JPS632937B2 - - Google Patents

Info

Publication number
JPS632937B2
JPS632937B2 JP59105538A JP10553884A JPS632937B2 JP S632937 B2 JPS632937 B2 JP S632937B2 JP 59105538 A JP59105538 A JP 59105538A JP 10553884 A JP10553884 A JP 10553884A JP S632937 B2 JPS632937 B2 JP S632937B2
Authority
JP
Japan
Prior art keywords
zsm
type zeolite
catalyst
zeolite
methanol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59105538A
Other languages
English (en)
Other versions
JPS60248630A (ja
Inventor
Yoshimichi Kyozumi
Kunio Suzuki
Shigemitsu Shin
Hideo Okado
Kazumi Noguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP59105538A priority Critical patent/JPS60248630A/ja
Publication of JPS60248630A publication Critical patent/JPS60248630A/ja
Publication of JPS632937B2 publication Critical patent/JPS632937B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】
本発明は、サブミクロンオーダ以下の微結晶
ZSM―5型ゼオライト(シリカライトを含む)
を触媒として用いる、メタノール又はジメチルエ
ーテルから低級オレフインを製造する方法に関す
るものである。 1970年代にモービルオイル社はメタノールやジ
メチルエーテルから高品質ガソリンを主成分とす
る炭化水素を製造する形状選択性触媒として
ZSM―5型ゼオライト触媒を開発した。このゼ
オライトは従来のゼオライトと異なり組成
SiO2/Al2O3比を自由自在に制御できることや耐
熱性が極めて高いなどの優れた性質をもつてお
り、その特長を生かすことにより、メタノールや
ジメチルエーテルの転化反応の主生成物を低級オ
レフインとすることも可能である。例えば、Ger.
Pat.、2935863号明細書によれば、SiO2/Al2O3
=35〜1600の活性型ゼオライト(H―ZSM―5)
は、350℃から600℃までの温度範囲のメタノール
転化反応において最高収率70.1wt%で低級オレフ
イン(炭素数2〜4)を与えることが知られてい
る。この場合のZSM―5型ゼオライト触媒の最
適組成並びに反応温度はそれぞれSiO2/Al2O3
298〜500及び550℃であることがその実施例で明
示されている。従つて、メタノールやジメチルエ
ーテルから低級オレフインを主成分とする炭化水
素を製造するには、反応温度をできるだけ高くす
る方が有利であることがわかるが、同時にこのよ
うな高温下のメタノール転化反応においては、耐
熱性の高いZSM―5型ゼオライト触媒といえど
も、反応温度550℃近傍を境にして急速な触媒劣
化現象が見られる場合が多い。従つて、500℃以
上の高温下でメタノールやジメチルエーテルを原
料として低級オレフインを高収率でしかも急速な
触媒劣化を伴うことなく長時間に製造するために
は、550℃以上の温度で容易に活性劣化を起こさ
ないようなZSM―5型ゼオライトを巧みに製造
する必要がある。 本発明者らは、このような観点から、500℃以
上の高温下で低級オレフインの生成が有利となる
メタノール及び/又はジメチルエーテルの転化反
応において高温劣化し難いZSM―5型ゼオライ
トの開発に関して鋭意検討を行つた結果、サブミ
クロンオーダー以下の結晶粒子径をもつ微結晶
ZSM―5型ゼオライトがその目的に適合し、ま
たこのような結晶粒子径をもつZSM―5型ゼオ
ライトを活性化処理したZSM―5型ゼオライト
を主成分とする触媒は、500℃以上の高温下での
メタノール及び/又はジメチルエーテルの転化反
応において、コーク析出量がきわめて少なく、従
つて、低級オレフイン収率も高く、また触媒寿命
の観点からも低級オレフインの製造にきわめて有
利であるとの知見を得て、本発明を完成するに至
つた。特にその効果について言及するならば、後
の参考例14でも示されるように、本発明で製造さ
れるZSM―5型ゼオライト触媒のいくつかは、
