JPS6335109B2 - - Google Patents

Info

Publication number
JPS6335109B2
JPS6335109B2 JP56072502A JP7250281A JPS6335109B2 JP S6335109 B2 JPS6335109 B2 JP S6335109B2 JP 56072502 A JP56072502 A JP 56072502A JP 7250281 A JP7250281 A JP 7250281A JP S6335109 B2 JPS6335109 B2 JP S6335109B2
Authority
JP
Japan
Prior art keywords
film
polysilicon film
silicon
polysilicon
barrier diode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56072502A
Other languages
Japanese (ja)
Other versions
JPS57187963A (en
Inventor
Masahiko Nakamae
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP7250281A priority Critical patent/JPS57187963A/en
Publication of JPS57187963A publication Critical patent/JPS57187963A/en
Publication of JPS6335109B2 publication Critical patent/JPS6335109B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/07Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common
    • H01L27/0744Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common without components of the field effect type
    • H01L27/075Bipolar transistors in combination with diodes, or capacitors, or resistors, e.g. lateral bipolar transistor, and vertical bipolar transistor and resistor
    • H01L27/0755Vertical bipolar transistor in combination with diodes, or capacitors, or resistors
    • H01L27/0761Vertical bipolar transistor in combination with diodes only
    • H01L27/0766Vertical bipolar transistor in combination with diodes only with Schottky diodes only

Description

【発明の詳細な説明】 本発明はシヨツトキーバリアダイオード(以下
SBDと略記する)クランプ付きバイポーラトラ
ンジスタの製造方法に係り、特に高い歩留りと信
頼性にて高速動作を実現する事の出来る半導体装
置の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a Schottky barrier diode (hereinafter referred to as
The present invention relates to a method of manufacturing a clamped bipolar transistor (abbreviated as SBD), and particularly to a method of manufacturing a semiconductor device that can realize high-speed operation with high yield and reliability.

バイポーラトランジスタにおいて高速動作を実
現する為にポリシリコン膜にN型不純物を含ませ
て熱処理を行ない、浅いエミツタ接合を形成する
事が行なわれている。またさらに、SBDクラン
プ付きの構成にして高速化が計られている。この
SBDは通常高融点金属のシリサイド膜、例えば
白金シリサイド,パラジウムシリサイド等が用い
られる。このシリサイド膜はエミツタ上のポリシ
リコン膜の上にも同時に形成されると不都合を生
じる。すなわちポリシリコン膜上に形成されるシ
リサイド膜は高融点金属がポリシリコン膜の厚さ
全部と反応し、さらに単結晶シリコン表面に形成
されているエミツタ領域表面と不所望に反応して
しまう。これにより浅いエミツタ接合がシリサイ
ド膜により破壊されてしまう恐れを生じる。この
為、SBDの特性上必要な高融点金属の膜厚が決
まると、ポリシリコン膜上ではこの金属膜厚の約
2倍の厚さのポリシリコンが反応してシリサイド
膜になる為、シリサイド化しない部分の厚さをあ
る程度見込み、通常ポリシリコンの膜厚は前記金
属膜の約3倍程度の厚さで設けられる。しかし、
ポリシリコン高融点金属との反応はポリシリコン
の粒界に沿つて進行し易すい為局所的に深くシリ
サイド膜が形成される事が起こる。この為に、ポ
リシリコンの膜厚は前記の厚さよりさらに余裕を
見て厚くする必要があつた。この様に、ポリシリ
コン膜が厚くなるとエミツタ抵抗が高くなり、ト
ランジスタの高速化には不利となる。さらに電極
部に形成される大きな段差は微細パターニング及
び多層配線構造を進める場合に重大な欠点となり
易すい。
In order to achieve high-speed operation in bipolar transistors, a shallow emitter junction is formed by impregnating a polysilicon film with N-type impurities and subjecting it to heat treatment. Additionally, the configuration is equipped with an SBD clamp to increase speed. this
A silicide film of a high melting point metal, such as platinum silicide or palladium silicide, is usually used for SBD. If this silicide film is simultaneously formed on the polysilicon film on the emitter, a problem will arise. That is, in the silicide film formed on the polysilicon film, the high melting point metal reacts with the entire thickness of the polysilicon film, and further reacts undesirably with the surface of the emitter region formed on the surface of the single crystal silicon. This may cause the shallow emitter junction to be destroyed by the silicide film. For this reason, once the film thickness of the high-melting point metal required for SBD characteristics is determined, on the polysilicon film, polysilicon with a thickness approximately twice that of this metal film will react and become a silicide film, resulting in silicide formation. To some extent, the thickness of the non-metallic film is taken into consideration, and the polysilicon film is usually provided to be about three times as thick as the metal film. but,
Since the reaction between polysilicon and the high melting point metal tends to proceed along the grain boundaries of polysilicon, a locally deep silicide film may be formed. For this reason, it was necessary to make the polysilicon film thicker than the above-mentioned thickness with some margin. As described above, when the polysilicon film becomes thicker, the emitter resistance increases, which is disadvantageous for increasing the speed of the transistor. Furthermore, the large step difference formed in the electrode portion tends to become a serious drawback when proceeding with fine patterning and multilayer wiring structures.

