JPH05145056A - Solid state image sensor - Google Patents

Solid state image sensor

Info

Publication number
JPH05145056A
JPH05145056A JP3303065A JP30306591A JPH05145056A JP H05145056 A JPH05145056 A JP H05145056A JP 3303065 A JP3303065 A JP 3303065A JP 30306591 A JP30306591 A JP 30306591A JP H05145056 A JPH05145056 A JP H05145056A
Authority
JP
Japan
Prior art keywords
diffusion layer
layer
type layer
conductivity type
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3303065A
Other languages
Japanese (ja)
Inventor
Hideyuki Ono
秀行 小野
Masaaki Nakai
正章 中井
Akira Sato
朗 佐藤
Toshibumi Ozaki
俊文 尾崎
Haruhiko Tanaka
治彦 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3303065A priority Critical patent/JPH05145056A/en
Publication of JPH05145056A publication Critical patent/JPH05145056A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/148Charge coupled imagers
    • H01L27/14831Area CCD imagers
    • H01L27/14843Interline transfer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/148Charge coupled imagers
    • H01L27/14806Structural or functional details thereof

Abstract

PURPOSE:To reduce a dark current of a photodiode while a smear and reading characteristics remain by adding a shallower and high impurity concentration N-type layer as an N-type layer provided to suppress the smear remains. CONSTITUTION:An N-type layer 9 to become a photodiode of a pixel unit is covered with a P-type layer 5 of a surface of a substrate. Thus, a dark current to be generated due to the fact that the layer 9 reaches the surface of the substrate can be eliminated. A high impurity concentration N-type layer 30 shallower than an N-type layer 3 is newly provided. Thus, since a signal charge reading channel as shown by an arrow 43 is formed as smear suppressing effect to be obtained by a thin impurity concentration and deep N-type layer 3 is maintained, reading of signal charge can be performed. The region of the layer 3 is a depleted region, and may be an extremely thin concentration P-type layer.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電荷結合装置に係り、
特に、小型化に好適な電荷結合装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a charge coupled device,
In particular, the present invention relates to a charge coupled device suitable for miniaturization.

【0002】[0002]

【従来の技術】図2は、従来例のCCD型固体撮像素子
の画素部の断面図を示したものである。なお、この素子
については、小野他、特開平3−16263号公報において述
べられている。従来のCCD型撮像素子の動作について
簡単に説明する。N型層3,9とP型ウェル層2及びP
型層5からなるホトダイオードにおいて光信号が信号電
荷に変換され蓄積される。ホトダイオードに蓄積された
信号電荷は図中矢印で示されるように読み出しチャンネ
ル部40を経て垂直CCDのチャンネルとなるN型層1
3へ転送される。なお、P型層12は垂直CCDのチャ
ンネルとなるN型層13からの空乏層の伸びを抑えるこ
とによりスミア雑音を抑圧するために設けられている。
また、深くて不純物濃度の薄いN型層3はホトダイオー
ドからの空乏層を伸ばし基板内で発生した電荷が垂直C
CDのN型層13へ漏れ込むことによるスミア雑音を抑
圧するために設けられている。また、垂直CCD部並び
に読み出し部には絶縁膜6を介してゲート電極14が設
けられている。従来、素子では、N型層9からの信号電
荷読み出し時のチャンネルとなるN型層9の1部がN型
基板1表面41に達しているため、多量の生成再結合中
心をもつSi/SiO2界面で発生する暗電流がホトダイ
オードに流れ込んでしまうという問題については考慮さ
れていなかった。
2. Description of the Related Art FIG. 2 is a sectional view of a pixel portion of a conventional CCD type solid-state image pickup device. This element is described in Ono et al., Japanese Patent Laid-Open No. 3-16263. The operation of the conventional CCD image pickup device will be briefly described. N-type layers 3 and 9 and P-type well layer 2 and P
In the photodiode composed of the mold layer 5, an optical signal is converted into a signal charge and stored. The signal charge accumulated in the photodiode passes through the read channel portion 40 as shown by the arrow in the figure, and becomes the channel of the vertical CCD N-type layer 1
3 is transferred. The P-type layer 12 is provided to suppress the smear noise by suppressing the extension of the depletion layer from the N-type layer 13 serving as the channel of the vertical CCD.
Further, the N-type layer 3 which is deep and has a low impurity concentration extends the depletion layer from the photodiode and the charges generated in the substrate are vertical C
It is provided to suppress smear noise due to leakage into the N-type layer 13 of the CD. Further, a gate electrode 14 is provided in the vertical CCD section and the reading section via the insulating film 6. Conventionally, in the device, since a part of the N-type layer 9 that serves as a channel at the time of reading signal charges from the N-type layer 9 reaches the surface 41 of the N-type substrate 1, Si / SiO 2 having a large number of generation / recombination centers. No consideration was given to the problem of dark current flowing at the two interfaces flowing into the photodiode.

