JPS5917774A - Solid-state image pickup device - Google Patents

Solid-state image pickup device

Info

Publication number
JPS5917774A
JPS5917774A JP57126935A JP12693582A JPS5917774A JP S5917774 A JPS5917774 A JP S5917774A JP 57126935 A JP57126935 A JP 57126935A JP 12693582 A JP12693582 A JP 12693582A JP S5917774 A JPS5917774 A JP S5917774A
Authority
JP
Japan
Prior art keywords
layer
solid
photoelectric conversion
blocking layer
conversion film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57126935A
Other languages
Japanese (ja)
Inventor
Takao Chikamura
隆夫 近村
Sadakichi Hotta
定吉 堀田
Yutaka Miyata
豊 宮田
Kosaku Yano
矢野 航作
Yoshiya Takeda
悦矢 武田
Shinji Fujiwara
慎司 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP57126935A priority Critical patent/JPS5917774A/en
Publication of JPS5917774A publication Critical patent/JPS5917774A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4207Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms with optical elements reducing the sensitivity to optical feedback
    • G02B6/4208Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms with optical elements reducing the sensitivity to optical feedback using non-reciprocal elements or birefringent plates, i.e. quasi-isolators
    • G02B6/4209Optical features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14665Imagers using a photoconductor layer

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

PURPOSE:To attain a high resolution, by making the product of the resistance between adjacent picture elements of a photoelectric converting film which includes an amorphous Si layer containing hydrogen and consists of two blocking layers, and the capacity of a unit picture element, >= one frame period. CONSTITUTION:An Si layer 9 consisting essentially of an amorphous Si containing hydrogen and blocking layers 8a and 8b having a forbidden energy band width wider than the Si layer 9 form the photoelectric converting film. When the product between the resistance between adjacent picture elements of this photoelectric converting film and the capacity of a unit picture element is made sufficiently >= one frame period, a high resolution is obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はテレビジョンカメラの光電変換部である固体撮
像装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a solid-state imaging device that is a photoelectric conversion section of a television camera.

従来例の構成とその問題点 固体撮像装置は集積回路技術の進展と共に急激な発展を
みせ、最近では単板カラーカメラとしての実用的な絵素
数(約2Q万個)を有するものが実現されるようになっ
た。一方、性能面での改良もはかられ、とりわけ走査機
能を有するSi 基板上に光導電膜を積層した固体撮像
装置は、高感度でブルーミンクが少ない等の特徴を有し
、撮像管に匹適し得るデバイスとして有力である。その
ようなデバイスとして、例えば特開昭54−10363
゜号と特開昭65−39404号が挙げられる。
Conventional configurations and their problems Solid-state imaging devices have shown rapid development along with advances in integrated circuit technology, and recently, devices with a practical number of picture elements (approximately 2Q million) for single-chip color cameras have been realized. It became so. On the other hand, improvements have been made in terms of performance, and in particular, solid-state imaging devices in which a photoconductive film is laminated on a Si substrate with a scanning function have features such as high sensitivity and little blooming, and are comparable to image pickup tubes. This is a potential suitable device. As such a device, for example, Japanese Patent Application Laid-Open No. 54-10363
゜ and JP-A-65-39404.

このような光導電膜積層型固体撮像装置の実現には、す
ぐれた走査機能を有するSt 基板の開発と同様すぐれ
た光電変換機能を有する膜の開発が必須である。前記公
知の例においては、光導電膜としてn−Vl族化合物の
異種接合膜あるいは非晶qJf 3 i膜等を用いてい
る。これらの光導電膜は高感度であると共に、信号電荷
の蓄積機能をもたせ/こり、解像度劣下を生じさせない
ために充分に高抵抗である必四かある。
In order to realize such a photoconductive film stacked solid-state imaging device, it is essential to develop a film that has an excellent photoelectric conversion function, similar to the development of an St 2 substrate that has an excellent scanning function. In the known example, a heterojunction film of an n-Vl group compound, an amorphous qJf 3 i film, or the like is used as the photoconductive film. These photoconductive films must not only have high sensitivity but also have a sufficiently high resistance so as to have a function of accumulating signal charges and to prevent resolution deterioration.

