JPS6342006B2 - - Google Patents

Info

Publication number
JPS6342006B2
JPS6342006B2 JP55116263A JP11626380A JPS6342006B2 JP S6342006 B2 JPS6342006 B2 JP S6342006B2 JP 55116263 A JP55116263 A JP 55116263A JP 11626380 A JP11626380 A JP 11626380A JP S6342006 B2 JPS6342006 B2 JP S6342006B2
Authority
JP
Japan
Prior art keywords
stretching
spinning
hollow fibers
hollow fiber
density polyethylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55116263A
Other languages
English (en)
Other versions
JPS5742919A (en
Inventor
Mizuo Shindo
Takashi Yamamoto
Osamu Fukunaga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP55116263A priority Critical patent/JPS5742919A/ja
Publication of JPS5742919A publication Critical patent/JPS5742919A/ja
Publication of JPS6342006B2 publication Critical patent/JPS6342006B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/26Polyalkenes
    • B01D71/261Polyethylene

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Artificial Filaments (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • External Artificial Organs (AREA)

Description

【発明の詳細な説明】
本発明は特定のポリエチレンより成り、とりわ
け血液成分の分離に適した特定の細孔分布を有す
る多孔質中空糸膜及び、その製造法に関する。 ポリエチレンが貫通した微細孔を有する多孔質
に成型可能であることは既に公知である。 USP3679538には密度0.96g/cm3、MI値0.7の
ポリエチレンが貫通孔を有する平膜に成型可能で
あることが開示されている。これによれば溶融し
たポリエチレンを175〜225℃の温度領域において
T―ダイより押出し、急冷後延伸することによつ
て膜面に貫通した微細孔が生成することが記され
ている。しかし、生成した多孔質ポリエチレン膜
の膜性能、とりわけ該膜を分離材として使用する
際に重要である細孔分布及び分離特性については
明らかではない。 一方、ポリエチレンが中空形態の多孔質膜に成
形可能であることも、USP3423491号明細書、
USP4020230号明細書、イスラエル国a・t・
ramoto plastics ltd.社発行の多孔性プラスチツ
クチユーブに関するテクニカルインフオメーシヨ
ンブレタン(1976年2月及び3月発行)、及び特
開昭52−137026号明細書等に開示されている。 USP3423491号及びUSP4020230号はいずれも、
ポリエチレンに低分子量のエステル、スルホラ
ン、ポリグリコール等特定の可塑剤を配合した融
解性混合物を加熱融解し、中空形態に賦型した
後、ポリエチレンに対する非溶媒でありかつ可塑
剤の溶媒で可塑剤を抽出することにより貫通した
多孔構造をもたせたものであり、可塑剤抽出を行
う条件によつて、USP3423491号では75%以上の
塩排除率を示す逆浸透性微細孔をもつたポリエチ
レン多孔質中空糸を、又USP4020230号ではおよ
そ30Åの回転半径をもつアルブミンの透過を約95
%以上阻止出来る最大微孔半径約50Å以下の多孔
質ポリエチレン中空糸が製造されることが示され
ている。 USP4020230号には又、分離剤としての膜の有
効微細孔径を実用的に判定するには、電子顕微鏡
等による細孔分布は不適当であり、既知分子径を
有する溶質の溶液を用いた過実験によるのが妥
当であることが示されている。 事実、該発明における細孔径分布が約0.1〜1μ
と電子顕微鏡観察より推定されるにも拘らず、
過実験による有効最大微孔半径は0.005μ(50Å)
以下であり、電子顕微鏡による細孔分布の値は実
際の分離剤としての機能には全く対応しない。 かゝる現象は分離材料の開発において常に経験
する事実であり、水銀ポロンメーター、電子顕微
鏡等静的手段により算出された微細孔分布は分離
材としての有効微細孔径とは全くかけ離された大
きな値を示す。従つて膜の細孔構造をより正確に
反映せしめ、分離材としての膜の微細孔構造によ
り実用的な評価を与えるには既知の粒子径を有す
る物質の過特性を測定するのが望ましいと言え