550℃近傍の高温下でのメタノール転化反応にお
いて、前記のGer.Pat.、2935863号明細書に明示
されている低級オレフイン収率の最高値70.1wt%
をはるかに上廻り〔たとえば、後記試料番号12の
触媒は550℃で89.36wt%(炭素基準換算では
88.97%)〕、しかも600℃のより高温減においても
さらに高い低級オレフイン収率を与えているこ
と、並びに実施例1で示される触媒は550℃での
メタノール転化反応において113時間後において
もなお、低級オレフイン収率を前記特許方法の最
高値より高い値71.30wt%(炭素基準換算では
71.49%)を維持していたことが強調される。 従来、ZSM―5型ゼオライトに関する多数の
特許文献や内外の研究論文にも見られるように、
メタノールやジメチルエーテルを原料とした低級
オレフインを含む炭化水素の製造用触媒の調製法
としては、通常結晶化速度を上げるためオートク
レーブを用いて150℃近傍の高温高圧下の水熱合
成条件下で結晶下させることが多い。この方法
は、高圧反応容器(オートクレーブ)を用いなけ
ればならないこと、反応温度が天然堆積性ゼオラ
イトの生成温度よりも高くしなければならないこ
となど苛酷な合成条件と経費を必要とするが、比
較的短時間で目的のゼオライトが合成できるこ
と、またミクロンオーダー以上の高品質自形
ZSM―5型ゼオライト結晶が合成できるなどの
利点をもつている。しかも、モービルオイル社の
特許に係るUSP4083888号及びUSP4083889号明
細書に開示されているように、このような方法で
得られた大きなZSM―5型ゼオライト結晶を触
媒としてメタノール転化反応を行うと、生成炭化
水素中のエチレンの選択率が高くなるという形状
選択性触媒としての優れた特長が触媒反応面で見
られる。本発明者らも、本発明に至る研究途上に
おいては、低級オレフインを高選択性で得る
ZSM―5型ゼオライト触媒を得るために、オー
トクレーブを使用したり、仕込みH2O/SiO2
を高くして自形をした高品質大結晶ZSM―5型
結晶の合成を行つて、メタノール及び/又はジメ
チルエーテルの転化反応を行つた。その結果、上
記モービル社特許明細書に明示されているような
エチレンへの選択性が高くなるという形状選択性
効果が大結晶ZSM―5型ゼオライト触媒に見ら
れることが確認されたが、低級オレフイン収率が
最も高くなる550℃近傍又はそれ以上の高温域の
反応では、急速な活性劣化を伴うことが見い出さ
れた。そこで、本発明者らは、ZSM―5型ゼオ
ライトの結晶粒子径をなるべく小さくするよう鋭
意工夫を行つた結果、常圧下で第4級アルキルア
ンモニウム塩を含むシリカやシリカ―アルミナの
アルカリ性溶液である出発原料混合物を還流加熱
してZSM―5型ゼオライトを合成するという経
済的で簡便な方法において、その仕込みH2O/
SiO2比を適切に選ぶことにより、サブミクロン
オーダー以下の微結晶ZSM―5型ゼオライトが
得られることがわかつた。このような微結晶
ZSM―5型ゼオライトを通常行われているよう
なイオン交換等の活性化処理を施すことにより得
られる触媒は、メタノール及び/又はジメチルエ
ーテルを原料とした炭化水素合成反応において、
500℃以上の高温反応領域においても活性劣化が
きわめて小さいことがわかつた。またZSM―5
型ゼオライトの結晶粒子径は仕込みH2O/SiO2
モル比に大きく依存して一義的にその大きさが決
まるが、結晶化時間も触媒反応にとつては重要な
因子となつており、適切な結晶化時間を選ぶこと
が炭化水素生成反応の高温劣化を小さくするのに
重要であることもわかつた。なお、ここでいう適
切な結晶化時間とは出発原料混合物ゲル溶液が次
第に結晶化してゆき、生成したZSM―5型ゼオ
ライトの結晶化状態が、X線回折図形、BET比
表面積、並びにヘキサン異性体吸着分離特性など
の測定から完全になつたと考えられる時点までの
合成時間あるいはその近傍数日間までの合成時間
を指す。結晶化時間をこれより長くすると、
ZSM―5型ゼオライト自体の結晶粒子径は変ら
ないが、炭化水素生成反応においては、結晶粒子
径が大きくなつたのと同様な効果が見られ、結晶
化時間が長いほどコーク折出に伴う高温劣化現象
が顕著になつてくるので、触媒寿命の点から結晶
化時間を適切に選ぶことが重要である。本発明者
の研究によれば、前記の最適結晶化状態を得るに
は、一般的に、反応開始後6日〜13日間、好まし
くは7〜9日間にわたつて加熱還流を継続すれば
よいことが見出された。 以下、本発明のサブミクロンオーダー以下の結
晶粒子をもつ微結晶ZSM―5型ゼオライトの製
造方法及びそのようにして得られた微結晶ZSM
―5型ゼオライトを活性化処理することによつて
得られる活性化ZSM―5型ゼオライトを主成分
とする触媒上でのメタノール及び/又はジメチル
エーテルの転化反応について詳述する。 本発明のZSM―5型ゼオライトは、シリカ又
