JPS63281204A - Production of base material for magnetic head core - Google Patents

Production of base material for magnetic head core

Info

Publication number
JPS63281204A
JPS63281204A JP11756887A JP11756887A JPS63281204A JP S63281204 A JPS63281204 A JP S63281204A JP 11756887 A JP11756887 A JP 11756887A JP 11756887 A JP11756887 A JP 11756887A JP S63281204 A JPS63281204 A JP S63281204A
Authority
JP
Japan
Prior art keywords
film
substrate
films
soft magnetic
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11756887A
Other languages
Japanese (ja)
Other versions
JPH0554166B2 (en
Inventor
Kumio Nako
久美男 名古
Masaji Michijima
道嶋 正司
Tatsushi Yamamoto
達志 山本
▲かど▼野 勝
Masaru Kadono
Tetsuo Muramatsu
哲郎 村松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP11756887A priority Critical patent/JPS63281204A/en
Publication of JPS63281204A publication Critical patent/JPS63281204A/en
Publication of JPH0554166B2 publication Critical patent/JPH0554166B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Magnetic Heads (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To suppress the deflection amt. of a substrate on which films are formed by dividing a process for forming alloy films to >=2 processes and subjecting the films to a heat treatment at 300-800 deg.C after the respective processes for the film formation. CONSTITUTION:The base material for a magnetic head core is formed by repeating the operations consisting in subjecting the soft magnetic film having the thickness below a desired film thickness to the heat treatment to relieve stresses after formation of said film and forming the soft magnetic film having the thickness below the desired film thickness further onto the heat-treated soft magnetic film and subjecting the film to the heat treatment in succession thereto at the time of forming the thick soft magnetic films having the physical coeffts. different from the physical coeffts. of the substrate consisting of a brittle material onto said substrate. Namely, the films consisting of the soft magnetic materials are deposited on the substrate consisting of the brittle material by dividing the stage to plural stages without depositing the soft magnetic films at one time on the substrate and further, the films are subjected to the heat treatments at 300-800 deg.C in every stage and, therefore, the mismatching with the underlying layers by thermal stresses, etc., is relieved in the stage of a relatively thin film thickness. The degree of the adhesion of the soft magnetic films attaining the desired film thickness as a whole to the brittle substrate is thereby increased and the breakdown of the brittle substrate and the deflection amt. of the substrate on which the films are formed are suppressed.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は磁気ヘッドコア基材の製造方法に関し、真空蒸
着法、スパッタリング法等の薄膜作成技術を用いて形成
する厚膜磁気ヘッドコアの製造方法に関するものである
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for manufacturing a magnetic head core base material, and more particularly, to a method for manufacturing a thick film magnetic head core formed using a thin film forming technique such as a vacuum evaporation method or a sputtering method. It is something.

(従来の技術) 近年、磁気記録技術の分野において、記録密度の増大を
求める要求が強まっている。磁気記録の高密度化のひと
つの方法として、磁気テープとしては、磁気エネルギー
の大きいメタルチーブあるいは自己減磁の小さい蒸着テ
ープが使用されようとしており、他方磁気ヘッド側では
コア材料として高飽和磁束密度、高透磁率を有する材料
の開発が進められている0 このようなコア材料としては、フェライトでは飽和磁束
密度に限界があるため、合金系材料あるいはアモルファ
ス合金材料が適している。Fe −5i−At系合金は
、Si9.5wt%、At5.5wt%、残部Feの組
成を中心として高透磁率、高飽和磁束密度を有すること
は良く仰られている。
(Prior Art) In recent years, in the field of magnetic recording technology, there has been an increasing demand for increased recording density. One way to increase the density of magnetic recording is to use a metal tube with high magnetic energy or a vapor-deposited tape with low self-demagnetization as the magnetic tape, while on the magnetic head side, the core material is high saturation magnetic flux density, The development of materials with high magnetic permeability is progressing. Since ferrite has a limit in saturation magnetic flux density, alloy materials or amorphous alloy materials are suitable as such core materials. It is well said that the Fe-5i-At alloy has a high magnetic permeability and a high saturation magnetic flux density mainly due to its composition of 9.5 wt% Si, 5.5 wt% At, and the balance Fe.