【0003】[0003]

【発明が解決しようとする課題】しかし、信号電荷読み
出しチャンネルとなるN型層9がN型基板1表面41に
達しないようにN型層9をP型層5で完全に覆ってしま
うと、アイソレーション部42と同じ構造となり、信号
電荷の読み出しが極めて困難である。
However, if the N-type layer 9 is completely covered with the P-type layer 5 so that the N-type layer 9 serving as a signal charge read channel does not reach the surface 41 of the N-type substrate 1, Since it has the same structure as the isolation part 42, it is extremely difficult to read the signal charge.

【0004】本発明の目的は、上記問題点を対策するこ
とにある。
An object of the present invention is to solve the above problems.

【0005】[0005]

【課題を解決するための手段】上記目的は、スミア雑音
抑圧のために設けられたN型層3よりも浅くて不純物濃
度の高いN型層を新たに設けることにより達成される。
The above object can be achieved by newly providing an N-type layer having a higher impurity concentration and being shallower than the N-type layer 3 provided for suppressing smear noise.

【0006】[0006]

【作用】新たに設けられたN型層3よりも浅くて不純物
濃度の高いN型層により、信号電荷読み出しチャンネル
となるN型領域が基板内部に形成されるので、信号電荷
の読み出しを行うことができる。
Since the N-type layer, which is shallower than the newly provided N-type layer 3 and has a high impurity concentration, forms an N-type region serving as a signal charge read channel inside the substrate, the signal charge is read out. You can

【0007】[0007]

【実施例】以下、本発明の実施例を図面を用いて説明す
る。本実施例の説明の前にCCD型撮像素子全体の中で
画素の占める位置について述べる。図3はインターライ
ンCCD型撮像素子の平面構成図をあらわしたものであ
る。画素15は図中破線で囲まれた部分で、ホトダイオ
ード16,読み出しゲート電極17,垂直シフトレジス
タ18からなっている。図中矢印で示したものが信号電
荷の転送方向である。ホトダイオード16において光電
変換され、蓄積された信号電荷は、読み出しゲート電極
17を経て垂直シフトレジスタ18に転送され、さらに
水平シフトレジスタ19,出力アンプ20を経て外部回
路に出力される。なお、例えば垂直シフトレジスタ1
8,水平シフトレジスタ19はそれぞれ4相(φV1〜
φV4),2相(φH1,φH2)パルスで駆動される。
Embodiments of the present invention will be described below with reference to the drawings. Prior to the description of the present embodiment, the position occupied by pixels in the entire CCD image pickup device will be described. FIG. 3 is a plan view of an interline CCD type image pickup device. The pixel 15 is a portion surrounded by a broken line in the drawing and includes a photodiode 16, a read gate electrode 17, and a vertical shift register 18. The direction indicated by the arrow in the figure is the transfer direction of the signal charge. The signal charges photoelectrically converted and accumulated in the photodiode 16 are transferred to the vertical shift register 18 via the read gate electrode 17, and further output to the external circuit via the horizontal shift register 19 and the output amplifier 20. Note that, for example, the vertical shift register 1
8 and the horizontal shift register 19 have four phases (φV1 ~
φV4), two-phase (φH1, φH2) pulse drive.