る。 一方、イスラエル国a・t・ramoto
plasticsltd.社発行の前記テクニカルインフオメ
ーシヨンプレタンには、低密度及び高密度ポリエ
チレンより成る内径1000μ〜12000μφ、平均空孔
率45〜60%、平均微細孔径約2〜16μ、バブルポ
イント0.02〜0.2atm、空気透過量約9600〜159200
/m2hr・atm(内径ペース)の貫通孔を有する
ポリエチレン多孔質チユーブが示されている。こ
の多孔質チユーブは同社出願によるUSP―
4182582に開示されている方法で製造されたもの
と推定され、それによればポリエチレンと孔形成
助剤を押出し成形し、後工程により孔形成助剤を
抽出して、チユーブ内に孔を形成させるものと考
えられる。又特開昭52−137026号明細書にはポリ
エチレンを溶融紡糸することにより水銀ポロンメ
ータ法による細孔径が0.01〜0.5μ、N2ガスの透過
量が45.6〜456000/m2hr・atmの値を有する微
孔性中空糸が得られることが示されており、特に
実施例には微細孔径0.02〜0.2μ、空孔率5〜23%
のものが記載されている。しかし、これらの公知
例に示された微細孔径はいずれも分離材としての
実用的な値を示すものではないことは明らかであ
る。 かゝる先行技術より明らかな如く、ポリエチレ
ンより成る多孔質中空糸は種々の方法で製造可能
であるが、血液成分の過膜として有用なアルブ
ミンの透過性に優れ、且つブルーデキストランの
阻止性に優れる範囲の貫通した実用微細孔径を有
するポリエチレン製中空糸膜は未だ知られていな
い。 とりわけ、ポリエチレンを溶剤もしくは可塑剤
等を併用することなく単独で溶融賦型することに
より製造した該血液成分分離に適した実用微細孔
径を有する多孔質中空糸膜は、膜構造内に透過血
液成分を汚染する残留溶剤もしくは可塑剤等を全
く含まない清潔な分離膜であるとともに、血液分
離用装置に適用した場合、単位装置当りの大きな
膜面積と装置内残血量を最小限に抑えることが可
能な点で特に有用である。この場合、ポリエチレ
ンのもつ疎水性は必ずしも問題ではなく、アルコ
ールによる通水処理、オゾン酸化処理、その他従
来公知の物理的、化学的手段によつて親水化可能
であり、何ら欠点と考えるには当らない。 本発明者らは、かゝる観点から、ポリエチレン
より成り、血液成分の分離に適した実用微細孔径
を有する中空糸膜の製造について鋭意検討の結
果、特定の性質を有するポリエチレンを選定する
ことによつて初めて製造することが可能であるこ
とを見出し、本発明を完成せしめたものである。 即ち、本発明の要旨は、メルトインデツクス値
(MI値と略す)が1〜15であり、密度が0.960
g/cm3以上の本質的に分岐の少ない高密度ポリエ
チレンを紡糸ノズル直下に5〜30cmの紡糸筒を設
置した状態で2000を越える紡糸ドラフトで溶融紡
糸し、総延伸量を100%以上400%未満の範囲とし
て延伸多孔質化して得られる、ポリマーフイブリ
ルが繊維軸方向に配向し中空糸内壁面より外壁面
へ貫通した多数の微小空孔を有する多孔質中空糸
であつて、100〜2000/m2・hr・760mmHgの透
水量と、30%以上の人血清アルブミンに対する透
過率、及び90%以上のブルーデキストランに対す
る阻止率を有する多孔質高密度ポリエチレン中空
糸にあり、更に、 多孔質ポリエチレン中空糸を製造する方法に於
て (1) 1〜15のMI値及び0.960g/cm3以上の密度を
有する本質的に分岐の少ない高密度ポリエチレ
ンを用い、 (2) ポリマーの融点以上であり且つポリマーの融
点を30℃以上越えない範囲の温度領域におい
て、 (3) 中空糸製造用ノズルを用いて該ノズル直下に
5〜30cmの紡糸筒を設置した状態で紡糸ドラフ
ト約2850以上で溶融紡糸し、 (4) 得られた高配向結晶性未延伸中空糸を40℃以
下の温度領域において5〜80%冷延伸し、 (5) 次いで110±10℃の温度領域において1段又
は多段に熱延伸し、その際冷延伸及び熱延伸を
合せた総延伸量を100%以上400%未満の範囲と
することを特徴とする、ポリマーフイブリルが
繊維軸方向に配向し中空糸内壁面より外壁面へ
貫通した多数の微小空孔を有する多孔質中空糸
であつて、100〜2000/m2・hr・760mmHgの
透水量と、30%以上の人血清アルブミンに対す
る透過率、及び90%以上のブルーデキストラン
に対する阻止率を有する多孔質高密度ポリエチ
レン中空糸の製造法にある。 尚、延伸量とは、未延伸状態を基準として表わ
せる値であり、たとえば延伸量が100%とは中空
糸が2倍に延伸された状態をいう。 以下本発明を更に詳しく説明する。 本発明において採用するポリエチレンは分枝の
少い高密度ポリエチレンであることが必要であ
り、ASTM D−1505によつて示された測定法に
よる密度が少くとも0.960以上、好ましくは0.965
以上であるポリエチレンの採用が必要である。 ポリエチレンはエチレンの重合によつて得られ
た重合体に対する総称であるが、実質的には採用
する重合法によつて、その物理的、化学的性質が
大巾に異ることは周知の事実である。即ち、採用
する重合方法、重合条件によつて、得られるポリ
エチレンは極めて分枝の少い高密度のものから、
分枝の量及び枝長の長短が大巾に異り、場合によ
つては結晶性の極めて低い低密度ポリエチレンに
至るまで極めて多様な重合体が得られるのであ