磁気ヘッドコアの作成において、合金系材料の透磁率の
周波数依存性を考えると、渦電流損失にエフ、高周波帯
域で透磁率は減衰する。そこで高周波帯域で高透磁率を
得るためには、渦電流損失を考慮した数ミクロンの軟磁
性材料と非磁性材料とを交互に積層したコア材料が要求
される。しか−し、この積層型コア材料をバルク状態か
ら作成することは、軟磁性材料の厚み及び磁性層と非磁
性層との接合性が悪い等の点から困難である。また、再
生感度の点からトラック幅は数十ミクロン要求される。
When creating a magnetic head core, considering the frequency dependence of the magnetic permeability of alloy materials, the magnetic permeability attenuates in the high frequency band due to eddy current loss. Therefore, in order to obtain high magnetic permeability in a high frequency band, a core material is required in which soft magnetic material and nonmagnetic material of several microns are alternately laminated in consideration of eddy current loss. However, it is difficult to produce this laminated core material from a bulk state due to the thickness of the soft magnetic material and poor bonding properties between the magnetic layer and the nonmagnetic layer. Further, from the viewpoint of reproduction sensitivity, the track width is required to be several tens of microns.

そこで真空蒸着法等の薄膜作成技術を駆使することによ
り、脆性材料基板上に軟磁性膜の厚膜を形成した磁気ヘ
ッドコア基材が求めちれている。
Therefore, there is a strong demand for a magnetic head core base material in which a thick soft magnetic film is formed on a brittle material substrate by making full use of thin film forming techniques such as vacuum evaporation.

(発明が解決しようとする問題点) しかしながら、脆性材料であるセラミックス基板とその
上に形成した軟磁性膜とでは物性係数、すなわち弾性係
数、熱膨張係数等が異なるため、接合界面の弾性歪みの
不適合にLv1均質材料では見られない応力集中が接合
界面のエツジ部や界面亀裂の先端部に発生し、膜の内部
応力が基板材料の破壊強度に至らなくても、異相界面領
域の破壊が進行し、界面に沿う基板内で破壊が生じ、脆
性材料基板上への厚膜形成を困難にしていた。また厚膜
が厚くなると膜の内部応力が変わらなくても、膜の全応
力が大きくなり、成膜済基板のたわみ量が大きくなり、
以降の磁気ヘッド加工工程を困難にしている。
(Problems to be Solved by the Invention) However, the physical coefficients, such as elastic coefficients and thermal expansion coefficients, differ between the ceramic substrate, which is a brittle material, and the soft magnetic film formed thereon. Due to the incompatibility, stress concentration that is not seen in Lv1 homogeneous materials occurs at the edges of the bonding interface and at the tips of interfacial cracks, and even if the internal stress of the film does not reach the fracture strength of the substrate material, fracture at the heterophase interface region progresses. However, fracture occurred within the substrate along the interface, making it difficult to form a thick film on a brittle material substrate. Furthermore, as the film becomes thicker, even if the internal stress of the film does not change, the total stress of the film increases, and the amount of deflection of the substrate on which the film has been deposited increases.
This makes the subsequent magnetic head manufacturing process difficult.

(問題点を解決するための手段) 本発明は脆性材料基板上に該脆性材料基板と物性係数の
異なる軟磁性膜の厚膜を形成する際、所望膜厚以下の膜
厚を有する軟磁性膜を成膜後、熱処理を施して、応力緩
和し、該熱処理さnた軟磁性膜上に更に所望膜厚以下の
膜厚を有する軟磁性膜を成膜し、続いて熱処理をする操
作を繰返して磁気ヘッドコア基材を作成する。
(Means for Solving the Problems) The present invention provides a method for forming a thick film of a soft magnetic film having a physical property coefficient different from that of the brittle material substrate on a brittle material substrate. After forming the film, heat treatment is performed to relieve stress, and a soft magnetic film having a thickness less than the desired film thickness is further formed on the heat-treated soft magnetic film, and then heat treatment is repeated. to create a magnetic head core base material.