はシリカーアルミナのアルカリ性溶液と第4級ア
ルキルアンモニウム塩の水性混合物を出発原料と
して、常圧下100℃近傍において還流加熱処理す
ることによつて合成されるが、重要なのはその系
のH2O/SiO2の仕込みモル比と結晶化時間であ
る。従つて、この系の出発原料のアルカリ源、シ
リカ源、アルミナ源、第4級アルキルアンモニウ
ム源としては、通常のZSM―5型ゼオライトの
合成に用いられているものが使用可能である。即
ち、NaOH、KOH、NaCl、KCl、水ガラス、コ
ロイダルシリカ、シリカゾル、シリカゲル、ケイ
酸ナトリウム、ケイ砂、アルミニウム、水酸化ア
ルミニウム、塩化アルミニウム、硝酸アルミニウ
ム、硫酸アルミニウム、オキシ水酸化アルミニウ
ム、ベーマイト、プソイドベーマイト、カオリ
ン、メタカオリン、酸性白土、ハロイサイト、メ
タハロイサイト、TPAOH、TPACl、TPABr、
TPAI、TBAOH、TBACl、TBABr〔TPA=
(n−C3H74N+、TBA=(n−C4H94N+〕など
を所要の組合せで選ぶことが可能である。出発物
質の混合比は仕込みモル比でSiO2/Al2O3=50〜
∞、より好ましくは200〜1200、H2O/SiO2=5
〜20、より好ましくは7〜11、OH-/SiO2=0.1
〜0.5、より好ましくは0.2〜0.4、R+/SiO2(R=
TPA及び/又はTBA)=0.01〜0.2、より好まし
くは0.03〜0.07となるようにする。この出発原料
混合物を、還流冷却器と撹拌器を組み込んだ反応
容器に入れ、100±20℃の温度に設定した油浴あ
るいは湯浴を用いて常圧下で6〜13日間、より好
ましくは7〜9日間還流加熱する。得られた生成
物であるZSM―5型ゼオライトはただちに水洗
しながら遠心分離器や濾過器を用いて母液より分
離し、乾燥を行う。このような方法でサブミクロ
ンオーダー以下の結晶粒子径をもつZSM―5型
ゼオライトの微結晶集合体を得ることができる。 低級オレフインの合成を目的としたメタノール
やジメチルエーテルの転化反応に、この微結晶
ZSM―5型ゼオライトを用いる場合には、500℃
近傍の温度で有機結晶化剤である第4級アルキル
アンモニウム塩を分解除去した後、通常行われて
いるようなアンモニウム塩や鉱酸で焼成ZSM―
5型ゼオライト中に含まれているアルカリイオン
をNH4 +やH+でイオン交換処理し、500℃近傍の
温度で焼成することにより、活性なH―ZSM―
5型ゼオライトに変える。また低級オレフインの
収率を高めたり、高温劣化をできるだけ少なくす
るために、このH―ZSM―5型ゼオライトをア
ルカリ土類元素、希土類元素、マンガン、リン化
合物等を単独又は組み合わせて修飾することも可
能である。このような手法で得られた活性化
ZSM―5型ゼオライトを触媒とするメタノール
やジメチルエーテルの転化反応は、0.01〜50気圧
のメタノール分圧、LHSV=0.1〜1000h-1、反応
温度300〜700℃の操作条件の下で行うことができ
る。本発明によつて合成されたZSM―5型ゼオ
ライトを用いることにより、例えば、メタノール
分圧0.5気圧、LHSV=2h-1、反応温度560〜600
℃において、収率66%(炭素基準)及び87%(炭
素基準)以上の高収率で低級オレフイン(炭素数
2〜4)を製造することができ、メタノール転化
用実用触媒として使用可能である。 一方、本発明以外の方法で合成されたZSM―
5型ゼオライト触媒は、後記比較例1で示される
ように、550℃近傍の反応温度で低級オレフイン
の収率が急激に低下し始め、実用触媒としての価
値は低い。 以下、本発明のさらに詳細な説明を参考例、実
施例及び比較例に基いて説明する。 参考例 1 本例では、SiO2源として触媒化成(株)市販のシ
リカゾルCataloid SI―30(SiO2:30wt%、
H2O:70wt%)、Al2O3源として市販特級試薬Al
(NO33・9H2O、アルカリ源として市販特級試薬
NaOH、有機結晶化剤として市販特級試薬臭化
テトラ―n―プロピルアンモニウム(TPA)を
選んだ。出発原料混合物ゲル溶液は下記のような
方法で調製した。 テフロン製磁気撹拌子を入れた内容積500mlの
ポリプロピレン三角フラスコに158.4gの
Cataloid SI―30を採取し、この溶液を撹拌しな
がら、1.698gのAl(NO33・9H2O、10.2gの
HaOH、10.8gのTPAの順に加えて行く。この
ようにして得られる流動性のある均一ゲル白濁溶
液のPHは室温で、約13.5であり、出発混合物の各
組成物のモル比は SiO2/Al2O3=350 OH-/SiO2=0.322 TPA/SiO2=0.0513 H2O/SiO2=7.83 の仕込比となつている。 次に、この出発混合物の入つた三角フラスコに
還流冷却器を取り付け、マグネチツク・スターラ