【0008】図4は本発明の一実施例の画素部断面図を
示したものである。本実施例が図2に示す従来例と異な
る二点の、一つは基板表面のP型層5によりホトダイオ
ードとなるN型層9を覆ったことである。これにより、
N型層9が基板表面に達していることにより発生する暗
電流をなくすることができる。他の一つはN型層3より
も浅くて不純物濃度の高いN型層30を新たに設けたこ
とである。これにより、不純物濃度の薄くて深いN型層
3によりもたらされるスミアの抑圧効果を維持したまま
で図中矢印43で示すような信号電荷読み出しチャンネ
ルが形成されるので、信号電荷の読み出しが可能とな
る。なお、N型層3の領域は空乏化する領域であり極め
て濃度の薄いP型層でもよい。
FIG. 4 is a sectional view of a pixel portion according to an embodiment of the present invention. This embodiment is different from the conventional example shown in FIG. 2 in that one is that the P-type layer 5 on the surface of the substrate covers the N-type layer 9 to be a photodiode. This allows
The dark current generated by the N-type layer 9 reaching the substrate surface can be eliminated. The other is to newly provide an N-type layer 30 that is shallower than the N-type layer 3 and has a high impurity concentration. As a result, a signal charge read channel as shown by an arrow 43 in the drawing is formed while maintaining the smear suppression effect brought about by the N-type layer 3 having a low impurity concentration and a deep depth, so that the signal charge can be read. Become. The region of the N-type layer 3 is a depleted region and may be a P-type layer having an extremely low concentration.

【0009】図5は本発明を実施した画素部の断面図を
示したものである。本実施例が図4に示す実施例と異な
る点は、ホトダイオード9と垂直CCDのN型層13の
間に厚い絶縁膜45と不純物濃度の高いP型層44を設
けることにより、アイソレーション効果を向上している
ことである。
FIG. 5 is a sectional view of a pixel portion embodying the present invention. This embodiment is different from the embodiment shown in FIG. 4 in that a thick insulating film 45 and a P-type layer 44 having a high impurity concentration are provided between the photodiode 9 and the N-type layer 13 of the vertical CCD to improve the isolation effect. That is improving.

【0010】本発明の別の一実施例の画素部の断面図を
示したものを図1に示す。本実施例が図4に示す実施例
と異なるところは、一つにはアイソレーション部分にお
いてN型層30のない、N型層21としたところであ
る。これにより、N型層30の追加により困難となって
いたアイソレーションを確実に行うことができる。第二
は、ホトダイオードのP型層5とN型層9間の位置ずれ
を同程度(Liso=Lr)としたことである。これに
より、ホトダイオードとなるN型層9を有効に使うこと
ができるので蓄積電荷量を増やすことができる。第三
は、P型層7をN型層9よりも浅く形成したことであ
る。これにより、信号電荷の読み出しチャンネル22を
P型層7より深くすることが可能となり垂直CCD下部
の中央の部分を通して信号電荷を読み出すことができ、
各拡散層の合わせや加工ずれに対する影響を受けにくく
することができる。なお、N型層21は不純物濃度や深
さの異なる複数の拡散層からなっていても全く同様の効
果がある。これにより、設計の裕度を増すことができ
る。
FIG. 1 shows a sectional view of a pixel portion of another embodiment of the present invention. The present embodiment is different from the embodiment shown in FIG. 4 in that the N-type layer 21 without the N-type layer 30 in the isolation portion is used. As a result, the isolation, which has been difficult due to the addition of the N-type layer 30, can be reliably performed. Secondly, the positional displacement between the P-type layer 5 and the N-type layer 9 of the photodiode is set to the same level (Liso = Lr). As a result, the N-type layer 9 serving as a photodiode can be effectively used, and the amount of accumulated charge can be increased. Thirdly, the P-type layer 7 is formed shallower than the N-type layer 9. As a result, the signal charge read channel 22 can be made deeper than the P-type layer 7, and the signal charge can be read out through the central portion under the vertical CCD.
It is possible to reduce the influence of misalignment of each diffusion layer and processing deviation. Even if the N-type layer 21 is composed of a plurality of diffusion layers having different impurity concentrations and depths, the same effect can be obtained. This can increase the design latitude.