本発明の目的は上述の従来の製造方法の欠点を
除去し、かつ自己整合等の技術を用い高い歩留で
かつ高信頼性の高速動作を実現する事のできる
SBDクランプ付きバイポーラトランジスタのも
つとも好ましい製造方法を提供する事にある。
The purpose of the present invention is to eliminate the drawbacks of the conventional manufacturing method described above, and to realize high-speed operation with high yield and high reliability using techniques such as self-alignment.
The object of the present invention is to provide a particularly preferable manufacturing method for a bipolar transistor with an SBD clamp.

本発明の特徴は、シヨツトキーバリアダイオー
ドクランプ付きのバイポーラトランジスタを有す
る半導体装置の製造方法において、窒化シリコン
膜を用いてシヨツトキーバリアダイオード部、エ
ミツタコンタクト部およびコレクタコンタクト部
以外のシリコン表面に酸化処理により二酸化シリ
コン膜を形成する工程と、シヨツトキーバリアダ
イオード部のみの窒化シリコン膜を残して、エミ
ツタコンタクト、コレクタコンタクト部の開口を
行う工程と、ポリシリコン膜を被着する工程と、
少なくともエミツタコンタクト部を覆い、かつシ
ヨツトキーバリアダイオード部上を除去する様に
ポリシリコン膜をパターニングする工程と、不純
物を該パターニングされたポリシリコン膜にイオ
ン注入する工程と、酸化性雰囲気中で熱処理を行
ない前記ポリシリコン膜中の不純物を半導体基板
中に導入することによりエミツタ領域を形成する
と同時に該パターニングされたポリシリコン膜の
上面および側面に熱酸化二酸化シリコン膜を形成
する工程と、シヨツトキーバリアダイオード部の
窒化シリコン膜を自己整合的に除去して開口する
工程と、金属膜を被着する工程と、熱処理を行な
い、自己整合的に前記開口部のみに金属シリサイ
ド膜を形成する工程と、前記ポリシリコン膜の上
面および側面上に形成された熱酸化二酸化シリコ
ン膜を除去する工程と、前記金属シリサイド膜と
電極金属膜との反応を防止する介在膜を被着する
工程と電極金属膜を被着する工程と、前記電極金
属膜、介在膜及びポリシリコン膜を連続的にパタ
ーニングする工程とを含む半導体装置の製造方法
にある。上記方法によればパターニングされたポ
リシリコンの側面にも熱酸化シリコン膜を設けた
状態でシヨツトキーバリアダイオード形成用の金
属膜を被着するから、側面からの反応も完全に阻
止されエミツタの上記不都合は皆無となる。又、
その他の諸工程は自己整合をとり入れているから
容易の製造を可能とする。
A feature of the present invention is that in a method of manufacturing a semiconductor device having a bipolar transistor with a shot key barrier diode clamp, a silicon nitride film is used to remove the silicon surface other than the shot key barrier diode portion, the emitter contact portion, and the collector contact portion. a step of forming a silicon dioxide film by oxidation treatment, a step of leaving the silicon nitride film only in the shot key barrier diode region and opening the emitter contact and collector contact regions, and a step of depositing a polysilicon film. and,
A process of patterning a polysilicon film so as to cover at least the emitter contact part and removing the top of the shot key barrier diode part, a process of ion-implanting impurities into the patterned polysilicon film, and a process of injecting impurities into the patterned polysilicon film in an oxidizing atmosphere. a step of forming an emitter region by performing heat treatment to introduce impurities in the polysilicon film into the semiconductor substrate, and at the same time forming a thermally oxidized silicon dioxide film on the top and side surfaces of the patterned polysilicon film; A process of removing the silicon nitride film in the Yotsuki barrier diode portion in a self-aligned manner to create an opening, a process of depositing a metal film, and heat treatment are performed to form a metal silicide film only in the opening in a self-aligned manner. a step of removing a thermally oxidized silicon dioxide film formed on the top and side surfaces of the polysilicon film; a step of depositing an intervening film to prevent reaction between the metal silicide film and the electrode metal film; and an electrode. A method of manufacturing a semiconductor device includes a step of depositing a metal film, and a step of successively patterning the electrode metal film, intervening film, and polysilicon film. According to the above method, a metal film for forming a shot key barrier diode is deposited with a thermally oxidized silicon film also provided on the side surfaces of the patterned polysilicon, so reactions from the side surfaces are also completely blocked and emitter All of the above inconveniences will disappear. or,
Other processes incorporate self-alignment, allowing for easy manufacturing.