ーを取り付けた油浴(110℃にセツト)上で三角
フラスコ内の内容物を11日間還流撹拌加熱を行
う。得られた生成物は水洗を繰り返しながら遠心
分離器で母液から分離し、CuKα線を用いるX線
回折測定(XRD)による相の同定と走査型電子
顕微鏡観察(SEM)で結晶粒子の大きさを測定
した。 XRDの結果、得られた生成物は典型的なNa―
TPA―ZSM―5型ゼオライトの回折図形を示し
た。またSEMから求めた平均結晶粒子径は0.3μm
程度であり、本法によりサブミクロンオーダーの
ZSM―5型ゼオライト微結晶が得られることが
わかつた。 このようにして得られた微結晶ZSM―5型ゼ
オライト触媒物性及びメタノール転化反応に関す
る触媒性能を評価するために、以下の活性化処理
を行つた。Na―TPA―ZSM―5型ゼオライトを
空気中500℃で20時間焼成し、TPAを熱分解して
Na―H―ZSM―5型ゼオライトを得た。つい
で、このNa―H―ZSM―5型ゼオライトを室温
において、0.6NHClでイオン交換処理を行つた
後、再度500℃、20時間加熱処理してH―ZSM―
5型ゼオライトを得た。この活性化ZSM―5型
ゼオライト触媒について、下記のような物性測定
を行つた。 BET比表面積の測定: 500mgのH―ZSM―5型ゼオライトを
10-4Torr、150℃の条件下で30分間真空脱気処理
を行つた後、液体窒素温度下でN2ガスの吸着平
衡実験を行つて試料の比表面積を求めた。このよ
うな方法から求めた本実施例の試料H―ZSM―
5型ゼオライトのBET比表面積は294.8m2/gで
あつた。 ヘキサン異性体吸着分離特性: 100mgのH―ZSM―5型ゼオライトを内径3mm
φのステンレス製カラムに詰め、He気流中500℃
で1時間脱気処理を行う。ついでこのカラムに分
子径の異なる3種の(1:1:1)ヘキサン異性
体混合物〔2,2―ジメチルブタン(有効分子径
7.0Å)、3―メチルペンタン(5.6Å)、n―ヘキ
サン(3.1Å)〕を2μずつパルス法で注入し、試
料カラムからの流出成分をガスクロマトグラフに
より分析し、各異性体の吸着容量をパルス回数と
して測定した。このような方法から求めた試料の
ヘキサン異性体吸着容量(2,2―ジメチルブタ
ン/3―メチルペンタン/n―ヘキサンの吸着パ
ルス数)は0―7―19であつた。 酸性質測定: 1gのH―ZSM―5型ゼオライトを10-4Torr、
450℃の条件下で2時間真空排気処理した後、100
℃まで試料温度を下げ、続いてNH3ガスを14〜
16Torrで試料中に導入し1時間保持した。つい
で同一温度で1時間真空(10-4Torr)排気した
後、昇温速度5℃/分で600℃までプログラム昇
温し、各温度におけるNH3脱離量を測定し、100
〜600℃間のNH3脱離量の差を全酸量とした。こ
のような方法で求められた試料H―ZSM―5型
ゼオライトの脱酸量は0.29meq/gであつた。 H―ZSM―5型ゼオライト結晶のバルクの化学
組成(SiO2/Al2O3): 試料300mgを47%HF2mlに溶解し、原子吸光光
度法によりSiとAlの濃度を求め、バルクの
SiO2/Al2O3比を算出した。このような方法で求
められた試料の実側SiO2/Al2O3比は271であつ
た。 参考例 2 本例は出発原料混合物中の仕込みH2O/SiO2
比が10.6であることを結晶化時間が7日間である
こと以外は参考例1と同等の合成条件でZSM―
5型ゼオライトの結晶化を行つた。得られた生成
物は0.3μm程度の微結晶ZSM―5型ゼオライトで
あつた。また、このもののH―ZSM―5型ゼオ
ライトへの活性化は、1M NH4NO3の代りに
0.6N HClを使用した以外は参考例1と同じ方法
で行つた。この活性比ZSM―5型ゼオライト触
媒のBET比表面積、ヘキサン異性体吸着容量、
全酸量はそれぞれ306.1m2/g、0―7―21であつ
た。 参考例 3 本例は結晶化時間が8日間である以外はZSM
―5型ゼオライトの合成条件も活性化処理条件も
参考例2と同じである。得られた生成物は0.3μm
程度の微結晶ZSM―5型ゼオライトであつた。
また、このZSM―5型ゼオライトのBET比表面
積、ヘキサン異性体吸着容量、脱酸量、実測
SiO2/Al2O3比はそれぞれ310.7m2/g、0―7―
21、0.24meq/g、466であつた。 参考例 4 本例は結晶化時間が9日間であつた以外は
ZSM―5型ゼオライトの合成条件も活性化処理
条件も参考例2と同じである。得られた生成物は
0.3μmの微結晶ZSM―5型ゼオライトであつた。
また、このH―ZSM―5型ゼオライトのBET比
表面積、ヘキサン異性体吸着容量、全酸量はそれ
ぞれ313.3m2/g、0―9―23、0.28meq/gであ
つた。 参考例 5 本例は結晶化時間が13日間であつた以外は
ZSM―5型ゼオライトの合成条件も活性化処理