前記特開昭55−39404号公報では非晶質Si中の
水素用の制御、不純物の導入および薄い絶縁層の挿入に
、しり、高抵抗化を試みている。(−かし、に記の方法
による非晶質Si の高抵抗化を行なった場合には動作
電圧のト#1を招きやすく、走査デバイスとの適合性を
失なうという欠点があ一部た。!iた、一方弁晶質Si
 に不純物添加を行ないp−1−n構造を形成し、主に
太陽電池等に用いられているが、暗電流も少なく低電圧
動作も可能である反面、n層、p層の抵抗が低いため解
像度が低下するという欠点を有していた1、寸だ一方、
非晶質シリコンの両側をバンドギャップの大きい高抵抗
層を用いた電子写真用感光体か報告されているか(特開
昭57−179152号)、電子写真感光体の場合には
数100Vの耐圧が要求され、かそ蓄積時間も数秒以上
と大きい。すなわち、類似構される性能は大幅に異なる
JP-A-55-39404 attempts to increase resistance by controlling hydrogen in amorphous Si, introducing impurities, and inserting a thin insulating layer. (-However, if amorphous Si is made to have a high resistance using the method described above, it tends to cause an operating voltage of !i, while crystalline Si
Impurities are added to form a p-1-n structure, and it is mainly used in solar cells, etc., but it has low dark current and can operate at low voltages, but because the resistance of the n-layer and p-layer is low. 1, which had the disadvantage of reduced resolution,
It has been reported that an electrophotographic photoreceptor uses a high-resistance layer with a large band gap on both sides of amorphous silicon (Japanese Patent Application Laid-open No. 179152/1983), and in the case of an electrophotographic photoreceptor, a withstand voltage of several hundred V is reported. The storage time required is long, several seconds or more. That is, the performance of similar structures differs significantly.

発明の目的 本発明は上記のような欠点を除去すべく考え出された非
晶質シリコンを光電変換膜として用いた固体撮像装置に
関するもので、特に光電変換膜が低電圧動作し7、かつ
高解像度を有することを特徴とするものである。
OBJECTS OF THE INVENTION The present invention relates to a solid-state imaging device using amorphous silicon as a photoelectric conversion film, which was devised to eliminate the above-mentioned drawbacks. It is characterized by having high resolution.

発明の構成 すなわち、本発明の固体撮像装置は光電変換膜と、前記
光電変換膜への光照射によって得られる電荷を蓄積する
単位絵素内のダイオード領域と、前記電荷を順次選択し
て外部へ読み出す走査回路とを有し、前記光電変換膜が
少なくとも水素化非晶質シリコンを含む化合物を含有し
てなるi層を含み、同1層の片方主面側あるいは両方主
面側にブロッキング層を有し、前記光電変換膜の隣接絵
素間の抵抗と単位絵素の容量の積が1フレ一ム期間より
大なることを特徴とするものである。
In other words, the solid-state imaging device of the present invention includes a photoelectric conversion film, a diode region within a unit pixel that accumulates charges obtained by irradiating the photoelectric conversion film with light, and a device that sequentially selects the charges and transfers them to the outside. a reading scanning circuit, the photoelectric conversion film includes an i-layer containing at least a compound containing hydrogenated amorphous silicon, and a blocking layer is provided on one or both main surfaces of the same layer. and the product of the resistance between adjacent picture elements of the photoelectric conversion film and the capacitance of a unit picture element is greater than one frame period.

実施例の説明 第1図に本発明の実施例の固体撮像装置の単位絵素の断
面図を示した。本実施例では、走査機能として電荷結合
型デバイス(以下、これをCODと呼ぶ)を用いて説明
するが、これはCODに限定されるものではなく、パケ
ット・ブリゲイト・テバイス(Backet Brig
ade Device )あるいはMOSマ(・リック
ス型素子であっても良いことは菖う寸でもない。
DESCRIPTION OF EMBODIMENTS FIG. 1 shows a cross-sectional view of a unit pixel of a solid-state imaging device according to an embodiment of the present invention. In this embodiment, a charge-coupled device (hereinafter referred to as COD) is used as the scanning function, but this is not limited to COD, and a packet brigade device (Backet Brig device) is used as the scanning function.
It is not a matter of course that it may be an ade device) or a MOS matrix type element.