り、ポリマー構造、結晶構造、結晶化速度、結晶
化度、耐熱性、耐酸化劣化性等々実質的には全く
別種のポリマーと考えるべきほどの差を有するの
である。 そして、一般に高密度ポリエチレンと称される
ものも重合法から見ればいわゆる中圧法及び低圧
法の二法より得られたポリエチレンが含まれ、密
度的にも約0.940〜0.970の広範囲に及んでいる。 本発明はこれらのポリエチレンの中でもとりわ
け高い結晶化度を有する分枝の少い特定の高密度
ポリエチレンの使用を前提とするものであり、密
度が少くとも0.960以上とりわけ0.965以上の高密
度ポリエチレンを特定の条件下で溶融賦型し、得
られた未延伸中空糸を特定条件下の延伸により多
孔質化することによつて初めて前述の過特性を
有する実用孔径をもつた多孔質中空糸を得ること
に成功したものである。即ち、本発明者らの検討
によれば密度が0.960に満たない高密度ポリエチ
レン及び低密度ポリエチレンを用いる場合には、
本発明方法に従つて多孔質化を計つた場合におい
ても多孔質構造は全く生成しないか、生成しても
人血清アルブミンの透過が殆んど完全に阻止され
る程度に微細な実用孔径を有するものしか生成し
難いのであり、更に空孔率の割には透水量が小さ
く、完全には貫通していないインクボトル構造を
多数含むと考えられる挙動を示す場合が多いこと
が認められている。 かゝるポリマー密度の高低による実用細孔構造
の差は前述の如く、採用するポリエチレンが実質
的に別種のポリマーと考えるべき程にポリマー構
造、特に分枝の量及び枝長が異なり、これが多孔
質構造の形成に大きく関与しているものと想定さ
れる。 本発明において採用するポリエチレンのMI値
は1〜15の範囲にあるものが好ましい。MI値は
ASTM D―1238によつて測定される値であり、
最も好ましくは3〜7の範囲である。この範囲は
特に本発明の実用細孔径を有する多孔質中空糸膜
を安定して製造するに望ましい範囲であつて、1
以下のMI値の高密度ポリエチレンでは溶融粘度
が高さに過ぎ、安定した紡糸が行い難く又15以上
のMI値の領域では紡糸は行い得ても延伸多孔質
化の段階における延伸安定性に著しく劣り満足な
取扱いが不可能となることによる。 本発明の中空糸膜の多孔質化は、溶剤による可
溶成分の抽出によつて起るものではなく、延伸に
よつて起る。従つて、ポリマーフイブリルが繊維
軸方向に配向しており、抽出法多孔質中空繊維に
くらべ機械的強度に優れるものである。配向の度
合いは、繊維軸に平行方向の屈折率と直角方向の
屈折率の差、即ち複屈折の測定より容易に測定す
ることが出来る。本発明の多孔質中空糸の複屈折
率は約20×10-3以上の値を有するものである。 本発明の中空糸は血液成分のロ過や、有用蛋白
質や酵素、ビタミンとミクロンオーダーの大きさ
を有する細菌やバクテリヤの分離に優れるもので
ある。血液成分のロ過とは、たとえば血球と血漿
の分離である。血漿中にはアルブミンやグロブリ
ンの蛋白質が含まれており、血球と血漿を完全に
分離するにはミクロンオーダーの血球を阻止し、
上記蛋白質を透過する膜が要求される。ブルーデ
キストランは平均分子量200万という高分子量水
溶性重合体であり、分子量分布を有するが、本発
明者等の検討によれば、このブルーデキストラン
を90%以上阻止する膜を用いれば、血球の膜透過
が完全に阻止されるものである。従つて、アルブ
ミンを30%以上透過し、ブルーデキストランを90
%以上阻止する本発明の中空糸を用いれば、血球
と血漿の分離が特に有効に行なえるものである。 本発明においては、かゝる特定の高密度ポリエ
チレンを中空糸製造用ノズルを用いて溶融紡糸
し、高配向結晶性の未延伸中空糸を製造する。ノ
ズルは二重管構造を有するものが偏肉が少く望ま
しいが馬蹄型、その他構造を有するものでも差し
支えはない。二重管構造のノズルにおいては中空
糸内部へ中空形態を保持すべく供給する気体の供
給は自然吸入であつても又強制吸入であつても差
し支えはない。しかし、強制吸入を計る場合に
は、ノズル下においてポリマー吐出スリツト口径
以上に中空糸径が広くならない方が望ましい。こ
れはノズル下において中空糸の糸長方向における
分子の配向を極力保持するのに効果がある。 本発明の目的とする実用細孔径を有する多孔質
ポリエチレン中空糸を得るに必要な紡糸温度は極
力低温が望ましい。本発明者らの検討によれば、
この温度は採用する高密度ポリエチレンの融点を
少くとも約30℃以上越えない範囲であることが望
ましい。実質的には約160℃以下の紡糸温度が望
ましく、更に高温での紡糸においては膜性能例え
ば空孔率が大巾に低下するとともに、本発明で目
的とする比較的大きい実用細孔径を有する多孔質
中空糸は得られ難い方向となる。 かゝる低温紡糸は高度に配向結晶化した未延伸
中空糸を得るに有効であるが、更に加えて、高い
紡糸ドラフトの併用が望ましい。 本発明者らの検討によれば、望ましい紡糸ドラ
フトは約2850以上であり、更に好ましくは3000〜
10000の範囲である。この際紡糸ノズル直下には
5〜30cmの紡糸筒を採用し、クエンチ風は向流又
は併流風とすることが望ましい。 かくして得られた未延伸中空糸は約40×10-3
複屈折率を有する糸長方向に高度に配向したもの
であり、中空糸内径は50〜2000μφ、膜厚は10〜
500μであるが、糸内径及び膜厚は必要に応じて
更にこの範囲外まで変更は可能である。この未延
