JPS6338621B2 - - Google Patents

Info

Publication number
JPS6338621B2
JPS6338621B2 JP56047765A JP4776581A JPS6338621B2 JP S6338621 B2 JPS6338621 B2 JP S6338621B2 JP 56047765 A JP56047765 A JP 56047765A JP 4776581 A JP4776581 A JP 4776581A JP S6338621 B2 JPS6338621 B2 JP S6338621B2
Authority
JP
Japan
Prior art keywords
hot water
heat exchanger
cooling
valve
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56047765A
Other languages
English (en)
Other versions
JPS57161438A (en
Inventor
Fusao Terada
Kinya Nakazato
Takashi Nakazato
Kazuo Nomura
Tokuji Nishijo
Kazuo Yamagishi
Masao Ogura
Tokuichi Yokoyama
Fujio Shoji
Makoto Okuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Sanyo Denki Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd, Sanyo Denki Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP4776581A priority Critical patent/JPS57161438A/ja
Publication of JPS57161438A publication Critical patent/JPS57161438A/ja
Publication of JPS6338621B2 publication Critical patent/JPS6338621B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B27/00Machines, plants or systems, using particular sources of energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Other Air-Conditioning Systems (AREA)

Description

【発明の詳細な説明】 本発明は天然ガス、プロパンガス等を燃料とす
る内燃式、外燃式等の熱動機関を用いてヒートポ
ンプ式冷媒用圧縮機を駆動する給湯冷暖房装置に
関するもので、熱動機関の冷却水排熱とヒートポ
ンプ式冷凍サイクル排熱とを併せて給湯用として
熱回収すると共に熱動機関の冷却水排熱をヒート
ポンプ式冷凍サイクルの暖房補助熱源として熱回
収するようにし、且つその熱回収を冷暖房負荷に
応じて適宜切替えて行なえるようにすることによ
つて、熱回収効率を大幅に向上させ、更に熱動機
関、冷凍機の頻繁なON・OFF作動を少なくし耐
久性を向上させるものである。
以下本発明の一実施例を図面に基づいて説明す
る。第1図は給湯冷暖房装置の配管系統図、第2
図は同じく給湯冷暖房装置の室外側ユニツトの断
面図で同一構成部品は同一符号で付記して説述す
る。
1は冷媒用圧縮機、2はこの圧縮機から吐出さ
れた高温高圧冷媒を冷暖房運転時に流路を切替え
る四方弁、3は冷房運転時前記吐出冷媒が流れ貯
湯槽4内の市水を加熱する給湯用コンデンサ、5
はこのコンデンサを三方弁6にて一部バイパスす
る側路管、7は逆止弁、8はストレーナ、9は冷
房運転時に開く冷房用電磁弁10と並列接続され
た貯湯用膨張弁、11は室外送風機12にて外気
と熱交換される空冷式室外熱交換器、13は冷房
貯湯用逆止弁14と並列接続された暖房用膨張
弁、15はストレーナー、16は受液器、17は
貯湯運転時に開く貯湯用冷媒電磁弁、18は暖房
用逆止弁19と並列接続された冷房用膨張弁、2
0は室内側交換器、21は暖房用逆止弁で、これ