第1図において、1はp型S1基板、2はn型領域であ
りp型Si基板1とダイオードを形成している。3けn
−型領域であり埋込み型のチャンネルとなっている。4
は読み込みゲート電極6の下の絶縁膜である。ゲー]・
電極6は読み込み動作と転送動作を兼ねており、後述す
るようにパルスの高さで機能を変えている。6は低融点
ガラス等よりなる絶縁体であり、n1型領域2の一部の
み開]」シている3、7は光励起されたキャリアの収集
電極でMo、Ta、Aρ等よりなり絵素間分離のためモ
リ′イク状に形成されたn″型領領域2電気的に接続さ
れている。
In FIG. 1, 1 is a p-type S1 substrate, and 2 is an n-type region, which together with the p-type Si substrate 1 form a diode. 3ken
- type area and is a buried type channel. 4
is an insulating film under the read gate electrode 6. Game】・
The electrode 6 serves both a reading operation and a transfer operation, and its function changes depending on the pulse height as described later. 6 is an insulator made of low-melting point glass, etc., and only a part of the n1 type region 2 is open. 3 and 7 are collection electrodes for photoexcited carriers made of Mo, Ta, Aρ, etc., and are connected between the picture elements. For isolation, an n'' type region 2 formed in a molybdenum shape is electrically connected.

8a、9,8bは、本発明にかかわる光電変換膜である
。8aは非晶質Si gより禁止帯幅が大きなブロッキ
ング層で例えば炭化シリコン、酸化シリコン、窒化シリ
コン、またはそれらの混合物よりなるものである。9は
、水素を含有する非晶質シリコンを主成分としたi層で
、8bは1層9よりも禁止帯幅の大きいブロッキング層
で例えば炭化シリコン、酸化シリコン、窒化ノリコン丑
たはそれらの混合物よりなるものである1310は透明
電極で、11は入射光である。12は光電変換膜に最適
な印加電圧を与えるだめの外部電源である。
8a, 9, and 8b are photoelectric conversion films according to the present invention. 8a is a blocking layer having a wider band gap than amorphous Si, and is made of, for example, silicon carbide, silicon oxide, silicon nitride, or a mixture thereof. 9 is an i-layer mainly composed of amorphous silicon containing hydrogen, and 8b is a blocking layer having a wider forbidden band width than the first layer 9, such as silicon carbide, silicon oxide, silicon nitride, or a mixture thereof. 1310 is a transparent electrode, and 11 is incident light. Reference numeral 12 denotes an external power source for applying an optimum voltage to the photoelectric conversion film.

次に、前記構成の固体撮像装置の動作について説明する
。第2図は、第1図の固体撮像装置の平面構成を示した
。第3図(a) 、 (b)は同装置の駆動パルス波形
と入射光がある場合のn4型領域2の電位変化を示した
ものである。はじめに、第1フイールドにおいて光によ
り生成したキャリアは電極7に集められる。ゲート電極
6にVCHなる読み込みパルスを印加すると、n−型領
域2はVCH−VT(ここでvTは♂型領域2と♂型領
域3とゲート電極6とよりなるトランジスタの閾値電圧
である。)に充電されるために、信号電荷はn−領域3
に移される。
Next, the operation of the solid-state imaging device having the above configuration will be explained. FIG. 2 shows a planar configuration of the solid-state imaging device shown in FIG. FIGS. 3(a) and 3(b) show the driving pulse waveform of the same device and the potential change of the n4 type region 2 when there is incident light. First, carriers generated by light in the first field are collected on the electrode 7. When a read pulse VCH is applied to the gate electrode 6, the n-type region 2 becomes VCH-VT (here, vT is the threshold voltage of the transistor consisting of the male region 2, the male region 3, and the gate electrode 6). In order to be charged to n-region 3, the signal charge is
will be moved to

13aおよび13bは転送動作を行なわせるためリン等
のイオン注入により形成した障壁部である。
Reference numerals 13a and 13b are barrier portions formed by implanting ions of phosphorus or the like in order to perform a transfer operation.