(作用) 脆性材料基材上に一度に軟磁性膜を堆積させることなく
、複数工程に分割して軟磁性材料による膜を堆積させ、
更に各工程毎に熱処理を施こすため、比較的薄い膜厚の
段階で下地層との熱応力等による不整合が緩和され、全
体として所望膜厚に達した軟磁性膜は脆性基板に対して
接合度が増し、脆性基板の破壊及び成膜済基板のたわみ
量を抑制する。
(Function) Instead of depositing a soft magnetic film on a brittle material base material all at once, a film made of a soft magnetic material is deposited in multiple steps,
Furthermore, since heat treatment is performed at each step, mismatches due to thermal stress with the underlying layer are alleviated at the stage of relatively thin film thickness, and when the soft magnetic film reaches the desired film thickness as a whole, it is able to withstand the brittle substrate. The degree of bonding increases, suppressing the destruction of brittle substrates and the amount of deflection of film-formed substrates.

(実施例) 以下、本発明を実施例に基づいて詳細に説明する0 第1図は、異相界面を有する成膜済基板の構造を示して
いる。同図において例えば結晶化ガラス基板からなる脆
性材料基板1の表面上に例えば20μmの厚みのFe−
Si−At系合金膜2を電子ビーム蒸着法により形成し
たものである。上記20μmの厚みのFe−5i−At
系合金膜2を形成する際、脆性材料基板1上にまず51
μmの厚みの合金膜21を成膜後、真空中600℃5時
間の熱処理を施して、応力緩和し、該熱処理済の合金膜
2.上に更に5μm厚の同じ組成の合金膜2゜を形成す
る。該合金膜22についても同様に熱処理により応力緩
和する。この工うな成膜と熱処理を施す操作を4回繰り
返すことに工920μm厚のFe−5i−At合金膜2
を形成した。このときの各操作における膜厚に対する膜
の内部応力及び膜厚と膜の全応力の関係図を各々第2図
、第3図に示す。
(Example) Hereinafter, the present invention will be described in detail based on an example. FIG. 1 shows the structure of a film-formed substrate having a different phase interface. In the same figure, a Fe-
A Si--At alloy film 2 is formed by electron beam evaporation. The above 20 μm thick Fe-5i-At
When forming the alloy film 2, first 51 is applied on the brittle material substrate 1.
After forming the alloy film 21 with a thickness of μm, it is heat-treated in vacuum at 600° C. for 5 hours to relax the stress, and the heat-treated alloy film 2. An alloy film 2° having the same composition and having a thickness of 5 μm is further formed on top. The stress of the alloy film 22 is similarly relaxed by heat treatment. This process of film formation and heat treatment was repeated four times.
was formed. The relationships between the internal stress of the film and the film thickness and the total stress of the film in each operation at this time are shown in FIGS. 2 and 3, respectively.

比較実験として5μm、10μm、15μm、20μm
の各厚みのFe−5t−At合金膜を電子ビーム蒸着法
に、Cジ第1図と同じ脆性材料基板上に形成し、各々真
空中600℃5時間熱処理を施したときの成膜時及び熱
処理後の膜厚に対する膜の内部応力及び膜厚と膜の全応
力の関係を調べた。その結果を各々第4図、第5図に示
す。
As a comparative experiment, 5μm, 10μm, 15μm, 20μm
Fe-5t-At alloy films of various thicknesses were formed by electron beam evaporation on the same brittle material substrate as shown in Fig. 1, and heat treated in vacuum at 600°C for 5 hours. The relationship between the internal stress of the film and the film thickness and the total stress of the film after heat treatment was investigated. The results are shown in FIGS. 4 and 5, respectively.