らを第1図の実線の如く冷媒配管接続してヒート
ポンプ式冷凍回路を構成している。
22はベルト23にてクラツチ24を介して圧
縮機1を駆動する2サイクルエンジン等の熱動機
関、25はこの機関を冷却する冷却器、26は熱
動弁、27は熱動機関22の放熱時間開く放熱用
電磁弁、28はヒートポンプ暖房運転中室外側熱
交換器11の除霜時開く除霜用電磁弁、29は室
外側熱交換器11の風下側に位置する室外側放熱
器、30は同じく室外側熱交換器11の風上側に
位置する室外側加熱器、31は暖房運転時開く暖
房用水電磁弁、32は膨張タンク、33は室内側
熱交換器20と並設された室内側補助暖房コイ
ル、34は貯湯運転時開く貯湯用水電磁弁、35
は貯湯槽4内の市水を加熱する給湯用加熱器、3
6は冷却水循環用のポンプ、37は触媒マフラー
38を冷却する補助冷却器で、これらを第1図の
一点鎖線の如く水配管接続して排熱水回路を構成
している。
又、熱動機関22はキヤブレター39に天然ガ
ス燃料をガス栓40とゼロガバナー41を順次介
して供給し、このキヤブレータ内で吸気用マフラ
ー42よりエアークリーナー43を介して吸入さ
れる外気と混合された後供給されスタータ44の
ONにより始動されるもので、排気ガスは触媒マ
フラー38を介して排気マフラー45より屋外に
排出される。
46は上述の構成部品を搭載した屋外設置型室
外側ユニツト、47はこのユニツトとユニツト間
冷媒配管48,48及び水配管49,49で現地
接続される室内側ユニツトで、室外側ユニツト4
6は仕切板50,51にて3室52,53,54
に仕切られており、下部室52に貯湯槽4、中間
機械室53に圧縮機1及び熱動機関22、上部送
風室54に室外側熱交換器11、室外側放熱器2
9、室外側加熱器30及び室外送風機12が収納
されている。
而して貯湯槽4は上方に市水を摂氏約80℃まで
加熱できる給湯用加熱器35を、下方に市水を摂
氏約60℃まで加熱できる給湯用コンデンサ3を内
設して市水を有効に加熱し、市水は給水管55よ
り下部に供給され、上部より給湯管56を経て、
室内の蛇口57より給湯される。
58は閉サイクル状態の排熱水回路中に冷却水
を注入するタンクで、先づ配管接続して弁59を
閉じ、弁60,61を開いて外部ポンプ62によ
り冷却水を補給すると排熱水回路中の空気は空気
抜き弁63より排出されると共に残溜空気は弁6
1を介して空気抜き管64より排出され、同時に
排熱水回路中に冷却水が注入される。然る後弁6
5を開いて補給タンク66内に所定量冷却水を補
充し弁65及び弁60,61を閉じ弁59を開け
ると完了する。
67は下部室52を形成した断熱材68付外装
板で、ガス燃料の流量を調整開閉する緻密構造の
ガス栓40及びゼロガバナー41を振動がなく且
つ断熱処理されているこの下部室52内に収納し
て破損防止を図つている。
69は機械室53内に跨がつて固定されたフレ
ームで、L字型取付金具70,70で薄肉の仕切
板50を上方から吊つて垂れ下がるのを防止する
と共にこのフレーム69上にスプリング71を介
して圧縮機1及び熱動機関22の載置台72を支
持している。73は機械室53を形成する防音外
装板で、内壁に重量のある鉛混入ゴムシート74
を貼着して遮音効果を持たせると共にこの内壁に
グラスウール等の断熱材75をパンチングメタル
76で押着している。77は圧縮機1及び熱動機
関22等の運転制御用電気部品78を収納した断
熱材79付電装箱で、下部室52内の常温空気を
導入パイプ80で電装箱77内に導いて電気部品
78を冷却し、導出パイプ81で送風室54に排
出させて圧縮機1及び熱動機関22の発熱で温度
上昇するのを防止しており、この空気流れは導出
パイプ81の先端開口82を室外送風機12の吸
込側に位置させて誘引作用により行なうと共に先
端開口82付近を下方に屈曲させて上方からの雨
水の浸入を防ぎ、万一浸入した場合でもトラツプ
83で受け止めて水抜き管84より排出するよう
になつている。
85は熱動機関22に潤滑オイルを供給するカ
ートリツジ式タンクで、このタンクからのオイル
を受けるオイルパン86の底所に絞り加工で窪部
87を設けてこの窪部内に下方からオイル導出管
88を突出させてこの外周を金網製フイルター8
9で囲むことにより、上面開放状態のオイルパン
86内に塵埃、砂塵が混入しても窪部87内に溜
めて分離し、オイルのみ導出管88から熱動機関