垂直転送はゲート電極5および5′に順次パルスv7を
印加することにより電位勾配が形成され矢印14に示し
/ζ方向に順次転送することが出来る。第2フイールド
においてはn−領域2′に収集された電荷が同様な方法
により読み出すことが出来る。
In vertical transfer, a potential gradient is formed by sequentially applying pulses v7 to gate electrodes 5 and 5', and sequential transfer can be performed in the /ζ direction shown by arrow 14. In the second field, the charges collected in the n-region 2' can be read out in a similar manner.

次に前記固体撮像装置の製造法について説明する。p型
Si基板1に熱拡散等により、p等を拡散させイ型領域
2を形成する。n−型領域の埋込みチャンネル3はpあ
るいはAs等をイオン注入することにより形成する。更
に、p型Si基板1の表面にゲート酸化膜4を形成し7
た後、POρy−3i等によりゲート電極6を形成する
。しかる後に絶縁層6を形成するがこれは♂型領域2の
一部を開[1した後、段差緩和のためメルトフローを行
なうので、リンミンケートガラスのような低融点物質が
望ましい。絶縁層6を形成した後、AI 、 Mo 。
Next, a method for manufacturing the solid-state imaging device will be described. A-type region 2 is formed by diffusing p and the like into p-type Si substrate 1 by thermal diffusion or the like. The buried channel 3 in the n-type region is formed by ion implantation of p or As. Furthermore, a gate oxide film 4 is formed on the surface of the p-type Si substrate 1.
After that, a gate electrode 6 is formed using POpy-3i or the like. Thereafter, the insulating layer 6 is formed, but after opening a part of the male-type region 2, melt flow is performed to reduce the step difference, so a low melting point material such as phosphorus oxide glass is preferably used. After forming the insulating layer 6, AI, Mo.

W、Ta、Cr  等より電荷収集用の第1電極7を形
成する。この第1電極は絵素分離を行なうだめモザイク
状に形成している。
A first electrode 7 for charge collection is formed from W, Ta, Cr, or the like. This first electrode is formed in a mosaic shape to separate picture elements.

以上が走査(ロ)踏部の形成方法である。The above is the method for forming the scanning (b) tread portion.

しかる後に、ブロッキング層8bを形成するわけである
が、その方法としてはグロー法やスパッタリング法があ
る。例えばグロー法で作成する場合には水素およびAr
またはそれらの混合ガスをキャリアガスとして、そのガ
スにシランS iH4とCH3を適量混合したガスをチ
ェバー内に導入し、グロー放電を行なわせることにより
通常の非晶質St より禁止帯幅の大きいブロッキング
層としての非晶質シリコンカーバイドが得られる。非晶
質窒化シリコンを作成する場合にはCH3の代りにNH
3まだは多量のN2を混入ガスとして用いればよいn型
不純物としてはPH3を適量混合させればよい。しかし
、このブロッキング層8bの抵抗は、あまり低すぎても
高すぎてもいけない。なぜなら、低すぎる場合にけ絵素
電極7の横方向のリークが生じ解像度の低下が生じる。
After that, the blocking layer 8b is formed, and methods for doing so include a glow method and a sputtering method. For example, when using the glow method, hydrogen and Ar
Alternatively, using a mixture of these gases as a carrier gas, a mixture of appropriate amounts of silane SiH4 and CH3 is introduced into the chamber, and a glow discharge is generated, resulting in blocking with a wider forbidden band width than that of ordinary amorphous St. Amorphous silicon carbide as a layer is obtained. When creating amorphous silicon nitride, use NH instead of CH3.
3. It is still sufficient to use a large amount of N2 as a mixed gas.As an n-type impurity, it is sufficient to mix an appropriate amount of PH3. However, the resistance of this blocking layer 8b must not be too low or too high. This is because, if it is too low, leakage occurs in the lateral direction of the pixel electrode 7, resulting in a decrease in resolution.