伸中空糸は、このまゝ延伸多孔質化に使用しても
良いが120℃以下、好ましくは110℃近辺で定長下
にアニール処理を行つた後延伸に供しても良い。
必要なアニール処理時間は約2分前後で十分であ
る。 延伸は冷延伸に引き続き熱延伸を行う2段延伸
又は熱延伸を更に多段に分割して行う多段延伸が
望ましい。本発明の目的とする人血清アルブミン
の透過率30%以上、ブルーデキストランの阻止率
90%以上及び透水量100/m2.hr760mmHg以上
の実用膜性能を有する多孔質高密度ポリエチレン
中空糸を得るにはとりわけ冷延伸温度は約40℃以
下、−100℃以上、望ましくは室温であることが必
要であり、この温度領域において約5〜80%冷延
伸を行つた後次いで110℃±10℃の温度領域にお
いて熱延伸を1段又は多段に行うのが良い。この
際最も望ましい熱延伸温度は110℃であり、約125
℃を越えた領域での延伸では望ましい多孔質構造
は全く得られない。100℃を若干下廻る温度領域
での熱延伸は必ずしも不都合ではないが、熱延伸
温度が低下するにつれて得られる多孔質構造は実
用細孔径が小さくなり本発明の目的に適さなくな
る為望ましくない。熱延伸における延伸倍率は冷
延伸及び熱延伸を合せた総延伸量が400%未満と
なる条件を採用すべきてあり、400%を越える延
伸においては延伸時の糸切れが多発し、工程安定
性が大巾に低下するため望ましくない。本発明者
らの検討結果によれば、この熱延伸量、及び冷延
伸及び熱延伸の延伸割合いを変化せしめることに
よつて得られる多孔質中空糸の実用細孔径を可成
り変化せしめることが可能であり、特に人血清ア
ルブミンの透過率及び水透過量を大巾に変更出来
る。 得られた多孔質中空糸は熱延伸においてほゞ形
態の安定性が確保されており、必ずしも多孔質構
造の固定を目的とした熱セツト工程を必要としな
いが、熱延伸温度と同じ温度領域で必要に応じて
緊張下に定長でもしくは収縮させつつ熱セツトを
行うことが出来る。 かくして得られた高密度ポリエチレン製多孔質
中空糸は内径約50〜2000μφ、膜厚約10〜500μで
あつて、少くとも100/m2・hr760mmHgの透水
量、通常約300〜2000/m2・hr・760mmHgの透
水量と30%からほゞ100%の人血清アルブミンに
対する透過率及び90%以上のブルーデキストラン
に対する阻止率を有する血液成分の分離に有用な
多孔質中空糸膜である。 以下、本発明を実施例により更に詳しく説明す
るが、本発明において使用する測定方法は以下に
示した方法によつた値である。 (1) 密度:ASTM―D1505に準じて測定 (2) MI:ASTM―D1238に準じて測定 (3) 空孔率と孔径分布:カルロエルバ社製水銀ポ
ロシメーター221型を用いて測定した。 (4) N2ガス透過量:多孔質中空糸50本をU字型
に束ねて中空糸開口部分をウレタン樹脂で固
め、モジユールを作成した。樹脂包埋部の長さ
は2.5cm、中空糸有効長は5cmとした。このモ
ジユールの中空糸内部に窒素で760mmHgの圧力
を25℃でかけ中空糸の壁面を通過して外部にで
る窒素の単位量を求めた。膜面積は内径ベース
とした。中空糸内径が小さいものは圧損が大き
いのでモジユール長を変えて測定し、圧損零に
外挿して真の値を求めた。 (5) 水透過量:上記N2ガス透過量測定と同様に
モジユールを作成した。中空糸の本数100本、
樹脂包埋部4cm、中空糸有効長9cmとした。こ
のモジユールをエタノール〜水(75/25容積
比)の混合溶媒中に30分間浸漬し通水親水化処
理を行ない、イオン交換水で充分に洗浄した。
その親水化されたモジユールを乾燥させること
なしに外圧下に760mmHgの水圧をかけ、壁面を
通じて中空糸内部へ通過した水の単位量を測定
した。膜面積は内径ベースとした。 (6) 人血清アルブミン透過率 (5)で記載したモジユールを用いて人血清アル
ブミン(シグマ社製Fractonv分子量69000)の
0.1wt%水溶液(原液)を380mmHgの圧力下、
室温で中空糸外壁部より加圧過した。100ml
を過した後サンプリングを行なつた。その透
過液の溶質濃度は島津ダブルビーム分光光度計
(UV―202)を使用し、280mμの波長光の吸
光度を求めることにより決定した。さらに人血
清アルブミン透過率は次式により計算した。 透過率=透過液溶質濃度/原液溶質濃度×100% (7) ブルーデキストラン阻止率 (5)で記載したモジユールを用いてブルーデキ
ストラン(pharmacia Fine Chemicals社製、
No.2000、分子量200万)の0.05wt%水溶液(原
液)を過した。他の条件は(6)の人血清アルブ
ミン透過率の測定と同じである。但し分光光度
計の測定波長は254mμを使用し、計算は次式
によつた。 阻止率=原液溶質濃度−透過液溶質濃度/原液溶質濃度
×100% (8) 複屈折率 日本光学製偏光顕微鏡を用いて常法により測
定した。 (9) 弾性回復率 東洋ボールドウイン社製テンシロンUTM―
型を用いて糸長2cm、試験速度1cm/minで
測定し次式により求めた。 弾性回復率=(50%伸長時の糸長)−(50%伸長後荷
重を0に返した時の糸長)/(50%伸長時の糸長)−(
伸長前の糸長)×100% 実施例 1 密度0.968g/cm3、メルトインデツクス5.5の高
密度ポリエチレン(三井石油化学株式会社製 ハ