22へ供給するようにしている。
90は熱動弁26を収納したケースで、冷却器
25から水温度が摂氏80℃になるとサーモベロー
91が膨張して発条92の弾性力に打ち勝ち弁体
93を移動させて流路94を連通開放されるもの
で、熱動機関22が始動后短時間で温まるように
最初冷却水の循環を止める為に閉動作されるが、
前述した冷却水の注入時は水温度が低い為に閉じ
ておりこの為、隔壁95の上方に流路94径の約
1/8〜1/4径の小孔95を設けて空気溜まりをなく
しながら注入が可能となるようにしている。
96は機械室53の天井に相当する仕切板51
の略中央に設けた開口で、該開口を覆うカバー9
7を軟弱なプラスチツク製リベツト95で固定し
ており、万一燃料ガスが機械室53内で爆発した
場合は最も弱いこのリベツト98が引きちぎられ
てカバー97が爆風で押し上げられ、開口96よ
り吐出口99を経て上方へ爆風ははき出される。
この為、爆風による機械室53の損害を最小限に
食い止められ、且つ側方周囲に爆風がはき出され
ず、しかも押し上げられたカバー97は天板10
0で食い止められ外部に飛び出さないので危険性
を軽減できる。
101は送風室54に跨がつて固定されたフレ
ームで、この上にドーナツ型のドレンパン102
及び室外送風機12の支持脚103を載置固定す
ると共にドレンパン102内には空冷式室外側熱
交換器11、室外側加熱器30、室外側放熱器2
9が伝熱管に針状フインを巻き付けて多重ドラム
状に積層形成した状態で載置されている。特に外
側部分は下から2段づつの二条巻で形成され室外
側熱交換器11は室外側加熱器30と交互に積層
されており、ヒートポンプ式冷凍機による暖房運
転時外気温が極度に低下して室外側熱交換器11
に着霜しこれを除霜する場合室外側加熱器30で
有効に加熱することができる。104は吸気口で
ある。
105は排気用マフラー45の出口に設けられ
た補助マフラーで、天板100のドレン受部10
6と冷却フイン107付きのカバー108とで形
成され、排気用マフラー45からの排気ガスを補
助マフラー105で受けてこの小さい排気口10
9から排出することにより消音効果を更に図ると
共に補助マフラー105内で結露した排気ガス中
の水分はドレン受部106のドレン孔110より
排出される。
111はマフラー押え金具で、第3図イに示す
ようにバンド部材112と調節部材113とから
構成され、同図ロの如く室外側ユニツト46のコ
ーナー支柱114に1対の調節部材113,11
3と1対のバンド部材112,112とにより吸
気用マフラー42と排気用マフラー45を少なく
とも上下2箇所で固定している。尚、吸気用マフ
ラー42と排気用マフラー45は機械室53と送
風室54とに跨がる長尺形状である為、取付固定
時上下取付箇所で位置がずれ易い。この調節は支
柱114に螺子115止めされた調節部材113
の長孔116をずらしてこの調節部材113を第
3図ロの如く屈曲変形させれば両マフラー42,
45を挟持する1対のバンド部材112,112
は同図ロの如くずれた状態で位置付けされ、両マ
フラー42,45は容易に固定される。又、調節
部材113が両マフラー42,45の防振具とし
ても作用する。第3図ハは支柱114の要部斜視
図で、湾曲空間117を利用してこの空間内にス
リムな補給水タンク66等の部品を収納すること
も考慮できる。
以上の如く構成されており、次に本発明の回路
動作を第4図乃至第12図のフローチヤートに基
づいて詳述する。第4図は冷房運転時のフローチ
ヤートで、室内側ユニツト47に設けてある各種
運転モード(冷房、暖房、除湿、貯湯の4モー
ド)のうち冷房モードを設定し運転スイツチSW
をONにする。室内温度(RT)が室内サーモ設
定温度(TS)より高いと熱動機関22(以下エ
ンジンと称する)始動回路に信号に送られ、第5
図に示す一実施例の始動フローチヤートに従つて
エンジン22が始動される。即ち始動によりエン
ジン22の回転数(N)が850rpm以下であれば
冷却水ポンプ36がONし、ガス栓40が開か
れ、タイマTA及びタイマーTBがリセツトされ
る。タイマーTAは第6図の如く60秒間ON状態
を保持し、この間タイマーTBはリセツト状態か
ら10秒づつON−OFFを計3回まで繰り返し可能
となつている。これはスタータ44が長時間連続
的にONされるのを防止し、1回(10秒)で始動