第2図と第4図及び第3図と第5図とを比較してみると
、Fe−5i−At系合金膜を20μm形成した後の内
部応力及び全応力は、本実施例の如く成膜途中に熱処理
を施こしながら行った場合には、内部応力が1.5X1
0  dVne/crit、全応力が3×106dyn
e/dの値を示し、途中熱処理を施さなかった場合と比
べ、内部応力、全応力ともに約63%減少していること
が判る。また第5図に示す様に、膜厚20μm迄作成す
る際の全応力の最大値は、膜厚20μm成膜時の全応力
で、8.4XIOd’lne/caの大きな値を示して
いるが、第3図に示す本実施例の方法によれば全応力の
最大値は膜厚20μm成膜時の4.6X10 dyne
/−であり、本実施例のものは約63%減少している。
Comparing Figures 2 and 4, and Figures 3 and 5, the internal stress and total stress after forming the Fe-5i-At alloy film of 20 μm are If heat treatment is performed during the film, the internal stress will be 1.5X1.
0 dVne/crit, total stress is 3 x 106 dyn
The value of e/d is shown, and it can be seen that both the internal stress and the total stress are reduced by about 63% compared to the case where no heat treatment was performed during the process. Furthermore, as shown in Figure 5, the maximum value of the total stress when forming a film up to a thickness of 20 μm is a large value of 8.4XIOd'lne/ca. According to the method of this embodiment shown in FIG.
/-, which is a decrease of about 63% in this example.

(他の実施例) 前記実験において、脆性材料基板上に5μmの厚みのF
e−5i−Al系合金膜を成膜後、S t 02 。
(Other Examples) In the above experiment, a 5 μm thick F was deposited on a brittle material substrate.
After forming the e-5i-Al alloy film, S t 02 .

At203.sic等の非磁性材料を500〜3000
Aの範囲で成膜後真空中600℃5時間の熱処理を施し
、該非磁性膜上に更に5μm厚みの合金膜及び非磁性膜
を500〜3000A形成し、該熱処理を施す操作を4
回繰り返すことにより、全体として20μm厚のFe−
5i−At系合金膜からなるコア材料を作成した場合で
も膜厚と膜の応力及び全応力の関係図は同じであった。
At203. 500 to 3000 non-magnetic materials such as SIC
After film formation in the range A, heat treatment is performed at 600°C for 5 hours in vacuum, and an alloy film and a nonmagnetic film with a thickness of 5 μm are further formed on the nonmagnetic film at 500 to 3000A, and the heat treatment is performed in step 4.
By repeating the process several times, a total of 20 μm thick Fe-
Even when a core material made of a 5i-At alloy film was created, the relationship between film thickness, film stress, and total stress was the same.

即ち20μm膜厚のFe−5i−At系合金膜を成膜す
る際に、途中に挿入する熱処理によって成膜工程を分割
する際、更に形成したFe−5i −A1合金膜上に薄
い非磁性膜を介挿して磁気ヘッドコア基板を形成する。
That is, when forming a 20 μm thick Fe-5i-At alloy film, when dividing the film-forming process by inserting heat treatment in the middle, a thin non-magnetic film is added on top of the formed Fe-5i-A1 alloy film. is inserted to form a magnetic head core substrate.

このように非磁性膜を介挿しても途中に熱処理を施こす
ことに、Cジ応力関係は損われない。
Even if a non-magnetic film is inserted in this way, the C-stress relationship is not impaired even if heat treatment is performed midway.

上記実施例のような非磁性膜を介挿した磁気ヘッドコア
基板では、脆性材料基板上に該Fe−5i−At合金膜
を成膜する場合の基板材料の破壊及び膜の剥離を生ずる
しきい値の全応力に達する膜厚が高膜厚側に移行する。
In the magnetic head core substrate in which a nonmagnetic film is inserted as in the above embodiment, the threshold value that causes destruction of the substrate material and film peeling when the Fe-5i-At alloy film is formed on a brittle material substrate is The film thickness that reaches the total stress shifts to the high film thickness side.