以下図面を用いて詳細に説明する。 This will be explained in detail below using the drawings.

第1図は従来の製造方法の一例によるSBDク
ランプ付きバイポーラトランジスタのエミツタコ
ンタクト部及びSBD部分を説明する為の図であ
る。N型シリコン領域1の表面にP型ベース領域
2が設けられた後表面の二酸化シリコン膜にエミ
ツタコンタクトの開口が設けられ、エミツタ部分
の位置決めが行なわれる。次にポリシリコン膜5
が被着され、砒素のイオン注入を行い、熱処理工
程を経てエミツタ領域3が形成される。次に
SBDコンタクト部分の開口部をフオトレジスト
をマスクにしてポリシリコン膜、二酸化シリコン
膜の除去を行う事により設ける。次に、高融点金
属膜を被着し、熱処理を行う事により金属シリサ
イド膜6をSBD部分及びエミツタ上のポリシリ
膜の上に形成する。次に電極金属8とシリサイド
6との反応を防止する為の介在膜7を被着しさら
にその上に電極金属膜8を被着する。次に配線用
のフオトレジストのパターニングを行い、電極金
属8介在膜7シリサイド膜6及びエミツタ上のポ
リシリコン膜5を連続的に除去し配線を形成す
る。
FIG. 1 is a diagram for explaining an emitter contact portion and an SBD portion of a bipolar transistor with an SBD clamp according to an example of a conventional manufacturing method. After a P-type base region 2 is provided on the surface of the N-type silicon region 1, an emitter contact opening is provided in the silicon dioxide film on the surface, and the emitter portion is positioned. Next, polysilicon film 5
is deposited, arsenic ions are implanted, and an emitter region 3 is formed through a heat treatment process. next
An opening for the SBD contact portion is provided by removing the polysilicon film and silicon dioxide film using a photoresist as a mask. Next, a metal silicide film 6 is formed on the SBD portion and the polysilicon film on the emitter by depositing a high melting point metal film and performing heat treatment. Next, an intervening film 7 for preventing a reaction between the electrode metal 8 and the silicide 6 is deposited, and then an electrode metal film 8 is deposited thereon. Next, a photoresist for wiring is patterned, and the electrode metal 8 intervening film 7 silicide film 6 and polysilicon film 5 on the emitter are successively removed to form wiring.