【0011】図6は本発明を実施した画素部の断面図を
示したものである。本実施例が図1に示す実施例と異な
るところは、アイソレーション部分でN型層21を除く
代わりに新たにP型層10を設けたところである。これ
によっても同様にアイソレーションを確実に行うことが
できる。
FIG. 6 is a sectional view of a pixel portion embodying the present invention. The present embodiment is different from the embodiment shown in FIG. 1 in that a P-type layer 10 is newly provided instead of removing the N-type layer 21 in the isolation portion. This also ensures reliable isolation.

【0012】図7,図8は、図1に示す本発明の一実施
例のCCD型固体撮像素子の画素部の製造方法を示した
ものである。例えば、N型シリコン基板1からなる半導
体基板表面に、P型ウェル層2並びにN型層3を、イオ
ン打込み・熱拡散法により、順次、形成する。次にアイ
ソレーション部分だけをフォトレジスト24で覆い、例
えば、イオン打込みによりN型不純物層23を形成する
(図7(a))。次に、フォトレジスト24を除去し、
熱拡散を行い、N型不純物層21とする。次に、絶縁膜
6を介して、例えば、Si34膜25をデポした後、マ
スクを用いてエッチングを行い、ホトダイオードとなる
部分と垂直CCDとなる部分のSi34膜を除去する。
まず、垂直CCDとなる部分をフォトレジスト26で覆
い、イオン打込みによりホトダイオードとなるN型層5
1を形成する(図7(b))。同様にして今度はホトダ
イオードとなる部分をフォトレジスト50で覆い、イオ
ン打込みにより垂直CCDを構成するP型層26を形成
する(図8(a))。その後、フォトレジスト除去,熱
拡散を行った後、同様にしてマスクを用いてイオン打込
みを行い、垂直CCDのチャンネルとなるN型層8を形
成する。さらにN型シリコン基板1上に絶縁膜6を介し
て垂直CCDの転送ゲート11を形成した後、この転送
ゲート電極11をマスクにしてイオン打込みによりホト
ダイオードを構成するP型層5を形成する(図8
(b))。なお、拡散深さの深い拡散層2,3,21に
ついては高エネルギイオン打込み法により形成してもよ
い。熱拡散工程が減り、プロセスを簡略化することがで
きる。
7 and 8 show a method of manufacturing the pixel portion of the CCD type solid-state image pickup device of the embodiment of the present invention shown in FIG. For example, the P-type well layer 2 and the N-type layer 3 are sequentially formed on the surface of the semiconductor substrate made of the N-type silicon substrate 1 by the ion implantation / thermal diffusion method. Next, only the isolation portion is covered with the photoresist 24, and the N-type impurity layer 23 is formed by, for example, ion implantation (FIG. 7A). Next, the photoresist 24 is removed,
Thermal diffusion is performed to form the N-type impurity layer 21. Next, for example, after depositing the Si 3 N 4 film 25 through the insulating film 6, etching is performed using a mask to remove the Si 3 N 4 film in the portions that will be photodiodes and the vertical CCDs. ..
First, a portion to be a vertical CCD is covered with a photoresist 26, and an N-type layer 5 to be a photodiode by ion implantation is formed.
1 is formed (FIG. 7B). Similarly, this time, the portion to be the photodiode is covered with the photoresist 50, and the P-type layer 26 forming the vertical CCD is formed by ion implantation (FIG. 8A). Then, after removing the photoresist and performing thermal diffusion, ion implantation is similarly performed using a mask to form an N-type layer 8 that serves as a channel of the vertical CCD. Further, after the transfer gate 11 of the vertical CCD is formed on the N-type silicon substrate 1 via the insulating film 6, the transfer gate electrode 11 is used as a mask to form the P-type layer 5 constituting the photodiode by ion implantation (FIG. 8
(B)). The diffusion layers 2, 3, 21 having a large diffusion depth may be formed by the high energy ion implantation method. The heat diffusion step can be reduced and the process can be simplified.

