out. When the light quantity further increases and the light quantity reaches I 33 , the excess charge is transferred to the P-type semiconductor layer 2.
Through the N-type semiconductor substrate.

【0014】この場合の光電変換特性は、(a)のよう
になる。すなわち、光量に対する出力増加の割合が2段
階に変わる。
The photoelectric conversion characteristics in this case are as shown in FIG. That is, the ratio of the output increase to the light amount changes in two stages.

【0015】たとえば、P型半導体層を、不純物濃度
8.0×1014個/cm3 層厚2.6μmの領域1と不
純物濃度1.4×1015個/cm3 層厚1.8μmの領
域2との二つに分けると、7.0×1011電子/cm2
の電荷が蓄積されると、過剰電荷は領域1を通って掃き
出され、更に光量が増え1.0×1015電子/cm2
電荷が蓄積されると、過剰電荷は領域2を通って掃き出
される。このとき、P型半導体層が層厚1.8μm不純
物濃度1.4×1015個/cm3 の1つの領域しかない
場合に比べ、ブルーミングが起こる最小光量は、約1.
5倍になる。
For example, the P-type semiconductor layer has a region 1 having an impurity concentration of 8.0 × 10 14 / cm 3 and a thickness of 2.6 μm and a region 1 having an impurity concentration of 1.4 × 10 15 / cm 3 and a thickness of 1.8 μm. When divided into two regions, that is, region 2, 7.0 × 10 11 electrons / cm 2
When the electric charge is accumulated, the excess electric charge is swept out through the region 1, and when the light quantity further increases and the electric charge of 1.0 × 10 15 electrons / cm 2 is accumulated, the excessive electric charge is passed through the region 2. Be swept out. At this time, the minimum light amount at which blooming occurs is about 1.0 in comparison with the case where the P-type semiconductor layer has only one region with a layer thickness of 1.8 μm and an impurity concentration of 1.4 × 10 15 / cm 3 .
5 times.

【0016】[0016]

【発明の効果】以上の説明から明らかなように、本発明
によれば、飽和状態での光量の増加に対する出力の増加
を大きくし、しかも、ブルーミングの起こる光量を大き
くすることができる。
As is apparent from the above description, according to the present invention, it is possible to increase the output with respect to the increase in the amount of light in a saturated state, and to increase the amount of light in which blooming occurs.

【図面の簡単な説明】[Brief description of the drawings]

【図1】請求項1記載の発明の一実施例の固体撮像素子
を示し、(a)は断面図、(b)は平面図である。
FIGS. 1A and 1B show a solid-state imaging device according to an embodiment of the present invention, wherein FIG. 1A is a cross-sectional view and FIG.

【図2】請求項2記載の発明の一実施例の固体撮像素子
を示し、(a)は断面図、(b)は平面図である。
FIGS. 2A and 2B show a solid-state imaging device according to an embodiment of the present invention, wherein FIG. 2A is a cross-sectional view and FIG.

【図3】本発明による固体撮像素子の種々の光電変換特
性を表す図である。
FIG. 3 is a diagram showing various photoelectric conversion characteristics of the solid-state imaging device according to the present invention.

【図4】従来のインターライン転送型の固体撮像素子の
断面図である。
FIG. 4 is a cross-sectional view of a conventional interline transfer type solid-state imaging device.

【図5】従来のフレーム転送型の固体撮像素子の断面図
である。
FIG. 5 is a cross-sectional view of a conventional frame transfer type solid-state imaging device.

【図6】従来の固体撮像素子の光電変換特性を表す図で
ある。
FIG. 6 is a diagram illustrating a photoelectric conversion characteristic of a conventional solid-state imaging device.

【符号の説明】[Explanation of symbols]

11 第1のP型半導体層 12 第2のP型半導体層 21 第1のP型半導体層 22 第2のP型半導体層 40 N型半導体基板 41 P型半導体層 42 N型光電変換部 43 N型信号電荷転送部 44 高濃度P型半導体領域 45 電極 46 遮光膜 47 高濃度P型半導体領域 48 出力アンプ 49 水平電荷転送部 50 N型半導体基板 51 P型半導体層 52 N型信号電荷転送部兼光電変換部 54 高濃度P型半導体領域 55 電極 58 出力アンプ 59 水平電荷転送部 DESCRIPTION OF SYMBOLS 11 1st P-type semiconductor layer 12 2nd P-type semiconductor layer 21 1st P-type semiconductor layer 22 2nd P-type semiconductor layer 40 N-type semiconductor substrate 41 P-type semiconductor layer 42 N-type photoelectric conversion part 43N Type signal charge transfer section 44 High-concentration P-type semiconductor region 45 Electrode 46 Light-shielding film 47 High-concentration P-type semiconductor region 48 Output amplifier 49 Horizontal charge transfer section 50 N-type semiconductor substrate 51 P-type semiconductor layer 52 N-type signal charge transfer section Photoelectric conversion unit 54 high-concentration P-type semiconductor region 55 electrode 58 output amplifier 59 horizontal charge transfer unit

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) H01L 27/148 H04N 5/335──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 6 , DB name) H01L 27/148 H04N 5/335