イゼツクス 2200J)を吐出口径が25mm、円環ス
リツト巾が1.5mmの二重管構造を有し、吐出断面
積が0.754cm2の中空形状賦形用紡糸口金を用い、
自吸式で空気を導入し、紡糸温度145℃、吐出線
速度10.5cm/minで紡糸した。紡糸口には20cmの
紡糸筒を設置し、風温が20℃、風速が1.5m/S
の向流冷却風で冷却し巻取速度600m/min、紡
糸ドラフト5714で巻取つた。得られた未延伸中空
糸の寸法は内径210μ、膜厚27μであり、複屈折率
△nは39×10-3と非常に大きいものであつたが、
弾性回復率は36%と小さい値であつた。この未延
伸中空糸を次いで110℃に加熱されたローラ上を
定長下に通過せしめてローラ接触時間120秒でア
ニール処理を行なつた。このアニール処理された
未延伸中空糸の△nは40×10-3であり、弾性回復
率は39%であつた。 さらにこのアニール処理糸を室温に保持された
ローラ間で30%冷延伸し、引き続いて110℃に加
熱した加熱函中で総延伸量が240%になる迄ロー
ラ間熱延伸を行ない、さらに110℃に加熱した加
熱函中で20秒の定長ローラ間熱セツトを行い、連
続的に多孔質中空糸の製造を行なつた。得られた
多孔質ポリエチレン中空糸は結局未延伸糸に対し
て3.4倍に延伸されており、内径193μ、膜厚26μで
あつて、白化度の極めて均質なものであり、水銀
ポロンメーターによる平均孔径は0.52μで、空孔
率も65%と極めて多孔質化度が大きいものであ
り、透水量は1550/m2.hr.760mmHg、N2ガス
透過量は7.2×105/m2.hr.760mmHgと極めて秀
れていた。 得られた多孔質ポリエチレン中空糸の人血清ア
ルブミン透過率は95.5%であり、ブルーデキスト
ラン阻止率は96.0%であり、その分画特性は極め
てシヤープであり、その孔径の分布は極めて狭く
均質的に優れかつ極めて多孔質化度の高い、実用
上非常に優れた特徴を有した多孔質中空糸であ
る。 比較例 1 特開昭52−137026に開示された実施例3に従
い、密度0.957g/cm3、メルトインデツクス0.3の
高密度ポリエチレン(三井石油化学製、ハイゼツ
クス5000B)を吐出口径が2mm、スリツトの巾が
0.3mm、不連続スリツト部の巾が0.3mmのC形中空
糸賦形用紡糸口金を用いて、紡糸温度230℃、吐
出線速度150cm/min、巻取速度1200m/min、
紡糸ドラフト800で紡糸した。 得られた未延伸中空糸の寸法は内径40μ、膜厚
12μであり、複屈折率は23×10-3であつた。弾性
回復率は39%であつた。この中空未延伸糸を110
℃に加熱されたローラ上を定長下に通過せしめ
て、ローラ接触時間60秒でアニール処理した。こ
のアニール処理された未延伸中空糸の△nは24×
10-3、弾性回復率は43%であつた。さらにこのア
ニール処理糸を25℃に保たれたローラ間で30%冷
延伸し、引き続いて115℃に加熱した加熱函中で
総延伸量が80%になるまでローラ間熱延伸を行な
い、さらに120℃加熱した加熱函中で60秒定長ロ
ーラ間熱セツトを行い、多孔質中空糸の製造を行
なつた。 得られた中空糸の内径は36μ、膜厚10μであり、
エタノールを容易に吸収し、開孔した孔が存在す
ることがわかつた。水銀ポロシメーターで測定す
ると空孔率は23%、平均孔径は0.1μで大部分の孔
径は0.02〜0.2μの間に分布していることがわかつ
た。N2ガス透過量は3000/m2・hr・760mmHg
であり、透水量は6/m2・hr・760mmHgと非常
に小さかつた。又人血清アルブミンの透過率は13
%、ブルーデキストランの阻止率は97%であつ
た。 実施例 2〜5 表1に示す密度、メルトインデツクス値の異な
る種々の高密度ポリエチレンを用いて、それぞれ
のポリマーにて安定に紡糸でき得る最低の紡糸温
度で紡糸すること及び、延伸において、それぞれ
未延伸糸の最大延伸倍率(MDR)の90%の倍率
に総延伸倍率を設定する(冷延伸は30%で一定)
以外は実施例1と全く同じ方法にて多孔質中空糸
を得た。得られた中空糸の膜性能評価結果を実施
例1と合せて表1に示す。 実施例1〜3を比較すればMI値はほぼ同じ程
度でありいずれも高い膜性能であるが密度が大き
くなる程、空孔率、透水量が飛躍的に増加する。
又、密度がほぼ同じ程度である実施例2,4及び
5を比較すれば、MI値5を中心にして大きくな
つても、小さくなつても空孔率は低下する傾向を
示す。しかし本発明の範囲内ではいずれも高い膜
質レベルにあるといえる。
【表】 比較例 2〜3 表1に示す密度、メルトインデツクス値の異な
る2種類の高密度ポリエチレンを用いて、それぞ
れ安定に操作できる最低の紡糸温度で紡糸するこ
と、及び延伸において延伸倍率をMDR×0.9に設
定する以外は実施例1と全く同じ方法にて多孔質
中空糸を得た。得られた中空糸の膜性能評価結果
を表1に示す。 比較例2は比較例1で用いたと同じ本発明の範
囲外となる密度を有するポリマーを用い、製造条
件は本発明の範囲内である実施例1と同等の高ド
ラフトと本ポリマーで紡糸可能な最低の低温紡糸
条件を採用した場合である。比較例2は比較例1
よりも空孔率、透水量が相当改良されているが、
未だ実用的な意味では充分とは言えない。更に中
空糸の外観は白化している所と透明の所が入り混
じり、マダラ模様になり極めて膜質の斑が大きい