【0013】図2に示した従来の画素部にも、図1,図
6に示す本発明の実施例を全く同様に適用することがで
きる。
The embodiment of the present invention shown in FIGS. 1 and 6 can be applied to the conventional pixel portion shown in FIG. 2 in exactly the same manner.

【0014】なお、上述の実施例では、CCD型撮像素
子を用いて説明を行ったが、本発明は、MOS型撮像素
子や、また一次元や二次元の固体撮像素子にも適用可能
である。また、実施例では、接合型ホトダイオードを用
いて説明を行ったが、本発明は、MOSダイオードにも
適用できる。
In the above embodiments, the CCD type image pickup device was used for explanation, but the present invention can be applied to a MOS type image pickup device and also a one-dimensional or two-dimensional solid-state image pickup device. .. Further, in the embodiments, the description has been given by using the junction type photodiode, but the present invention can be applied to the MOS diode.

【0015】[0015]

【発明の効果】本発明によれば、従来スミア抑圧のため
設けられたN型層を残したまま、より浅くて不純物濃度
の高いN型層を追加することにより、ホトダイオードと
なるN型層がN型基板表面に達しないようにP型層で完
全に覆っても信号電荷の読み出しを行うことができるの
で、スミアや読み出し特性を維持したままでホトダイオ
ード部の暗電流を低減することができる。
According to the present invention, an N-type layer which becomes a photodiode can be formed by adding a shallower N-type layer having a high impurity concentration while leaving the N-type layer conventionally provided for suppressing smear. Since the signal charge can be read out even when the signal charge is completely covered with the P-type layer so as not to reach the surface of the N-type substrate, it is possible to reduce the dark current in the photodiode portion while maintaining the smear and the read characteristics.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第一の実施例の画素部の断面図。FIG. 1 is a sectional view of a pixel portion according to a first embodiment of the present invention.

【図2】従来例の画素部の断面図。FIG. 2 is a sectional view of a pixel portion of a conventional example.

【図3】CCD型撮像素子の回路の説明図。FIG. 3 is an explanatory diagram of a circuit of a CCD type image pickup device.

【図4】本発明の第二の実施例の画素部の断面図。FIG. 4 is a sectional view of a pixel portion according to a second embodiment of the present invention.

【図5】本発明の第三の実施例の画素部の断面図。FIG. 5 is a sectional view of a pixel portion of a third embodiment of the present invention.

【図6】本発明の第四の実施例の画素部の断面図。FIG. 6 is a sectional view of a pixel portion according to a fourth embodiment of the present invention.

【図7】本発明の第一の実施例の画素部の製造方法の説
明図。
FIG. 7 is an explanatory diagram of the manufacturing method of the pixel portion according to the first embodiment of the present invention.

【図8】本発明の第一の実施例の画素部の製造方法の説
明図。
FIG. 8 is an explanatory diagram of the manufacturing method of the pixel portion according to the first embodiment of the present invention.