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 信号電荷転送部に電荷結合素子を用いた
CCD型固体撮像素子で、第1導伝型半導体基板に第2
導伝型半導体層が設けられ、その上に第1導伝型光電変
換部と第1導伝型信号電荷転送部が設けられ、前記第1
導伝型光電変換部に発生した過剰電荷は第1導伝型半導
体基板に掃き出される機構を備えた固体撮像素子におい
て、各々光電変換部の下の第2導伝型半導体層は、不純
物濃度が小さく層厚が厚い第2導伝型半導体層1と不純
物濃度が大きく層厚が薄い第2導伝型半導体層2とに分
けてあることを特徴とする固体撮像素子。
1. A charge-coupled device is used for a signal charge transfer section.
CCD-type solid-state image sensor with a second conductive semiconductor substrate
A conductive semiconductor layer is provided, and a first conductive photoelectric conversion unit and a first conductive signal charge transfer unit are provided thereon.
In a solid-state imaging device having a mechanism in which excess charge generated in a conductive type photoelectric conversion unit is swept out to a first conductive type semiconductor substrate, the second conductive type semiconductor layer below each photoelectric conversion unit has an impurity concentration. 1. A solid-state imaging device comprising: a second conductive semiconductor layer 1 having a small thickness and a large thickness; and a second conductive semiconductor layer 2 having a large impurity concentration and a small thickness.
【請求項2】 信号電荷転送部に電荷結合素子を用いた
CCD型固体撮像素子で、第1導伝型半導体基板に第2
導伝型半導体層が設けられ、その上に信号電荷転送部を
兼ねた第1導伝型光電変換部が設けられ、前記第1導伝
型光電変換部に発生した過剰電荷は第1導伝型半導体基
板に掃き出される機構を備えた固体撮像素子において、
各々の光電変換部の下の第2導伝型半導体層は、不純物
濃度が小さく層厚が厚い第2導伝型半導体層1と不純物
濃度が大きく層厚が薄い第2導伝型半導体層2とに分け
てあることを特徴とする固体撮像素子。
2. A charge-coupled device is used for a signal charge transfer section.
CCD-type solid-state image sensor with a second conductive semiconductor substrate
A conductive semiconductor layer is provided, and a first conductive photoelectric conversion unit serving also as a signal charge transfer unit is provided thereon, and excess charges generated in the first conductive photoelectric conversion unit are transferred to the first conductive photoelectric conversion unit. In a solid-state imaging device equipped with a mechanism that is swept to the type semiconductor substrate,
The second conductive semiconductor layer below each photoelectric conversion part has a second conductive semiconductor layer 1 having a small impurity concentration and a large layer thickness and a second conductive semiconductor layer 2 having a large impurity concentration and a small layer thickness. And a solid-state image sensor.
JP7087091A 1995-04-12 1995-04-12 Solid-state imaging device Expired - Fee Related JP2848435B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7087091A JP2848435B2 (en) 1995-04-12 1995-04-12 Solid-state imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7087091A JP2848435B2 (en) 1995-04-12 1995-04-12 Solid-state imaging device

Publications (2)

Publication Number Publication Date
JPH08288491A JPH08288491A (en) 1996-11-01
JP2848435B2 true JP2848435B2 (en) 1999-01-20

Family

ID=13905290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7087091A Expired - Fee Related JP2848435B2 (en) 1995-04-12 1995-04-12 Solid-state imaging device

Country Status (1)

Country Link
JP (1) JP2848435B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007035859A (en) * 2005-07-26 2007-02-08 Fujifilm Corp Solid-state imaging device and drive method therefor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53122316A (en) * 1977-04-01 1978-10-25 Hitachi Ltd Solid state pickup device
JPH0681280B2 (en) * 1984-06-06 1994-10-12 日本電気株式会社 Driving method for charge-coupled device
JPH04158575A (en) * 1990-10-22 1992-06-01 Nec Corp Solid-state image sensing device
JPH06302800A (en) * 1993-04-14 1994-10-28 Sanyo Electric Co Ltd Solid-state image sensing device

Also Published As

Publication number Publication date
JPH08288491A (en) 1996-11-01

Similar Documents

Publication Publication Date Title
JP4791211B2 (en) Improving quantum efficiency in active pixel sensors
EP0854516B1 (en) Partially pinned photodiode for solid state image sensors
US4672455A (en) Solid-state image-sensor having reverse-biased substrate and transfer registers
JPH0523505B2 (en)
JPS5819080A (en) Solid-state image sensor
JPH02100363A (en) Solid-state image sensing element
JP2866328B2 (en) Solid-state imaging device
JPH06181302A (en) Ccd imaging device
JPH06252374A (en) Solid-state image pickup device
JP2848435B2 (en) Solid-state imaging device
JP2964571B2 (en) Solid-state imaging device
JPH0430192B2 (en)
JPH01500471A (en) Electronic shutter for image sensor using photodiode
JPS6160592B2 (en)
JP2819263B2 (en) CCD image element
JPS6351545B2 (en)
JP4250857B2 (en) Solid-state image sensor
JPH05243546A (en) Solid-state image sensing device
JPH06275809A (en) Solid-state image pickup device
JPH05206438A (en) Solid state image sensor
JPH05145056A (en) Solid state image sensor
KR100258971B1 (en) Semiconductor device
JPH0424872B2 (en)
JPH0778957A (en) Solid state image sensor
JPS60174582A (en) Solid-state image pickup device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19981007

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071106

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081106

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081106

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091106

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091106

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101106

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111106

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111106

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121106

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121106

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131106

Year of fee payment: 15

LAPS Cancellation because of no payment of annual fees