ものであつた。 比較例3は、高密度ポリエチレンでも密度が低
い場合であり、得られた中空糸は乳白色であり、
空孔率も8%と空孔が存在するにも拘らずエタノ
ールは吸収せず透水量も全く零であることから空
孔は互いにつらなつていないインクボトル型空
孔、独立空孔が存在していると考えられる。又こ
の比較例3のアニール糸の複屈折率△nは35×
10-3と非常に大きかつたがそれにもかかわらず透
水量は全く零である。このことは△nの大きさを
高い膜性能を得るための指標とすることは、ポリ
エチレンの場合必ずしも妥当ではないことを意味
するものである。 比較例 4 密度が0.955g/cm3、メルトインデツクス値が
20の高密度ポリエチレンを用いて、紡糸温度が
140℃である以外は実施例1と同じ条件で紡糸を
行つた。得られた未延伸中空糸は非常に弱く延伸
できないものであつた。 比較例 5 密度は0.961g/cm3、メルトインデツクス値が
0.1の高密度ポリエチレンを用いて未延伸中空糸
を得ようと種々の紡糸温度で試みたが、紡糸張力
が大きく巻取ができなかつた。 実施例 6〜9 表2に示す種々の吐出断面積の中空糸賦形用紡
糸口金を用い巻取速度を変え様々な紡糸ドラフト
の未延伸中空糸を製造した。紡糸条件、使用した
ポリマーは実施例1と同じである。これら紡糸ド
ラフトの異る未延伸中空糸に、総延伸倍率が3倍
とする以外は実施例1と同じ条件で熱処理、冷延
伸、熱延伸、熱セツトを施こし、多孔質中空糸を
得た。得られた結果を表2に示した。 実施例6,7,8は同一ノズルで巻取速度をか
えて紡糸ドラフトを変えた場合で、ドラフトが大
きい程透水量は増加することがわかる。又実施例
9からは、巻取速度が小さくても、吐出断面積を
大きくして紡糸ドラフトを大きくすれば、透水量
が大きくなることがわかる。 比較例 6〜7 実施例6〜8と同様にして種々の紡糸ドラフト
条件下で多孔質中空糸を得た。得られた結果を表
2に合せて示した。表から明らかな如く、紡糸ド
ラフトが低い程、透水量は低下し、特に本発明の
範囲から外れた紡糸ドラフト条件下では、本発明
の対象とする実用細孔径が大きく透水量に秀れた
膜性能をもつ多孔質を製造することはできないこ
とがわかる。
【表】 比較例 8 紡糸温度を180℃とする以外は実施例1と全く
同様にして多孔質中空糸を得た。この条件下では
溶融粘度が低く、紡糸安定性はかなり劣るもので
あつた。この未延伸中空糸を実施例1に従つて延
伸して得られた中空糸は透明性が強い乳白色をし
ており、透水量は1.8/m2・hr・760mmHgで、
人血清アルブミン透過率は2%と孔径が非常に小
さく、膜性能の著しく劣るものであつた。 比較例 9 実施例1にて得られた未延伸中空糸を実施例1
と同様にアニール処理したあと、冷延伸を行なわ
ず、110℃で熱延伸を行なつた。得られた中空糸
は透明で、エタノールを吸収せず貫通した空孔が
全く存在しないことが判明した。 比較例 10 実施例1にて得られた未延伸中空糸を実施例1
と同様にアニール処理したあと、100%の冷延伸
(室温)を行ない熱延伸を行なわずに熱セツトだ
けを実施して多孔質中空糸を得た。得られた中空
糸の空孔率は38%、透水量は78/m2・hr・760
mmHgであり、人血清アルブミン透過率は0%と
孔径の非常に小さいものであつた。 実施例 10 実施例1にて得られた未延伸中空糸をアニール
処理することなしに実施例1と同様の延伸、熱セ
ツトを施こし多孔質中空糸を得た。得られた中空
糸の空孔率は51%、透水量は600/m2・hr・760
mmHgであり、人血清アルブミン透過率は74%、
ブルーデキストラン阻止率99%であつた。 アニール処理を省略しても、優れた膜性能の多
孔質ポリエチレン中空糸を得ることができる。 実施例 11〜14 実施例1においてアニール処理に続く冷延伸の
延伸率を20%とし、それに引き続く熱延伸におけ
る総延伸量が表3に示す如く種々に変化せしめる
以外は実施例1と全く同じ条件で多孔質中空糸を
得た。得られた結果を表3に示した。総延伸量が
大きくなればなるほど急激に水透過量が増加し、
孔径も大きくなることがわかる。なお総延伸量が
240%を越えると糸切れが発生し安定に巻取るこ
とは出来なかつた。
【表】 比較例 11〜12 総延伸量の異なる多孔質中空糸を実施例11〜14
と全く同じようにして得た。その結果を合せて表
3に示した。表から明らかな如く総延伸量が100
%より小さいと、水透過量は小さくなり又孔径も
小さくなることが分る。 比較例 13 実施例1において得られた未延伸中空糸を実施
例1と同じく、アニールし、次いで冷延伸を行つ
た後、熱延伸及び熱セツト温度を123℃に変更し
て実験を行つた。 総延伸量は140%であつた。140%を越えると糸
切が発生し巻取ることはできなかつた。得られた
多孔質中空糸の空孔率は12%、透水量0・6/
m2・hr・760mmHgと極めて小さかつた。 比較例 14 密度0.950g/cm3、メルトインデツクス5.0の高
密度ポリエチレンを用い紡糸ドラフトを2300、総
延伸量を240%としその他の条件は比較例2と同
様にして紡糸し、延伸した。 このようにして得られた中空糸のアルブミン透
過率は12%、ブルーデキストラン阻止率は100%
であつた。また、空孔率は12%であつたが、貫通
孔と独立孔が入り混じつた多孔質構造であり透水
量は10/m2・hr・760mmHgと低かつた。