【符号の説明】[Explanation of symbols]

9,51…ホトダイオードとなるN型層、13,8…垂
直CCDとなるN型層、3,4,21,30…N型層。
9, 51 ... N-type layers to be photodiodes, 13, 8 ... N-type layers to be vertical CCDs, 3, 4, 21, 30 ... N-type layers.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 尾崎 俊文 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 田中 治彦 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Toshifumi Ozaki, Toshifumi Ozaki, 1-280, Higashi Koikekubo, Kokubunji, Tokyo, Central Research Laboratory, Hitachi Ltd. (72) Haruhiko Tanaka, 1-280, Higashi Koikekubo, Kokubunji, Tokyo Hitachi, Ltd. Central research institute

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】半導体基体上に設けられた半導体基体とは
逆導電形のウェル層内に形成した光電変換素子及びスイ
ッチ素子からなる画素のアレーと、前記画素のアレーを
走査する水平及び垂直走査素子と、前記垂直走査素子を
覆うように形成された前記ウェル層と同導電型の第一拡
散層をもった固体撮像素子において、前記画素のアレー
及び垂直走査素子領域の前記ウェル層上に前記ウェル層
と逆導電型の複数の不純物層群を設けたことを特徴とす
る固体撮像素子。
1. An array of pixels formed of a photoelectric conversion element and a switch element formed in a well layer of a conductivity type opposite to that of the semiconductor substrate provided on the semiconductor substrate, and horizontal and vertical scanning for scanning the array of the pixels. A solid-state imaging device having an element and a first diffusion layer of the same conductivity type as the well layer formed so as to cover the vertical scanning element, the array of the pixels and the well layer in the vertical scanning element region A solid-state imaging device comprising a plurality of impurity layer groups having a conductivity type opposite to that of a well layer.
【請求項2】請求項1において、前記光電変換素子は半
導体基体と同導電型の第二拡散層をもち、前記垂直走査
素子は半導体基体と同導電型の第三拡散層をもち、前記
第二拡散層と前記第三拡散層間の二領域の距離が少なく
とも一部で等しい固体撮像素子。
2. The photoelectric conversion element according to claim 1, wherein the photoelectric conversion element has a second diffusion layer of the same conductivity type as the semiconductor substrate, and the vertical scanning element has a third diffusion layer of the same conductivity type as the semiconductor substrate. A solid-state imaging device in which a distance between two regions between the second diffusion layer and the third diffusion layer is at least partially equal.
【請求項3】請求項1において、前記光電変換素子は前
記半導体基体と同導電型の第二拡散層をもち、前記垂直
走査素子は半導体基体と同導電型の第三拡散層をもち、
前記第二拡散層と第三拡散層間の二つの領域において、
前記ウェル層と同導電型層の不純物濃度が少なくとも一
部で異なる固体撮像素子。
3. The photoelectric conversion element according to claim 1, wherein the photoelectric conversion element has a second diffusion layer of the same conductivity type as the semiconductor substrate, and the vertical scanning element has a third diffusion layer of the same conductivity type as the semiconductor substrate.
In the two regions between the second diffusion layer and the third diffusion layer,
A solid-state imaging device, wherein the well layer and the same conductivity type layer have different impurity concentrations at least in part.
【請求項4】請求項1において、前記光電変換素子は半
導体基体と同導電型の第二拡散層をもち、前記垂直走査
素子は半導体基体と同導電型の第三拡散層をもち、前記
複数の不純物層群の少なくとも一つの不純物層は、前記
第二拡散層と第三拡散層間の二領域の少なくとも1部に
導入されていない固体撮像素子。
4. The photoelectric conversion element according to claim 1, wherein the photoelectric conversion element has a second diffusion layer of the same conductivity type as the semiconductor substrate, and the vertical scanning element has a third diffusion layer of the same conductivity type as the semiconductor substrate. In the solid-state imaging device, at least one impurity layer of the impurity layer group is not introduced into at least a part of the two regions between the second diffusion layer and the third diffusion layer.
【請求項5】請求項1において、前記光電変換素子は半
導体基体と同導電型の第二拡散層をもち、この第二拡散
層の深さは前記第一拡散層の深さより深い固体撮像素
子。
5. The solid-state imaging device according to claim 1, wherein the photoelectric conversion element has a second diffusion layer of the same conductivity type as the semiconductor substrate, and the depth of the second diffusion layer is deeper than the depth of the first diffusion layer. ..
【請求項6】請求項1において、前記光電変換素子は半
導体基体と同導電型の第二拡散層をもち、前記垂直走査
素子は半導体基体と同導電型の第三拡散層をもち、前記
第二拡散層と前記第三拡散層並びに前記第一拡散層を同
一マスク層により自己整合的に形成する固体撮像素子。
6. The photoelectric conversion element according to claim 1, wherein the photoelectric conversion element has a second diffusion layer of the same conductivity type as the semiconductor substrate, and the vertical scanning element has a third diffusion layer of the same conductivity type as the semiconductor substrate. A solid-state imaging device, comprising: a second diffusion layer, the third diffusion layer, and the first diffusion layer formed in the same mask layer in a self-aligned manner.
JP3303065A 1991-11-19 1991-11-19 Solid state image sensor Pending JPH05145056A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3303065A JPH05145056A (en) 1991-11-19 1991-11-19 Solid state image sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3303065A JPH05145056A (en) 1991-11-19 1991-11-19 Solid state image sensor