条件も参考例2と同じである。得られた生成物は
0.3μm程度の微結晶ZSM―5型ゼオライトであつ
た。またこのH―ZSM―5型ゼオライトのBET
比表面積、ヘキサン異性体吸着容量、全酸量はそ
れぞれ335.0m2/g、0―7―21、0.23meq/gで
あつた。 参考例 6 本例は出発原料混合物の仕込みH2O/SiO2
が20、結晶化時間が6日間である以外はZSM―
5型ゼオライトの合成条件も活性化処理条件も参
考例2と同じである。得られた生成物は0.6μm程
度の微結晶ZSM―5型ゼオライトであつた。ま
た、H―ZSM―5型ゼオライトのBET比表面積、
ヘキサン異性体吸着容量、全酸量はそれぞれ
412.5m2/g、0―9―23、0.24meq/gであつた。 参考例 7 本例は結晶化時間が8時間である以外はZSM
―5型ゼオライトの合成条件も活性化処理条件も
参考例6と同じである。得られた生成物は0.6μm
程度の微結晶ZSM―5型ゼオライトであつた。
またこのH―ZSM―5型ゼオライトのBET比表
面積、ヘキサン異性体吸着容量、全酸量はそれぞ
れ309.3m2/g、0―7―19、0.24meq/gであつ
た。 参考例 8 本例は仕込みSiO2/Al2O3比が500である以外
はZSM―5型ゼオライトの合成条件も活性化処
理条件も参考例3と同じである。得られた生成物
は0.3μm程度の微結晶ZSM―5型ゼオライトであ
つた。またこのH―ZSM―5型ゼオライトの
BET比表面積、ヘキサン異性体吸着容量、全酸
量はそれぞれ289.5m2/g、0―7―20、
0.23meq/gであつた。 参考例 9 本例では仕込みSiO2/Al2O3比が800、H2O/
Si比が8である以外はZSM―5型ゼオライトの
合成条件も活性化処理条件も参考例3と同じであ
る。得られた生成物は0.2μm程度の微結晶ZSM―
5型ゼオライトであつた。またこのH―ZSM―
5型ゼオライトのBET比表面積、ヘキサン異性
体吸着容量、全酸量、実測SiO2/Al2O3比はそれ
ぞれ359.4m2/g、0―9―27、0.185meq/gであ
つた。 参考例 10 本例では仕込みH2O/SiO2比が10.6である以外
はZSM―5型ゼオライトの合成条件も活性化処
理条件も参考例9と同じである。得られた生成物
は0.3μm程度の微結晶ZSM―5型ゼオライトであ
つた。(また、H―ZSM―5型ゼオライトのBET
比表面積、ヘキサン異性体吸着容量、全酸量、実
測SiO2/Al2O3比はそれぞれ315.7m2/g、0―9
―23、0.155meq/g、874であつた。 参考例 11 本例はイオン交換溶液に0.6N HClを用いる代
りに温6N HClを用いた以外はZSM―5型ゼオラ
イトの合成条件も活性化処理条件も参考例3と同
じである。得られた生成物は0.3μm程度の微結晶
ZSM―5型ゼオライトであつた。また、この
ZSM―5型ゼオライトのBET比表面積、ヘキサ
ン異性体吸着容量、全酸量、実測SiO2/Al2O3
はそれぞれ261.1m2/g、0―7―19、0.20meq/
g、478であつた。 参考例 12 本例は参考例11で活性化処理することによつて
得られたZSM―5型ゼオライトの5gを500mlの
1M―Ca(OCOCH32水溶液に含浸し、100℃の湯
浴上で1時間還流加熱を行つた後、得られた生成
物を真空アスピレータを使つて濾別し100℃で乾
燥した。このCa含有ZSM―5型ゼオライト触媒
中の実測Ca量は0.214wt%であり、またBET比表
面積、ヘキサン異性体吸着容量、全酸量、実測
SiO2/Al2O3比はそれぞれ256.7m2/g、0―7―
21、0.20meq/g、557であつた。 参考例 13 本例は出発原料混合物に積極的にAl2O3源を加
えなかつたことと、結晶化時間が12日間である以
外は合成条件も活性化処理条件も、参考例2と同
じである。得られた生成物は0.3μm程度の微結晶
シリカライトであつた。またこのH―シリカライ
トのBET比表面積、ヘキサン異性体吸着容量、
全酸量はそれぞれ324m2/g、0―7―21、
0.107meq/gであつた。 参考例 14 参考例1〜13で得られたZSM―5型ゼオライ
ト、Ca―ZSM―5型ゼオライト、H―シリカラ
イト型ゼオライトを触媒(それぞれ参考例の番号
にしたがつて試料番号1〜13と以降呼ぶことにす
る)として用い、固定床常圧下流通方式でメタノ
ール転化反応試験を行つた。反応条件は次のよう
である。メタノール分圧が0.5気圧になるように
アルゴンで希釈した原料をメタノール換算LHSV
=2h-1で触媒2mlを含む触媒層に通した。反応温
度は320℃から開始し、2時間おきに340℃、360
℃、400℃、440℃、500℃、560℃、600℃に設定
し、各温度下での生成物分布をガスクロマトグラ
フで分析した。表―1には低級オレフインの収率