Claims (1)

  1. 【特許請求の範囲】 1 メルトインデツクス値(MI値と略す)が1
    〜15であり、密度が0.960g/cm3以上の本質的に
    分岐の少ない高密度ポリエチレンを紡糸ノズル直
    下に5〜30cmの紡糸筒を設置した状態で2000を越
    える紡糸ドラフトで溶融紡糸し、総延伸量を100
    %以上400%未満の範囲として延伸多孔質化して
    得られる、ポリマーフイブリルが繊維軸方向に配
    向し中空糸内壁面より外壁面へ貫通した多数の微
    小空孔を有する多孔質中空糸であつて、100〜
    2000/m2・hr・760mmHgの透水量と、30%以上
    の人血清アルブミンに対する透過率、及び90%以
    上のブルーデキストランに対する阻止率を有する
    多孔質高密度ポリエチレン中空糸。 2 多孔質ポリエチレン中空糸を製造する方法に
    於て (1) 1〜15のMI値及び0.960g/cm3以上の密度を
    有する本質的に分岐の少ない高密度ポリエチレ
    ンを用い、 (2) ポリマーの融点以上であり且つポリマーの融
    点を30℃以上越えない範囲の温度領域におい
    て、 (3) 中空糸製造用ノズルを用いて該ノズル直下に
    5〜30cmの紡糸筒を設置した状態で紡糸ドラフ
    ト約2850以上で溶融紡糸し、 (4) 得られた高配向結晶性未延伸中空糸を40℃以
    下の温度領域において5〜80%冷延伸し、 (5) 次いで110±10℃の温度領域において1段又
    は多段に熱延伸し、その際冷延伸及び熱延伸を
    合せた総延伸量を100%以上400%未満の範囲と
    することを特徴とする、ポリマーフイブリルが
    繊維軸方向に配向し中空糸内壁面より外壁面へ
    貫通した多数の微小空孔を有する多孔質中空糸
    であつて、100〜2000/m2・hr・760mmHgの
    透水量と、30%以上の人血清アルブミンに対す
    る透過率、及び90%以上のブルーデキストラン
    に対する阻止率を有する多孔質高密度ポリエチ
    レン中空糸の製造法。 3 紡糸温度がポリマーの融点より5〜15℃高い
    領域である特許請求の範囲第2項記載の多孔質高
    密度ポリエチレン中空糸の製造法。 4 紡糸ドラフトが3000〜10000である特許請求
    の範囲第2項記載の多孔質高密度ポリエチレン中
    空糸の製造法。 5 冷延伸温度が室温である特許請求の範囲第2
    項記載の多孔質高密度ポリエチレン中空糸の製造
    法。 6 熱延伸温度が110℃である特許請求の範囲第
    2項記載の多孔質高密度ポリエチレン中空糸の製
    造法。
JP55116263A 1980-08-22 1980-08-22 Porous hollow polyethylenic fiber and its preparation Granted JPS5742919A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55116263A JPS5742919A (en) 1980-08-22 1980-08-22 Porous hollow polyethylenic fiber and its preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55116263A JPS5742919A (en) 1980-08-22 1980-08-22 Porous hollow polyethylenic fiber and its preparation