この様な従来の製造方法によると、第1図に示
す様にエミツタ3の上のポリシリコン膜5の表面
に形成される金属シリサイド膜6は局所的に反応
が進行してエミツタ接合にまで達する事が起り易
すい。
According to this conventional manufacturing method, as shown in FIG. 1, the metal silicide film 6 formed on the surface of the polysilicon film 5 on the emitter 3 undergoes a local reaction and reaches the emitter junction. Things tend to happen.

次に、本発明を一実施例に基き、第2図乃至第
7図を用いて説明する。
Next, the present invention will be explained based on one embodiment using FIGS. 2 to 7.

第2図においてP型シリコン基板11の主面に
選択的にN+型埋込みコレクタ領域12が設けら
れた後N型シリコンエピタキシヤル層13が形成
される。次にエピタキシヤル層表面に500Å程度
の二酸化シリコン膜が形成された後窒化シリコン
膜が被着される。以下簡単の為にこの薄い二酸化
シリコン膜と窒化シリコン膜を単に窒化シリコン
膜15と呼ぶ。次に絶縁分離領域を形成する為に
前記窒化シリコン膜15のパターニングを行つた
後エピタキシヤル層のシリコンを除去して溝を設
け、ボロンを拡散した後シリコンの酸化を行い絶
縁分離領域の二酸化シリコン膜16を形成する。
次にフオトレジスト18のパターニングを行いベ
ース領域19をボロンのイオン注入により形成す
る。
In FIG. 2, an N + type buried collector region 12 is selectively provided on the main surface of a P type silicon substrate 11, and then an N type silicon epitaxial layer 13 is formed. Next, a silicon dioxide film of about 500 Å is formed on the surface of the epitaxial layer, and then a silicon nitride film is deposited. Hereinafter, for the sake of simplicity, the thin silicon dioxide film and silicon nitride film will be simply referred to as the silicon nitride film 15. Next, the silicon nitride film 15 is patterned to form an insulating isolation region, the silicon of the epitaxial layer is removed to form a groove, boron is diffused, and the silicon is oxidized to form silicon dioxide in the insulating isolation region. A film 16 is formed.
Next, the photoresist 18 is patterned and a base region 19 is formed by boron ion implantation.

次に第3図において、SBD部分、エミツタコ
ンタクト部分、及びコレクタコンタクト部分とな
る領域の窒化シリコン膜15を残す様にパターニ
ングを行つた後酸化処理を行つて表面保護二酸化
シリコン膜16′を形成する。
Next, in FIG. 3, patterning is performed to leave the silicon nitride film 15 in the areas that will become the SBD part, emitter contact part, and collector contact part, and then oxidation treatment is performed to form a surface protective silicon dioxide film 16'. do.

次に第4図において、コレクタコンタクト部の
窒化シリコン膜を除去し、リンを拡散させる事に
よりコレクタ領域20を形成する。この時コレク
タ領域20の表面には薄い二酸化シリコン膜が形
成される様にする。
Next, in FIG. 4, a collector region 20 is formed by removing the silicon nitride film at the collector contact portion and diffusing phosphorus. At this time, a thin silicon dioxide film is formed on the surface of the collector region 20.