Publications (1)

Publication Number Publication Date
JPH05145056A true JPH05145056A (en) 1993-06-11

Family

ID=17916484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3303065A Pending JPH05145056A (en) 1991-11-19 1991-11-19 Solid state image sensor

Country Status (1)

Country Link
JP (1) JPH05145056A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000299453A (en) * 1999-02-09 2000-10-24 Sony Corp Solid-state image pickup device and its manufacture
EP1143522A2 (en) * 2000-04-06 2001-10-10 Nec Corporation Charge coupled device and method for fabricating same
JP2010028143A (en) * 1999-02-09 2010-02-04 Sony Corp Solid-state image sensing device and method for producing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000299453A (en) * 1999-02-09 2000-10-24 Sony Corp Solid-state image pickup device and its manufacture
JP2010028143A (en) * 1999-02-09 2010-02-04 Sony Corp Solid-state image sensing device and method for producing the same
EP1143522A2 (en) * 2000-04-06 2001-10-10 Nec Corporation Charge coupled device and method for fabricating same
EP1143522A3 (en) * 2000-04-06 2008-03-26 Nec Corporation Charge coupled device and method for fabricating same

Similar Documents

Publication Publication Date Title
KR0168902B1 (en) Solid state image pick-up device
US6774453B2 (en) Semiconductor device, image pickup device using the same, and photoelectric conversion device
US9620545B2 (en) Solid-state image pickup device and method for producing the same
JP3584196B2 (en) Light receiving element and photoelectric conversion device having the same
JP3766734B2 (en) Solid-state image sensor
JP5442100B2 (en) Method for manufacturing photoelectric conversion device
JP2006261411A (en) Image sensor having buried photodiode region, and manufacturing method thereof
JP5487798B2 (en) Solid-state imaging device, electronic apparatus, and manufacturing method of solid-state imaging device
JP2004039832A (en) Photoelectric converter and its manufacturing method
US20080224190A1 (en) Image sensor and method of fabricating the same
JPH11274461A (en) Solid image pickup device and its manufacture
KR101009091B1 (en) CMOS image sensor with reduced crosstalk and method for fabricating thereof
JP2866328B2 (en) Solid-state imaging device
JP3544175B2 (en) Solid-state imaging device and camera using semiconductor device
JP2964571B2 (en) Solid-state imaging device
JPH05145056A (en) Solid state image sensor
JPH02278874A (en) Solid state image sensor and manufacture thereof
JPS63312669A (en) Solid-state image sensor
KR100769563B1 (en) Image sensor for reducing current leakage
JPH06275809A (en) Solid-state image pickup device
JP3085387B2 (en) Charge transfer type solid-state imaging device
JP3047965B2 (en) Solid-state imaging device
KR0140634B1 (en) The fabrication method of solid state image sensing device
JPH0575089A (en) Solid state image pickup device
JP2010171439A (en) Solid-state imaging device