が高くなる反応温度500℃から600℃の間の各触媒
によるメタノール転化率、有効転化率、各生成物
の選択率を炭素基準%で表わした。これらの結果
から明らかなように、本発明で合成されたZSM
―5型ゼオライト触媒(Ca含有ZSM―5型ゼオ
ライト、H―シリカライトも含めて)は、550℃
近傍の反応温度を越えても高温劣化現象をほとん
ど伴わず、低級オレフインの収率は、より高温の
600℃の反応温度下でむしろ向上している場合が
多い。従つて、高温劣化を起こすことなく高収率
で低級オレフインをメタノール及び/又はジメチ
ルエーテルから製造するためには、本発明の方法
で合成されるサブミクロンオーダー以下の微小粒
子をもつZSM―5型ゼオライトを触媒として用
いる方が後述する比較例で得られるZSM―5型
ゼオライトを触媒とするよりも有利であると結論
される。 なお、表―1及び以下において示した次の事項
の意味は下記の通りである。 有効転化率:メタノール転化物の中、ジメチル
エーテルを除く炭素質生成物の炭
素基準収率 選択率(%):有効転化生成物中の各生成物の炭
素基準選択率 C―%:炭素基準で表わした% C2′+C3′:エチレン+プロピレンの合計収率 C2′+C4′:エチレン+プロピレン+ブテンの合
計収率 C2′ :エチレン C2 :エタン C3′ :プロピレン C3 :プロパン C4′ :ブテン i―C4:イソブタン n―C4:n―ブタン C5′ :ペンテン C5 :ペンタン 実施例 1 参考例9で得られたH―ZSM―5型ゼオライ
トの5gを500mlの1M NH4H2PO4水溶液に含浸
し、100℃の湯浴上で1時間還流加熱を行つた後、
ただちに生成物を真空アスピレーターを使つて濾
別し、100℃で乾燥した。このようにして得られ
たP―ZSM―型ゼオライトをさらに500℃で20時
間焼成を行つて活性なP―ZSM―5型ゼオライ
トゼオライト触媒を得た。この試料のP含有量、
BET比表面積、ヘキサン異性体吸着容量、全酸
量、実測SiO2/Al2O3比はそれぞれ0.668wt%、
338.3m2/g、0―9―23、0.24meq/g、872であ
つた。次いで、この試料2mlを常圧流通式固定床
メタノール転化反応用石英反応管に詰め、メタノ
ール/アルゴン比=1:1、メタノール換算
LHSV=2h-1、反応温度550℃の反応条件下で触
媒寿命試験を行つた。その結果、表―2に示され
るようにメタノールの炭化水素への有効転化率は
131時間もの間ほぼ100%(炭素基準)の値を維持
し、131時間目の(C2′+C3′)の収率は50.38、
C2′〜C4′の収率は62.02%(炭素基準)を維持し
ていた。また113時間目まで(C2′〜C4′)収率は
モービルオイル社の特許明細書(Ger、Pat.、
2935863)に明示されている最高収率70.1wt%を
上廻る71.30wt%(炭素基準換算では71.49%)以
上を維持しており、本発明の触媒は高温劣化に強
い高選択性触媒であることがわかる。
【表】
【表】
【表】
【表】 実施例 2 参考例10で得られた微結晶H―ZSM―5型ゼ
オライト触媒について、実施例1と同一のメタノ
ール転化反応条件下で触媒寿命試験を行つた。そ
の結果は、実施例1のP含有ZSM―5型ゼオラ
イトの反応結果と比べると、(C2′+C3′)の選択
率の経時変化は121時間後もほぼ100%を維持して
おり、従つて、サブミクロンオーダー以下の微結
晶集合体であるH―ZSM―5型ゼオライト触媒
は高温劣化に強いことがわかる。また比較のため
に、ミクロンオーダーの粒子径サイズをもつH―
ZSM―5型ゼオライト触媒(比較例1のゼオラ
イト試料番号6′)についても同様のメタノール転
化反応寿命試験を行つたところ、この場合には、
反応時間が20時間を超えると、急速な活性劣化現
象が見られた。 比較例 1 比較のために、種々のH―ZSM―5型ゼオラ
イト触媒(試料番号1′〜8′)を表―4に示す合成
条件で合成した。このH―ZSM―5型ゼオライ
トの触媒物性は表―3に示される通りである。試
料番号1′〜4′はオートクレーブを用いて水熱合成
したものであるのに対し、試料番号5′〜8′は常圧
下還流撹拌加熱方式で合成したものである。な
お、活性処理は参考例2に準じて行つた。また、
表―4にはこれら各触媒のメタノール転化反応を
実施例1に基いて行つた結果を示した。表―3と
表―4の結果から明らかなように、一般に結晶粒
子径が大きいものほど高温劣化が起こり易いこ
と、オートクレーダ法で合成したH―ZSM―5
型ゼオライト触媒は550近傍の反応温度を越える
と急激な劣化現象が見られること、また常圧下還
流加熱方式で合成したH―ZSM―5型ゼオライ
ト触媒はたとえ結晶粒子が小さくても結晶化時間
が本発明で規定した範囲から逸脱するとやはり高
温劣化が起こることがわかる。
【表】
【表】
【表】 ルの粒子径を記載した。
【表】
【表】