できなかつた場合、3回(60秒)までは運転スイ
ツチSWを押しなおすことなしに自動的にスター
タ44がONされるようにしたものである。
尚、タイマーTBはOFF状態から開始されても
良く、又、タイマーTAは60秒タイマーの代わり
にタイマーTBのON−OFFをカウントするカウ
ンターでも良い。
而してスタータ44がONし、エンジン22回
転数が850rpm以下で且つタイマーTA、タイマ
ーTBが加れもON状態であればスタータ44は
回り続け、エンジン22回転数が850rpm以上に
なるとスタータ44がOFFし、エンジン22が
安定したアイドリング運転になるまで10秒遅延さ
れた後クラツチ24がONされる。クラツチ24
がONされた時エンジン22に急激な負荷がかか
りエンジン22が停止する可能性もあるので再度
エンジン22の回転数を確認し、850rpm以上で
あればリターンされる。
尚、850rpmより低くタイマーTAが60秒以内
であればタイマーTBがONか否か確認してON状
態であればクラツチ24がOFFされ自動的にス
タータ44が再始動される。
斯かる始動順序に於いて、当初からエンジン2
2回転数(N)が850rpm以上であれば、スター
タ44がONされることなく即リターンされ、
又、スタータ44もしくはクラツチ24がONし
た後、エンジン22回転数が850rpm以下で且つ
タイマーTAが60秒以上経過しておれば何れも後
述するエンジン停止回路へ信号が送られ警報が発
せられる。
第7図は始動フローチヤートの他実施例で、第
5図と異なるのはエンジン22回転数が850rpm
を上回らずスタータ44がONからOFFになる間
にタイマー(TB)をOFF状態にリセツトし、且
つクラツチ24OFF后の信号をタイマーTAとタ
イマーTB間にフイードバツクさせ、OFF始動と
することによりスタータ44の保護を強化した点
にある。
而してリターンされた信号は第4図中のエンジ
ン始動回路から出力として表われ、貯湯槽4内の
上部市水温度(T1)がその設定温度摂氏75℃t1
り低いと圧縮機1−四方弁2−給湯用コンデンサ
3−逆止弁7−ストレーナー8−冷却用電磁弁1
0−室外側熱交換器11−冷房貯湯用逆止弁14
−ストレーナー15−受液器16−冷房用膨張弁
18−室内側熱交換器20−四方弁2−気液分離
器118−圧縮機1と冷媒循環し、冷房貯湯運転
が開始される。119は高低圧スイツチである。
同時に冷却水は冷却水ポンプ36により給湯用加
熱器35−補助冷却器37−冷却器25−熱動弁
26−貯湯用水電磁弁34−給湯用加熱熱器35
と循環しエンジン22排熱による貯湯運転が開始
される。
而して室内温度(RT)が室内サーモ設定温度
(TS)より低くなると上述の冷房サイクル中、冷
房用電磁弁10が閉じて貯湯用膨張弁9で冷媒減
圧されると共に貯湯用冷媒電磁弁17が開いて受
液器16から四方弁2を介して圧縮機1に戻され
室外側熱交換器11が凝縮器から蒸発器として切
換作用されると共に室内側交換器20への冷媒流
入及び室内送風機120の停止により給湯用加熱
器35及び給湯用コンデンサ3による貯湯運転の
みが行なわれる。
次に貯湯槽4内の水温度(T1)が設定温度
(t1)以上になると後述するエンジン停止回路に
信号が発せられエンジン22を停止すると共に圧
縮機1が停止される。
又、斯かる運転当初時室内温度(RT)が室内
サーモ設定温度(TS)より低く且つエンジン始
動后既に貯湯槽4内の水温度(T1)が設定温度
(t1)より高い場合、冷媒系に於ける給湯用コン
デンサ3ではほとんど冷媒が凝縮しきれず凝縮器
として作用する室外側熱交換器11で大半が凝縮
され、蒸発器として作用する室内側熱交換器20
で実質冷房運転のみ行なわれる。而して室内温度
(RT)が室内サーモ設定温度TS)より低くなる
と後述するエンジン停止回路に信号が発せられエ
ンジン22を停止すると共に圧縮機1が停止され
る。尚、121,121はOR回路を示す。
第8図はエンジン停止回路の停止フローチヤー
トで、停止信号が入力されるとガス栓40が閉じ
クラツチ24及び室内外送風機120,12が
OFFされ、同時に5分タイマーがONしてこの5
分間放熱用電磁弁27が開くと共に冷却水ポンプ
36が継続駆動してエンジン余熱が室外側放熱器
29で放熱され、エンジン22停止直后の加熱を
防止している。
第9図は暖房運転時のフローチヤートで、暖房