次に第5図においてエミツタコンタクト部の窒
化シリコン膜及びコレクタコンタクト部の薄い二
酸化シリコン膜を除去した後ポリシリコン膜21
を被着した後エミツタコンタクトとコレクタコン
タクト部分を覆う様にポリシリコン膜21が残る
様にパターニングを行つた後砒素をイオン注入す
る。この時砒素がSBD部分及び、ポリシリコン
のパターン以外の単結晶シリコン側に浸入しない
様にイオン注入されねばならないのは当然であ
る。この後、窒素と酸素の混合雰囲気中で熱処理
を行う事によりエミツタ領域23を形成すると同
時にポリシリコン膜の表面に二酸化シリコン膜2
2が形成される。
Next, in FIG. 5, after removing the silicon nitride film in the emitter contact area and the thin silicon dioxide film in the collector contact area, the polysilicon film 21 is removed.
After depositing the polysilicon film 21, patterning is performed so that a polysilicon film 21 remains so as to cover the emitter contact and collector contact portions, and then arsenic ions are implanted. At this time, it is natural that ions must be implanted to prevent arsenic from penetrating into the SBD portion and the single crystal silicon side other than the polysilicon pattern. Thereafter, an emitter region 23 is formed by heat treatment in a mixed atmosphere of nitrogen and oxygen, and at the same time a silicon dioxide film 2 is formed on the surface of the polysilicon film.
2 is formed.

次に第6図において自己整合的にSBD部分の
窒化シリコン膜15を除去した後白金を被着し、
熱処理を行う事により白金シリサイド膜24を形
成する。この時SBD部分以外は表面が全て二酸
化シリコン膜である為白金シリサイドはSBD部
分のみに形成される。SBD部分以外の白金を王
水で除去した後、ポリシリコン膜上の二酸化シリ
コン膜22を除去する。
Next, in FIG. 6, after removing the silicon nitride film 15 in the SBD portion in a self-aligned manner, platinum is deposited.
A platinum silicide film 24 is formed by heat treatment. At this time, since the entire surface other than the SBD portion is a silicon dioxide film, platinum silicide is formed only on the SBD portion. After removing platinum other than the SBD portion with aqua regia, the silicon dioxide film 22 on the polysilicon film is removed.

次に第7図において、チタンとタングステンか
ら成る金属膜25を被着した後さらにアルミニウ
ム膜26を被着する。
Next, in FIG. 7, after a metal film 25 made of titanium and tungsten is deposited, an aluminum film 26 is further deposited.

次に配線用のパターニングを行い、アルミニウ
ム膜、チタンとタングステンから成る金属膜、及
びエミツタ上のポリシリコン膜を連続的にエツチ
ングし、配線を形成する。
Next, patterning for wiring is performed, and the aluminum film, the metal film made of titanium and tungsten, and the polysilicon film on the emitter are successively etched to form wiring.

この様に、本発明の技術によれば、金属シリサ
イドはSBD部分にのみ形成される為、エミツタ
上のポリシリコンを充分に薄くする事が出来エミ
ツタ抵抗が小さく、かつエミツタ接合のリークや
破壊の恐れのない高速動作を実現する事の出来る
SBDクランプ付きバイポーラトランジスタを高
い信頼性でかつ高い歩留りで得る事が出来、、電
極部分の段差が小さい為に微細パターン化や多層
配線構造にも極めて有利である事が判る。
As described above, according to the technology of the present invention, since metal silicide is formed only in the SBD portion, the polysilicon on the emitter can be made sufficiently thin, the emitter resistance is small, and the emitter junction is prevented from leaking or breaking. Able to realize fearless high-speed operation
It is possible to obtain bipolar transistors with SBD clamps with high reliability and high yield, and because the step difference in the electrode portion is small, it is found that it is extremely advantageous for fine patterning and multilayer wiring structures.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の技術を説明する為の図、第2図
乃至第7図は本発明の実施例を工程順に説明する
為の図である。 なお図において、1……N型シリコン領域、2
……P型ベース領域、3……N+型エミツタ領域、
4……表面保護二酸化シリコン膜、5……ポリシ
リコン膜、6……金属シリサイド膜、7……介在
膜、8……電極金属膜、11……P型シリコン基
板、12……N+型埋込みコレクタ領域、13…
…N型エピタキシヤル層、14,17……チヤン
ネル防止領域、15……窒化シリコン膜、16…
…絶縁分離領域、16′……表面保護二酸化シリ
コン膜、18……フオトレジスト膜、19……P
型ベース領域、20……コレクタ領域、21……
ポリシリコン膜、22……二酸化シリコン膜、2
3……N+型エミツタ領域、24……白金シリサ
イド膜、25……チタンとタングステンから成る
膜、26……電極アルミニウム膜、である。
FIG. 1 is a diagram for explaining a conventional technique, and FIGS. 2 to 7 are diagrams for explaining an embodiment of the present invention in the order of steps. In the figure, 1...N-type silicon region, 2
...P type base region, 3...N + type emitter region,
4... Surface protection silicon dioxide film, 5... Polysilicon film, 6... Metal silicide film, 7... Intervening film, 8... Electrode metal film, 11... P type silicon substrate, 12... N + type Embedded collector area, 13...
...N-type epitaxial layer, 14, 17...Channel prevention region, 15...Silicon nitride film, 16...
...Insulating isolation region, 16'...Surface protection silicon dioxide film, 18...Photoresist film, 19...P
Type base area, 20... Collector area, 21...
Polysilicon film, 22...Silicon dioxide film, 2
3... N + type emitter region, 24... platinum silicide film, 25... film made of titanium and tungsten, 26... electrode aluminum film.