Claims (1)

  1. 【特許請求の範囲】 1 メタノール及び/又はジメチルエーテルを触
    媒の存在下で加熱反応させて低級オレフインを製
    造するに際し、該触媒として、シリカ源、アルミ
    ナ源、アルカリ源及び第4級アルキルアンモニウ
    ム塩を含有する水性溶液を、シリカ源と水のモル
    比H2O/SiO2を5〜20の範囲に規定し、かつ6
    日〜13日間常圧下で加熱還流して得られた微結晶
    ZSM―5型ゼオライトを用いることを特徴とす
    る低級オレフインの製造方法。 2 メタノール及び/又はジメチルエーテルを触
    媒の存在下で加熱反応させて低級オレフインを製
    造するに際し、該触媒として、シリカ源、アルカ
    リ源及び第4級アルキルアンモニウム塩を含有す
    る溶液を、シリカ源と水のモル比H2O/SiO2
    5〜20の範囲に規定し、かつ6日〜13日間加熱還
    流することによつて得られた微結晶ZSM―5型
    ゼオライト(シリカライトを含む)を用いること
    を特徴とする低級オレフインの製造方法。
JP59105538A 1984-05-24 1984-05-24 低級オレフインの製造方法 Granted JPS60248630A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59105538A JPS60248630A (ja) 1984-05-24 1984-05-24 低級オレフインの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59105538A JPS60248630A (ja) 1984-05-24 1984-05-24 低級オレフインの製造方法