モードを設定して運転スイツチSWをONにする。
室内温度(RT)が室内サーモ設定温度(TS)
より低いと前述のエンジン始動回路に信号が送ら
れてエンジンが始動され、RT≦Ts-〓(Ts:サー
モON、Ts−α:サーモOFF)条件からはずれ、
且つT1≧t1であれば圧縮機1−四方弁2−室内側
熱交換器20−暖房用逆止弁19−受液器16−
ストレーナ−15−暖房用膨張弁13−室外側熱
交換器11−暖房用逆止弁21−四方弁2−気液
分離器118−圧縮機1と冷媒循環すると共に冷
却水は冷却水ポンプ36により冷却器25から高
温状態で熱動弁26−暖房用水電磁弁31−膨張
タンク32−室内側補助暖房コイル33−冷却水
ポンプ36−補助冷却器37−冷却器25と循環
し、凝縮器として作用する室内側熱交換器20と
摂氏75℃のエンジン排熱水が放熱される室内側補
助暖房コイル33とで強暖房運転が行なわれる。
斯かる運転時外気温低下により室外側熱交換器
11に霜が付着すると除霜回路が動作する。この
除霜は第10図に示す除霜フローチヤートに従つ
て行なわれ、除霜を必要とする旨判定されたら除
霜用電磁弁28が開いて冷却器25からの高温水
が熱動弁26−除霜用電磁弁28−室外側加熱器
30−冷却水ポンプ36−補助冷却器37−冷却
器25と循環し、室外側加熱器30からの放熱で
室外側熱交換器11の除霜を行なう。この除霜運
転時、室内は前述したヒートポンプ式冷凍サイク
ルにより暖房運転が継続される。
又、前述の強暖房運転に入る前にT1≧t1でなけ
れば上述のごとく室外側熱交換器11を蒸発器と
して、室内側熱交換器20を凝縮器として作用させ
て暖房運転を行なうと共にエンジン22の排熱で
上述のごとく貯湯運転を行ない室外側熱交換器1
1が着霜するとエンジン22の排熱で上述した除
霜が行なわれる。この貯湯暖房運転により室内温
度(RT)が室内サーモ設定温度(TS)より高
くなると前述のエンジン停止回路が働らいてエン
ジン22及び圧縮機1がOFFされる。
又、エンジン始動后RT≦Ts−α条件にあると
前述したヒートポンプ式冷凍サイクルとエンジン
排熱水サイクルとで強暖房運転が行なわれ、室外
側熱交換器11に着霜すると前述と同様除霜が行
なわれる。
尚、エンジン排熱で貯湯し、ヒートポンプ式冷
凍サイクルで暖房しても良く、又、上述した除霜
運転中、エンジン22の回転数を落して圧縮機1
の圧縮比を下げ室外熱交換器11に於ける汲み上
げ熱量を減らすと室外側加熱器30による除霜時
間を短縮でき、又、除霜運転はヒートポンプ式冷
凍サイクルを逆サイクルにして行ない、室内は室
内側補助暖房コイル33に冷却器25からの排熱
水を送り込むことにより上述と同様除霜しながら
暖房することができる。勿論室外側熱交換器11
に着霜する前に室外側加熱器30にエンジン排熱
水を送つて着霜を防止しても良く、又、エンジン
排熱で貯湯し、ヒートポンプ式冷凍サイクルで暖
房しても良い。
第11図は除湿運転時のフローチヤートで、除
湿モードを設定し運転スイツチSWをONにする
と、前述したエンジン始動回路に信号が送られ
RT≦Ts条件にない時は給湯用コンデンサ3と共
に室外側熱交換器11が凝縮器として作用し、室
内側交換器20が蒸発器として作用する前述した
冷房給湯サイクルで運転を行なうと共に室内側補
助暖房コイル33に冷却器25からの排熱水を送
り込んで室内側熱交換器20で冷却除湿された室
内空気を再加熱して除湿運転される。斯かる運転
中、室内側熱交換器20による冷却能力は
3000kcalと室内側補助暖房コイル33による加熱
能力2000Kcalを上回つており、冷房気味除湿の
もとで運転される。
又、エンジン始動時RT≦Ts条件にある場合更
にT1≦t1関係を比較しこの条件にあれば冷却器2
5の排熱水を室内側補助暖房コイル33に送つて
室内を暖房すると共に冷媒は給湯用コンデンサ3
で凝縮して室外側熱交換器11で蒸発して貯湯す
る前述の貯湯暖房運転が行なわれる。
又、T1≦t1条件にない時は凝縮器として作用す
る室内側熱交換器20とエンジン排熱水が放熱さ
れる室内側補助暖房コイル33とによる前記の強
暖房運転が行なわれる。尚、122はOR回路で
ある。
第12図は貯湯運転時のフローチヤートで、貯
湯モードを設定し運転スイツチSWをONにする。
T1≧t1条件にない時は前述したエンジン始動回路
に信号が送られエンジンが始動される。室外側熱