Claims (1)

【特許請求の範囲】[Claims] 1 シヨツトキーバリアダイオードクランプ付き
のバイポーラトランジスタを有する半導体装置の
製造方法において、窒化シリコン膜を用いてシヨ
ツトキーバリアダイオード部、エミツタコンタク
ト部およびコレクタコンタクト部以外のシリコン
表面に酸化処理により二酸化シリコン膜を形成す
る工程と、シヨツトキーバリアダイオード部のみ
の窒化シリコン膜を残して、エミツタコンタク
ト、コレクタコンタクト部の開口を行う工程と、
ポリシリコン膜を被着する工程と、少なくともエ
ミツタコンタクト部を覆いかつシヨツトキーバリ
アダイオード部上を除去する様にポリシリコン膜
をパターニングする工程と、不純物を該パターニ
ングされたポリシリコン膜にイオン注入する工程
と、酸化性雰囲気中で熱処理を行ない前記ポリシ
リコン膜中の不純物を半導体基板中に導入するこ
とによりエミツタ領域を形成すると同時に該パタ
ーニングされたポリシリコン膜の上面および側面
に熱酸化二酸化シリコン膜を形成する工程と、シ
ヨツトキーバリアダイオード部の窒化シリコン膜
を自己整合的に除去して開口する工程と、金属膜
を被着する工程と、熱処理を行ない、自己整合的
に前記開口部のみに金属シリサイド膜を形成する
工程と、前記ポリシリコン膜の上面および側面上
に形成された熱酸化二酸化シリコン膜を除去する
工程と、前記金属シリサイド膜と電極金属膜との
反応を防止する介在膜を被着する工程と電極金属
膜を被着する工程と、前記電極金属膜、介在膜及
びポリシリコン膜を連続的にパターニングする工
程とを含む事を特徴とする半導体装置の製造方
法。
1 In a method for manufacturing a semiconductor device having a bipolar transistor with a shot key barrier diode clamp, a silicon nitride film is used to oxidize the silicon surface other than the shot key barrier diode portion, emitter contact portion, and collector contact portion by oxidation treatment. a step of forming a silicon film, and a step of opening the emitter contact and collector contact portions while leaving the silicon nitride film only in the shot key barrier diode portion;
A process of depositing a polysilicon film, a process of patterning the polysilicon film so as to cover at least the emitter contact part and removing the top of the shot key barrier diode part, and a process of ionizing impurities into the patterned polysilicon film. The impurities in the polysilicon film are introduced into the semiconductor substrate through the implantation process and heat treatment in an oxidizing atmosphere to form an emitter region, and at the same time thermal oxidation dioxide is applied to the top and side surfaces of the patterned polysilicon film. A step of forming a silicon film, a step of removing the silicon nitride film in the Schottky barrier diode portion in a self-aligned manner to form an opening, a step of depositing a metal film, and a heat treatment are performed to form the opening in a self-aligned manner. a step of forming a metal silicide film only on the polysilicon film; a step of removing the thermally oxidized silicon dioxide film formed on the top and side surfaces of the polysilicon film; and preventing a reaction between the metal silicide film and the electrode metal film. A method for manufacturing a semiconductor device, comprising the steps of depositing an intervening film, depositing an electrode metal film, and successively patterning the electrode metal film, the intervening film, and the polysilicon film.
JP7250281A 1981-05-14 1981-05-14 Manufacture of semiconductor device Granted JPS57187963A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7250281A JPS57187963A (en) 1981-05-14 1981-05-14 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7250281A JPS57187963A (en) 1981-05-14 1981-05-14 Manufacture of semiconductor device