Publications (2)

Publication Number Publication Date
JPS60248630A JPS60248630A (ja) 1985-12-09
JPS632937B2 true JPS632937B2 (ja) 1988-01-21

Family

ID=14410361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59105538A Granted JPS60248630A (ja) 1984-05-24 1984-05-24 低級オレフインの製造方法

Country Status (1)

Country Link
JP (1) JPS60248630A (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6180550B1 (en) * 1998-12-22 2001-01-30 Mobile Oil Corporation Small crystal ZSM-5, its synthesis and use
US20100168491A1 (en) * 2006-01-21 2010-07-01 Masakazu Iwamoto Catalyst and method of producing olefins using the catalyst
JP4951263B2 (ja) * 2006-04-05 2012-06-13 出光興産株式会社 オレフィン類の製造方法
WO2009054306A1 (ja) * 2007-10-23 2009-04-30 Idemitsu Kosan Co., Ltd. 軽質オレフィン類製造用触媒及び軽質オレフィン類の製造方法
JP5354976B2 (ja) * 2007-10-23 2013-11-27 出光興産株式会社 軽質オレフィン類製造用触媒及び軽質オレフィン類の製造方法
JP2009255014A (ja) * 2008-04-21 2009-11-05 Mitsubishi Chemicals Corp メタノールからオレフィンを製造するための触媒
JP2010042343A (ja) * 2008-08-12 2010-02-25 National Institute Of Advanced Industrial & Technology 低級オレフィン製造用触媒、その製造方法及びこれを用いた低級オレフィンの製造方法

Also Published As

Publication number Publication date
JPS60248630A (ja) 1985-12-09

Similar Documents

Publication Publication Date Title
JP4782285B2 (ja) Zsm−5構造の合成多孔質結晶物質及びこれを用いた炭化水素転化方法
US7164052B2 (en) Catalytic composition for the aromatization of hydrocarbons
JPS6052084B2 (ja) アルミニウムの存在しない外殻を有する結晶性ゼオライト
JP5588973B2 (ja) 結晶質メタロシリケートの製造方法
US5126502A (en) Process for dehydrogenation of C2 -C10 paraffin to yield alkene product
EP0400987B1 (en) Process for the production of high-octane gasoline blending stock
EA007767B1 (ru) Производство олефинов
DK152574B (da) Silicaholdigt materiale, fremstilling af dette materiale og fremstilling af hydrocarboner katalysesret dermed
JPH024526B2 (ja)
JP2005138000A (ja) 触媒及び該触媒の調製方法並びに該触媒を用いた低級炭化水素の製造方法
JPS5914407B2 (ja) ゼオライトzsm−34及びそれを使用した転化法
JPS6115848A (ja) リン酸カルシウム変性ゼオライト型触媒による低級オレフインの製造方法
JP2559066B2 (ja) 結晶性シリケートzsm−11の合成法
JPH043366B2 (ja)
JPS632937B2 (ja)
EP0152485A1 (en) Binder-free zeolite catalyst, process for its preparation, and catalytic reaction using same
US4299686A (en) Shape selective catalyst from zeolite alpha and use thereof
JPS5953213B2 (ja) アルカリ金属の不在におけるzsm↓−5型ゼオライトの製法
JPH0446893B2 (ja)
KR101052136B1 (ko) 도핑된 반응물질을 사용한 도핑된 펜타실형 제올라이트의제조 방법
JPS61289049A (ja) プロピレンの製造方法
US4926006A (en) Aluminoborosilicate containing alkaline earth metal, a method for the preparation thereof and a method for the catalytic preparation of a lower olefin therewith
JPH0674134B2 (ja) アルカリ土類金属含有アルミノホスホシリケ−ト,その製造方法およびそれを触媒とする低級オレフィンの製造方法
US5208201A (en) Chemical process and catalyst
JPS61200928A (ja) 低級オレフインの製造方法

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term