一方、高ずぎる場合には、゛印加電圧がブロッキング層
8aのみにかかり、1層9には印加電圧がかからなくな
り感度低下が生じたり、高い印加電圧が必要となり、走
査回路部との適合性がなくなる等の不都合が生ずる。ブ
ロッキング層8aは上記のような観点から109.0+
4Ω−mの範囲であることが望ましい。又その膜厚は2
0〜1000人が実用的範囲である。
On the other hand, if the voltage is too high, the applied voltage will be applied only to the blocking layer 8a, and no applied voltage will be applied to the first layer 9, resulting in a decrease in sensitivity. This may cause inconveniences such as loss of sex. The blocking layer 8a is 109.0+ from the above point of view.
A range of 4 Ω-m is desirable. Also, the film thickness is 2
0 to 1000 people is a practical range.

上記の製造法においてはグロー放電法により記述したが
、上記の抵抗が保たれるならその製造法は問わず、例え
ば、StをターゲットとしAr とHガスとCH3ある
いはNH3あるいは適量の酸素を含むガスをベースとし
B2H6ガスを混入した雰囲気中でスパッタリングを行
なうことにより、非晶質窒化シリコンあるいは非晶質シ
リコンカーバイドおよび非晶質酸化膜が得られる。
The above manufacturing method was described using a glow discharge method, but as long as the above resistance is maintained, any manufacturing method may be used. By performing sputtering in an atmosphere containing B2H6 gas as a base, amorphous silicon nitride or amorphous silicon carbide and an amorphous oxide film can be obtained.

次に1層9の形成法を述べる。1層9は光電変換を司る
重要な働きを有し、光キャリアの励起とその走行機能を
もつ。1層9の走行機能(即ち易動度)が悪ければ、光
励起キャリアは電極に到達できず感度低下となる。ある
いは充分な感度を得ようとすれば高い印加電圧が必要と
なる。水素を含有する非晶質シリコンの形成法としては
、ブロッキング層8aの場合と同様、グロー放電法とス
パッタリング法があるが、グロー放電法により作成した
膜の方が易動度が大きく、かつ界面に与えるダメージが
少なくよい接合が得られるため低電圧動作に有効である
。その製造法は、例えば基板温度を150〜300°C
に保ち、0.1〜I TorrのS iH4およびその
N2あるいはAr稀釈ガス中でグロー放電を行なうこと
により得られる。1層9の膜厚は容量と走行機能に関与
するもので重要であるが、0.5〜6μm がその製造
性と特性上から実用上の範囲である。
Next, a method of forming one layer 9 will be described. The first layer 9 has an important function of controlling photoelectric conversion, and has the function of exciting photocarriers and transporting them. If the traveling function (ie, mobility) of the first layer 9 is poor, photoexcited carriers cannot reach the electrodes, resulting in a decrease in sensitivity. Alternatively, in order to obtain sufficient sensitivity, a high applied voltage is required. Methods for forming hydrogen-containing amorphous silicon include the glow discharge method and the sputtering method, as in the case of the blocking layer 8a, but the film created by the glow discharge method has greater mobility and It is effective for low-voltage operation because it produces good junctions with less damage. The manufacturing method requires, for example, a substrate temperature of 150 to 300°C.
It is obtained by performing glow discharge in SiH4 and its N2 or Ar diluted gas at 0.1 to I Torr. The thickness of the first layer 9 is important as it is related to capacity and running function, but 0.5 to 6 μm is a practical range from the viewpoint of manufacturability and characteristics.