交換器11が除霜を要するか否か除霜判定して除
霜が不要であれば給湯用コンデンサ3と給湯用放
熱器35とで前述の如く急速な貯湯運転が行なわ
れ、逆に除霜が必要であればエンジン排熱水が室
外側加熱器30に送られて室外側熱交換器11の
除霜を行ない、この間給湯用コンデンサ3のみで
貯湯される。123はOR回路を示す。
又、第1図にて前述したように給湯用コンデン
サ3の中間箇所より側路管5を設けて出口管12
4と三方弁6で接続し、貯湯槽4内の水温が低い
時は側路管5で給湯用コンデンサ3の一部を高圧
吐出冷媒が側路することにより冷媒凝縮温度が下
がつて高圧が上がりにくく、且つ給湯用コンデン
サ3に冷媒が液状で溜まるといつた欠点を解消で
き、貯湯槽4内の水温が設定温度以上になると三
方弁6を切替えて給湯用コンデンサ3全部に冷媒
を通すようにすると冷房及び貯湯運転を有効に行
なうことができる。
以上の如く本発明の給湯冷暖房装置は圧縮機、
冷暖房切替弁、冷給用コンデンサ、室外側熱交換
器、室内側熱交換器を循環状に接続してなるヒー
トポンプ式冷凍回路と、前記圧縮機を駆動する熱
動機関の冷却器、前記室外側熱交換器と圧縮機、
冷暖房切換弁、給湯用コンデンサ、室外側熱交換
器、室内側熱交換器を循環状に接続してなるヒー
トポンプ式冷凍回路と、前記圧縮機を駆動する熱
動機関の冷却器、前記室外側熱交換器と同一風路
中に位置する室外側放熱器、前記室内側熱交換器
と同一風路中に位置する室内側補助暖房コイル、
前記給湯用コンデンサと共に貯湯槽内に収納され
る給湯用加熱器を循環状に接続してなる排熱回路
とを備え、この排熱回路には前記給湯用コンデン
サによる貯湯運転中に前記給湯用加熱器へ熱動機
関から冷却水を導く弁と、前記室内側熱交換器が
凝縮器として作用する暖房運転中に暖房負荷に応
じて前記熱動機関からの冷却水を前記給湯用加熱
器と室内側補助暖房コイルとに切替え導入する弁
とを設け、前記冷凍回路には給湯用コンデンサと
室外側熱交換器とが凝縮器として作用する貯湯・
冷房運転中に冷房負荷に応じてこの室外側熱交換
器を蒸発器として作用させる弁とを設けたことを
特徴とする給湯冷暖房装置作用させる弁とを設け
たので、 (イ) 熱動機関の冷却水排熱を給湯用加熱器で、ヒ
ートポンプ式冷凍サイクルの排熱を給湯用コン
デンサで夫々熱回収して給湯用として排熱利用
できると共に熱動機関の冷却水排熱を貯湯槽を
介することなく直接暖房補助熱源として排熱利
用できるのでヒートポンプ式冷凍サイクルの暖
房効果と相俟つて強力な暖房が得られる。
(ロ) ヒートポンプ式冷凍サイクルは冷房運転中、
室内の熱負荷が減少した時自動的に貯湯運転に
切替わり熱負荷が増大すると再び冷房運転に自
動的に切替わるので、熱動機関及び圧縮機が頻
繁にON−OFFを繰り返すのを最小限に食い止
めることができ、特に耐久性に劣る熱動機関の
保護を図ることができる。
(ハ) ヒートポンプ式冷凍サイクルによる暖房運転
と熱動機関の冷却水排熱による暖房運転とを暖
房負荷に応じて組み合わせ選択できるので、同
時運転による強力な暖房と一方の運転による弱
暖房とが得られ、しかも弱暖房時給湯用として
同時に排熱回収されるので無駄がなく極めて合
理的である。
(ニ) 熱動機関の運転停止後、この機関の余熱を室
外側放熱器で所定時間放出させるようにすれ
ば、停止直後の過熱が防止され、熱動機関の耐
久性を向上させることができる。
【図面の簡単な説明】
図面は本発明装置の実施例を示すもので、第1
図は給湯冷暖房装置の配管系統図、第2図は給湯
冷暖房装置の室外側ユニツトの断面図、第3図イ
はマフラー押え金具の分解斜視図、同図ロは同金
具の組み付け状態を示す要部平面図、同図ハは支
柱の要部斜視図、第4図は冷房運転時のフローチ
ヤート、第5図は熱動機関の一実施例を示す始動
フローチヤート、第6図はタイマーTA,TBの
動作図、第7図は第5図に代わる他実施例を示す
始動フローチヤート、第8図は熱動機関の停止フ
ローチヤート、第9図は暖房運転時のフローチヤ
ート、第10図は除霜フローチヤート、第11図
は除湿運転時のフローチヤート、第12図は貯湯
運転時のフローチヤートである。 1……圧縮機、2……冷暖房切替弁、3……給
湯用コンデンサ、4……貯湯槽、11……室外側
熱交換器、20……室内側熱交換器、22……熱
動機関、25……冷却器、29……室外側放熱
器、33……室内側補助暖房コイル、35……給
湯用加熱器。