Publications (2)

Publication Number Publication Date
JPS5742919A JPS5742919A (en) 1982-03-10
JPS6342006B2 true JPS6342006B2 (ja) 1988-08-19

Family

ID=14682763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55116263A Granted JPS5742919A (en) 1980-08-22 1980-08-22 Porous hollow polyethylenic fiber and its preparation

Country Status (1)

Country Link
JP (1) JPS5742919A (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5766114A (en) * 1980-10-14 1982-04-22 Mitsubishi Rayon Co Ltd Porous polyethylene hollow fiber and its production
JPS5881611A (ja) * 1981-11-10 1983-05-17 Mitsubishi Rayon Co Ltd 多孔質ポリエチレン中空糸膜
JPS58159824A (ja) * 1982-03-19 1983-09-22 Inoue Japax Res Inc フイルタエレメントの製法
JPS60257804A (ja) * 1984-06-05 1985-12-19 Mitsubishi Rayon Co Ltd 耐熱性多孔質ポリエチレン中空糸モジユ−ル
JPS6215323A (ja) * 1986-02-14 1987-01-23 Dainippon Ink & Chem Inc 微多孔中空繊維の製造法
JPH0679658B2 (ja) * 1986-08-05 1994-10-12 東燃株式会社 ポリエチレン微多孔膜の製造方法
EP0513390B1 (en) * 1990-11-28 1996-02-14 Mitsubishi Rayon Co., Ltd. Porous hollow fiber membrane of polyethylene and production thereof
DE69305120T2 (de) * 1992-07-22 1997-03-06 Mitsubishi Rayon Co Hydrophobe, poröse Membranen, Verfahren zu ihrer Herstellung und deren Verwendung
EP3595887B1 (en) 2017-03-13 2022-09-07 Hunt Technology Limited Improvements relating to insulation

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5193786A (en) * 1975-02-15 1976-08-17 Makurokagatano chukuseni
JPS52137026A (en) * 1976-04-30 1977-11-16 Toyobo Co Ltd Microporous hollow fibers and their production
JPS53134925A (en) * 1977-04-23 1978-11-25 Cordis Dow Corp Fine porous hollow fiber and method of producing same
JPS5477729A (en) * 1977-11-28 1979-06-21 Mitsubishi Rayon Co Ltd Porous hollow fiber and its production
JPS551314A (en) * 1978-06-13 1980-01-08 Mitsubishi Rayon Co Ltd Manufacture of porous hollow polypropylene fibers

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5193786A (en) * 1975-02-15 1976-08-17 Makurokagatano chukuseni
JPS52137026A (en) * 1976-04-30 1977-11-16 Toyobo Co Ltd Microporous hollow fibers and their production
JPS53134925A (en) * 1977-04-23 1978-11-25 Cordis Dow Corp Fine porous hollow fiber and method of producing same
JPS5477729A (en) * 1977-11-28 1979-06-21 Mitsubishi Rayon Co Ltd Porous hollow fiber and its production
JPS551314A (en) * 1978-06-13 1980-01-08 Mitsubishi Rayon Co Ltd Manufacture of porous hollow polypropylene fibers

Also Published As

Publication number Publication date
JPS5742919A (en) 1982-03-10

Similar Documents

Publication Publication Date Title
US4401567A (en) Microporous polyethylene hollow fibers
US4405688A (en) Microporous hollow fiber and process and apparatus for preparing such fiber
CA1167211A (en) Process for preparing hollow microporous polypropylene fibers
US4541981A (en) Method for preparing a uniform polyolefinic microporous hollow fiber
US4384023A (en) Porous polyethylene film
US4290987A (en) Process for preparing microporous hollow fibers
US4664681A (en) Heterogeneous membrane and process for production thereof
US4055696A (en) Porous polypropylene hollow filaments and method making the same
US5151227A (en) Process for continuous spinning of hollow-fiber membranes using a solvent mixture as a precipitation medium
US4530809A (en) Process for making microporous polyethylene hollow fibers
JPH02151636A (ja) 等方性の微孔性ポリスルホン膜の製造法
AU614098B2 (en) Porous hollow fiber membrane, method for production thereof, and oxygenator using the hollow fiber membrane
JPH02144132A (ja) 多孔質ポリオレフィンフィルム
JPS6342006B2 (ja)
JPH0691943B2 (ja) 高分離能高分子膜の製造方法
JPH06210146A (ja) 中空糸不均質膜及びその製法
JPS6245318A (ja) 気体分離膜の製造方法
US5057218A (en) Porous membrane and production process thereof
JPH06246140A (ja) 中空糸不均質膜の製造方法
JPS59229320A (ja) 溶融・延伸法による不均質膜の製造方法
JPS62269706A (ja) ポリオレフイン多孔質中空糸複合膜及びその製法
JPS6240441B2 (ja)
JPH119977A (ja) ポリエチレン製複合微多孔質中空糸膜
JPH08252441A (ja) ポリプロピレン中空糸膜およびその製造方法
JPS60209205A (ja) ポリフツ化ビニリデン系中空糸多孔膜の製造方法