ブロッキング層8bの製造法は基本的にブロッキング層
8aの製造法と同じである。但し、ブロッキング層8b
はp型とすることが望ましく、その場合には不純物とし
てB2H6等を添加するとよい。ブロッキング層8bは
、抵抗りの制約は1014Ω−(7)以下であればよく
その下限はない。また膜厚はブロッキング層8aと同様
2Q〜i ooo人か実用的範囲で、下限は電気的ブロ
ッキング機能を有すること、上限は印加電圧が上昇しな
いこと及びブロッキング層8bの光吸収による感度低下
が生じない範囲であればよい。また、もし1層9が電子
に71シてショク]・ギー障壁を形成するような場合は
ブロッキング層8bは必ずしも必要ではない。
The method for manufacturing the blocking layer 8b is basically the same as the method for manufacturing the blocking layer 8a. However, the blocking layer 8b
is preferably p-type, and in that case, B2H6 or the like may be added as an impurity. The resistance of the blocking layer 8b has no lower limit as long as it is 10<14>Ω-(7) or less. In addition, the film thickness is within a practical range of 2Q to i ooo, similar to the blocking layer 8a, with the lower limit being that it has an electrical blocking function, and the upper limit being that the applied voltage does not increase and sensitivity decreases due to light absorption in the blocking layer 8b. It suffices as long as it is within the range. Further, if the first layer 9 forms a barrier to electrons, the blocking layer 8b is not necessarily necessary.

発明の効果 次に本発明の固体撮像装置の効果について説明する、 一例として%インチ光学系に適合した固体撮像板を考え
る。1チツプでカラーカメラを構成するためには、各単
位絵素に赤、緑、青に対応しだ色フィルターを形成すれ
ばよいが充分な解像度を得るためには通常20万個の絵
素が必要である。単位絵素サイズに換算すると縦14μ
m、横24μmとなる。絵素用第一電極はモザイク状で
あるが、第1電極間を約3μmとし、光電変換膜として
ブロッキング層sa、sbをそれぞれ100人また1層
9を1μm形成した場合について考える。絵素容量Cは
ほとんど1層9の膜厚でき捷り、その値は約2.3 X
 10=’ Forad /セルとなる。一方、隣接絵
素間の抵抗R0は(1)式のようになる。
Effects of the Invention Next, the effects of the solid-state imaging device of the present invention will be explained. As an example, consider a solid-state imaging plate that is compatible with a % inch optical system. In order to configure a color camera with one chip, it is sufficient to form color filters corresponding to red, green, and blue on each unit pixel, but in order to obtain sufficient resolution, usually 200,000 pixels are required. is necessary. Converted to unit pixel size: 14μ vertically
m, and the width is 24 μm. The first electrodes for picture elements have a mosaic shape, and the distance between the first electrodes is about 3 μm, and a case will be considered in which 100 blocking layers sa and sb are formed as photoelectric conversion films, and each layer 9 has a thickness of 1 μm. The pixel capacitance C is almost one layer 9 thick, and its value is about 2.3
10='Forad/cell. On the other hand, the resistance R0 between adjacent picture elements is expressed by equation (1).

氾 R=  p X −(1) Cw ×d ρは膜の比抵抗で、λは第一電極間距離(371m)、
Wは第一電極の長子寸法(21μm)、dは膜厚である
。dの値としてはブロッキング層8aの抵抗Rbaが1
層9の抵抗R,より低い場合にはブロッキング層8aの
値を入れればよく、逆にRba〉R1の場合には1層9
の値を入れればよい。
Flood R = p
W is the length of the first electrode (21 μm), and d is the film thickness. As for the value of d, the resistance Rba of the blocking layer 8a is 1.
If the resistance R of the layer 9 is lower, the value of the blocking layer 8a may be entered, and conversely, if Rba>R1, the value of the blocking layer 8a may be entered.
Just enter the value.

種々の1層9およびブロッキング層8aの比抵抗の膜を
作製した時の限界解像度を第4図に示した。1層9はR
1〈Rbaならその比抵抗が1o10Ω−(7)以上で
あれば解像度の低下がなく、またブロッキング層8aは
Ri〉Rba ならその比抵抗が108Ω−(7)以上
であれば解像度の低下がない。以上は光電変換膜および
走査デバイスの特定の場合について述べたが、本発明は
これに限定されるものではなく、隣接絵素間の抵抗Rc
と単位絵素の音量Cの積が1フレ一ム期間(33m5e
c )より充分に大きければ、全く同様に高解像度を得
ることが出来る。
FIG. 4 shows the limit resolution when films with various specific resistances of the single layer 9 and the blocking layer 8a were prepared. 1st layer 9 is R
If the blocking layer 8a is Ri>Rba, there will be no decrease in resolution if the resistivity is 108Ω-(7) or higher. . Although the specific cases of the photoelectric conversion film and the scanning device have been described above, the present invention is not limited to this, and the resistance Rc between adjacent picture elements is
The product of the volume C of the unit picture element and the volume C of the unit picture element is one frame period (33m5e
If it is sufficiently larger than c), high resolution can be obtained in exactly the same way.