Claims (1)

    【特許請求の範囲】
  1. 1 圧縮機、冷暖房切換弁、給湯用コンデンサ、
    室外側熱交換器、室内側熱交換器を循環状に接続
    してなるヒートポンプ式冷凍回路と、前記圧縮機
    を駆動する熱動機関の冷却器、前記室外側熱交換
    器と同一風路中に位置する室外側放熱器、前記室
    内側熱交換器と同一風路中に位置する室内側補助
    暖房コイル、前記給湯用コンデンサと共に貯湯槽
    内に収納される給湯用加熱器を循環状に接続して
    なる排熱回路とを備え、この排熱回路には前記給
    湯用コンデンサによる貯湯運転中に前記給湯用加
    熱器へ熱動機関から冷却水を導く弁と、前記室内
    側熱交換器が凝縮器として作用する暖房運転中に
    暖房負荷に応じて前記熱動機関からの冷却水を前
    記給湯用加熱器と室内側補助暖房コイルとに切替
    え導入する弁とを設け、前記冷凍回路には給湯用
    コンデンサと室外側熱交換器とが凝縮器として作
    用する貯湯・冷房運転中に冷房負荷に応じてこの
    室外側熱交換器を蒸発器として作用させる弁とを
    設けたことを特徴とする給湯冷暖房装置。
JP4776581A 1981-03-30 1981-03-30 Equipment with cooling, heating and hot water supply functions combined Granted JPS57161438A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4776581A JPS57161438A (en) 1981-03-30 1981-03-30 Equipment with cooling, heating and hot water supply functions combined