Publications (2)

Publication Number Publication Date
JPS57187963A JPS57187963A (en) 1982-11-18
JPS6335109B2 true JPS6335109B2 (en) 1988-07-13

Family

ID=13491171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7250281A Granted JPS57187963A (en) 1981-05-14 1981-05-14 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS57187963A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59111375A (en) * 1982-12-08 1984-06-27 エヌ・ベ−・フイリップス・フル−イランペンファブリケン Semiconductor device and method of producing same
JPS59121872A (en) * 1982-12-15 1984-07-14 Fujitsu Ltd Semiconductor device
US4512076A (en) * 1982-12-20 1985-04-23 Raytheon Company Semiconductor device fabrication process
JPS63257269A (en) * 1987-04-14 1988-10-25 Fujitsu Ltd Formation of contact in semiconductor device
JP2793207B2 (en) * 1988-11-04 1998-09-03 株式会社日立製作所 Method for manufacturing semiconductor device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5177076A (en) * 1974-12-27 1976-07-03 Fujitsu Ltd HANDOTAISOCHINOSEIZOHOHO

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5177076A (en) * 1974-12-27 1976-07-03 Fujitsu Ltd HANDOTAISOCHINOSEIZOHOHO

Also Published As

Publication number Publication date
JPS57187963A (en) 1982-11-18

Similar Documents

Publication Publication Date Title
JPH0228902B2 (en)
US4412378A (en) Method for manufacturing semiconductor device utilizing selective masking, etching and oxidation
KR940009360B1 (en) Semiconductor device and manufacturing method thereof
US5342796A (en) Method for controlling gate size for semiconduction process
US4151631A (en) Method of manufacturing Si gate MOS integrated circuit
JP2890584B2 (en) Method for manufacturing semiconductor device
JPH0578173B2 (en)
US4803174A (en) Bipolar transistor integrated circuit and method of manufacturing the same
JPS6335109B2 (en)
JPH0513426A (en) Semiconductor device
JPH0581051B2 (en)
JPS6226573B2 (en)
JPS61102059A (en) Semiconductor device
JPS6244819B2 (en)
JP2544806B2 (en) Method for manufacturing semiconductor device
JP2505159B2 (en) Method for manufacturing semiconductor device
JP2623575B2 (en) Manufacturing method of bipolar transistor
JPH0616559B2 (en) Method for manufacturing semiconductor device
JP2855684B2 (en) Method for manufacturing semiconductor device
JP2614299B2 (en) Manufacturing method of bipolar semiconductor integrated circuit device
JP3077146B2 (en) Method for manufacturing semiconductor device
JP2720567B2 (en) Method for manufacturing semiconductor device
JP3848782B2 (en) Manufacturing method of semiconductor device
JPS6347962A (en) Semiconductor device
JPH07109823B2 (en) Manufacturing method of MIS type integrated circuit