また、本発明は高解像度であると共に低電圧動作が可能
であることを特徴とする。第5図に光電流の印加電圧依
存性を示した。本発明はブロッキング層の瓜抗値を最適
に選び、かつi層に走行機能がすぐれたグロー法による
非晶質シリコンを用いているため、1■以下で光電流が
飽和する。これに対して、ブロッキング層に絶縁物を用
いた場合やi層にスパッタリング法による非晶質シリコ
ンを用いた場合には、暗電流の低下は得られるが動作電
圧の上昇が生じる。このような動作電圧の上昇は、走査
回路側の高耐圧化等の大きな負担となるものである。
Furthermore, the present invention is characterized by high resolution and low voltage operation. FIG. 5 shows the dependence of photocurrent on applied voltage. In the present invention, the resistance value of the blocking layer is optimally selected, and the i-layer is made of amorphous silicon produced by the glow method, which has an excellent running function, so that the photocurrent is saturated at 1<1> or less. On the other hand, if an insulator is used for the blocking layer or amorphous silicon formed by sputtering is used for the i-layer, the dark current can be reduced, but the operating voltage will increase. Such an increase in operating voltage places a large burden on the scanning circuit side, such as increasing the withstand voltage.

以−]二のように、本発明の固体撮像装置は高解像度で
動作電圧裕度が大きく、光導電膜積層型固体撮像装置の
本来的特徴である高感度、低ブルーミング特性とあい寸
ってその産業上の意義は極めて大きいものと言える。
As mentioned above, the solid-state imaging device of the present invention has high resolution and a large operating voltage tolerance, which is in line with the high sensitivity and low blooming characteristics that are the inherent characteristics of the photoconductive film stacked solid-state imaging device. It can be said that its industrial significance is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の固体撮像装置の単位絵素の
断面図、第2図は同固体撮像装置の信号処理動作を説明
するだめの平面図、第3図(a)、Φ)はそれぞれ同固
体撮像装置の駆動パルスおよびダイオードの電位を示す
図、第4図は同固体撮像装置における垂直限界解像度の
光電変換膜の比抵抗依存性を示す図、第5図は同固体撮
像装置の光電変換膜における光電流の印加電圧依存性を
示す図である。 1・・・・・・p型Si 基板、3・・・・・・n−型
領域、8a。 8b・・・・・・・ブロッキング層、9・・・・・水素
を含有した非晶質St 層。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第2図 第3図
FIG. 1 is a cross-sectional view of a unit pixel of a solid-state imaging device according to an embodiment of the present invention, FIG. 2 is a plan view for explaining the signal processing operation of the solid-state imaging device, and FIG. 3(a), Φ ) are diagrams showing the drive pulse and diode potential of the same solid-state imaging device, Figure 4 is a diagram showing the dependence of the vertical limit resolution on the specific resistance of the photoelectric conversion film in the same solid-state imaging device, and Figure 5 is a diagram showing the dependence of the photoelectric conversion film on the specific resistance of the solid-state imaging device. FIG. 3 is a diagram showing the dependence of photocurrent on applied voltage in the photoelectric conversion film of the device. 1...p-type Si substrate, 3...n-type region, 8a. 8b...Blocking layer, 9...Hydrogen-containing amorphous St layer. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2 Figure 3

Claims (2)