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4776581A JPS57161438A (en) 1981-03-30 1981-03-30 Equipment with cooling, heating and hot water supply functions combined

Publications (2)

Publication Number Publication Date
JPS57161438A JPS57161438A (en) 1982-10-05
JPS6338621B2 true JPS6338621B2 (ja) 1988-08-01

Family

ID=12784457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4776581A Granted JPS57161438A (en) 1981-03-30 1981-03-30 Equipment with cooling, heating and hot water supply functions combined

Country Status (1)

Country Link
JP (1) JPS57161438A (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002130743A (ja) * 2000-10-30 2002-05-09 Mitsubishi Heavy Ind Ltd 室外熱交換器ユニット構造、室外機ユニット及びガスヒートポンプ式空気調和機
KR20020084441A (ko) * 2001-05-02 2002-11-09 주식회사 센추리 온수공급시스템
KR100579576B1 (ko) * 2004-08-17 2006-05-15 엘지전자 주식회사 열병합 발전 시스템
CN109323426B (zh) * 2018-11-09 2020-12-25 青岛海尔空调器有限总公司 空调器的控制方法和空调器

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5630570A (en) * 1979-08-17 1981-03-27 Tokyo Shibaura Electric Co Engineedriven air conditioner

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5531459Y2 (ja) * 1974-02-14 1980-07-26

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5630570A (en) * 1979-08-17 1981-03-27 Tokyo Shibaura Electric Co Engineedriven air conditioner

Also Published As

Publication number Publication date
JPS57161438A (en) 1982-10-05

Similar Documents

Publication Publication Date Title
KR930002429B1 (ko) 냉동싸이클 장치
JP3965717B2 (ja) 冷凍装置及び冷凍機
JP3610402B2 (ja) 熱ポンプ装置
WO2001020234A1 (en) Combination of a refrigerator and a heat pump and a water heater
JP4253957B2 (ja) 冷蔵庫
JPS6338621B2 (ja)
CN114659322B (zh) 风冷冰箱
JPH0125978B2 (ja)
JP2504411B2 (ja) 暖房装置
WO2022075248A1 (ja) 屋外空気調和装置
JPH08170859A (ja) 冷凍冷蔵庫
JP2005003290A (ja) 空気調和機
JPS6256426B2 (ja)
JP2538202B2 (ja) エンジン駆動式空気調和装置
JPH0914778A (ja) 空気調和装置
JP2969801B2 (ja) エンジン駆動式空気調和機
JP2004092930A (ja) 製氷機
JP3464295B2 (ja) 冷凍冷蔵庫
JP2002061994A (ja) 空気調和機
JP3342130B2 (ja) 冷凍装置
JP2000035258A (ja) エンジンヒートポンプ
JPS6027871Y2 (ja) 空気調和装置
JP2003230889A (ja) 中和器及び空気調和装置
JP2002154317A (ja) 車両用空調装置
JPH07239172A (ja) 冷却装置