【特許請求の範囲】[Claims] (1)光電変換膜と、前記充電変換膜への光照射によっ
て得られる電荷を蓄積する単位絵素内のダイオード領域
と、前記電荷を順次選択して外部へ読み出す走査回路と
を有し、前記光電変換膜が少なくとも水素化非晶質シリ
コンを含む化合物を含有してなるi層を含み、同i層の
片方主面側あるいは両方主面側にブロッキング層を有し
、前記光電変換膜の隣接絵素間の抵抗と単位絵素の容量
の積が1フレ一ム期間より大にることを特徴とする固体
撮像装置、
(1) A photoelectric conversion film, a diode region within a unit picture element that accumulates charges obtained by irradiating the charge conversion film with light, and a scanning circuit that sequentially selects and reads out the charges to the outside; The photoelectric conversion film includes an i-layer containing at least a compound containing hydrogenated amorphous silicon, has a blocking layer on one or both main surfaces of the i-layer, and has a blocking layer adjacent to the photoelectric conversion film. A solid-state imaging device characterized in that the product of the resistance between picture elements and the capacitance of a unit picture element is greater than one frame period.
(2)光電変換膜のブロッキング層が炭素、窒素。 酸素のうち少なくとも一元素以上を含む非晶質シリコン
化合物si1...0XHy、 Si、 −x−yNx
H,。 S 11 □−y○xHy(但しo<’x、y<1)よ
りなることを特徴とする特許請求の範囲第1項記載の固
体撮像装置。
(2) The blocking layer of the photoelectric conversion film is carbon or nitrogen. Amorphous silicon compound si1. containing at least one element of oxygen. .. .. 0XHy, Si, -x-yNx
H. The solid-state imaging device according to claim 1, characterized in that S 11 □−y○xHy (where o<'x, y<1).
JP57126935A 1982-07-20 1982-07-20 Solid-state image pickup device Pending JPS5917774A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57126935A JPS5917774A (en) 1982-07-20 1982-07-20 Solid-state image pickup device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57126935A JPS5917774A (en) 1982-07-20 1982-07-20 Solid-state image pickup device

Publications (1)

Publication Number Publication Date
JPS5917774A true JPS5917774A (en) 1984-01-30

Family

ID=14947538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57126935A Pending JPS5917774A (en) 1982-07-20 1982-07-20 Solid-state image pickup device

Country Status (1)

Country Link
JP (1) JPS5917774A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5733873A (en) * 1980-08-08 1982-02-24 Matsushita Electric Ind Co Ltd Solid state image pickup device
JPS5742174A (en) * 1980-08-27 1982-03-09 Fuji Photo Film Co Ltd Solid image pickup device
JPS5772370A (en) * 1980-10-23 1982-05-06 Canon Inc Photoelectric converter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5733873A (en) * 1980-08-08 1982-02-24 Matsushita Electric Ind Co Ltd Solid state image pickup device
JPS5742174A (en) * 1980-08-27 1982-03-09 Fuji Photo Film Co Ltd Solid image pickup device
JPS5772370A (en) * 1980-10-23 1982-05-06 Canon Inc Photoelectric converter

Similar Documents

Publication Publication Date Title
US4862237A (en) Solid state image sensor
US5084747A (en) Photoelectric conversion device having cells of different spectral sensitivities
JPH07115184A (en) Layer-built solid-state image pickup device and its manufacture
JPS6218755A (en) Solid-state image pickup device
JPS6033342B2 (en) solid state imaging device
WO1991014284A1 (en) Schottky junction charge coupled device
JPH0217992B2 (en)
JPS6292365A (en) Semiconductor device and manufacture thereof
JP2959460B2 (en) Solid-state imaging device
JPS5917774A (en) Solid-state image pickup device
Chikamura et al. A high-sensitivity solid-state image sensor using a thin-film ZnSe-Zn 1-x Cd x Te heterojunction photosensor
JPS5954146A (en) Image pickup device
JPH0666449B2 (en) Semiconductor image sensor
JPS61187267A (en) Solid-state image pickup device
JPH07335936A (en) Optoelectric transducer
JP3590944B2 (en) Charge-coupled semiconductor device
JPH05145110A (en) Photo conversion device and drive method thereof
JPH07115183A (en) Layer-built solid-state image pickup device
JPH0459828B2 (en)
JPS5888977A (en) Solid-state image pickup device
JPH05145108A (en) Drive method of photoconversion device
JPS5918685A (en) Manufacture of photoelectric converter element
Kaneko Solid-State Image Sensor
JPH05145109A (en) Photo conversion device and drive method thereof
JPH0778957A (en) Solid state image sensor