このことは例えば第6図に示す様な軟磁性膜(Fe−5
i−At系合金膜)4が非磁性基板3で挾持され、軟磁
性膜4の膜厚がトラック幅となる形態の磁気ヘッドにお
いて、形成し得るトラック幅を増大させることが可能と
なることを示している。
This is true, for example, for a soft magnetic film (Fe-5) as shown in Figure 6.
In a magnetic head in which an i-At alloy film) 4 is held between non-magnetic substrates 3 and the thickness of the soft magnetic film 4 corresponds to the track width, it is possible to increase the track width that can be formed. It shows.

(発明の効果) 以上詳細に説明した如く、所望膜厚以下の膜厚を有する
Fe−5i−At系合金膜を成膜して、熱死【 理を施し該熱処理後の膜上に更に膜島形成し熱処理を施
す操作を繰り返して所望膜厚の厚膜を形成することに、
cv、基板と膜との物性係数の不一致が余り問題になら
ず、基板の選択範囲が広がり熱応力逆磁歪効果による磁
気特性劣化が抑えられ、コアの磁気特性劣化を防止し、
ひいては磁気ヘッドの効率改善を図ることができる。ま
た、Fe−5i−At系合金膜の内部応力及び全応力が
減少するから磁気ヘッド加工工程が容易になり、磁気ヘ
ッドの生産性が図れると共に、トラック幅を増大させる
ことが可能となる。
(Effects of the Invention) As explained in detail above, a Fe-5i-At based alloy film having a thickness equal to or less than a desired film thickness is formed, heat death treatment is performed, and an additional film is formed on the film after the heat treatment. By repeating the operations of forming islands and applying heat treatment to form a thick film of the desired thickness,
cv, the discrepancy in physical property coefficients between the substrate and the film becomes less of a problem, the range of substrate selection is expanded, magnetic property deterioration due to thermal stress inverse magnetostrictive effect is suppressed, and magnetic property deterioration of the core is prevented.
As a result, the efficiency of the magnetic head can be improved. Furthermore, since the internal stress and total stress of the Fe-5i-At alloy film are reduced, the magnetic head processing process becomes easier, the productivity of the magnetic head can be improved, and the track width can be increased.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例による異相界面を有する成膜
済基板の構造図、第2図は同実施例によるFe−5t−
At系合金膜の膜厚と内部応力との関係図、第3図は同
実施例によるFe−5i−At系合金膜の膜厚と全応力
との関係図、第4図は従来のFe−5i−At系合金膜
の形成方法による膜厚と応力との関係図、第5図は従来
のFe−5i−At系合金膜の形成方法による膜厚と全
応力との関係図、第6図は軟磁性膜が非磁性材料で挾持
された形態の磁気ヘッドの斜視図である。 1・・・脆性材料基板、2・・・Fe−5i−At系合
金膜、3・・・非磁性材料、4・・・軟磁性膜。 代理人 弁理士 杉 山 毅 至 (他1名)膜厚−m
) XIO’ 第6図
FIG. 1 is a structural diagram of a film-formed substrate having a different phase interface according to an embodiment of the present invention, and FIG. 2 is a structural diagram of a Fe-5t-
FIG. 3 is a diagram showing the relationship between the thickness of the At-based alloy film and the internal stress. FIG. 3 is a diagram showing the relationship between the thickness and total stress of the Fe-5i-At-based alloy film according to the same example. FIG. Figure 5 is a diagram showing the relationship between film thickness and stress according to the method for forming a 5i-At alloy film, and Figure 6 is a diagram showing the relationship between film thickness and total stress according to the conventional method for forming a Fe-5i-At alloy film. FIG. 2 is a perspective view of a magnetic head in which a soft magnetic film is sandwiched between nonmagnetic materials. DESCRIPTION OF SYMBOLS 1... Brittle material substrate, 2... Fe-5i-At type alloy film, 3... Nonmagnetic material, 4... Soft magnetic film. Agent Patent attorney Takeshi Sugiyama (1 other person) Film thickness - m
) XIO' Figure 6

Claims (1)

【特許請求の範囲】[Claims] (1)脆性材料基板上にFe−Si−Al系合金膜の厚
膜を形成する工程において 前記合金膜形成の過程を2分割以上に分割し、各々の膜
形成過程の後、300℃〜800℃で熱処理を施すこと
を特徴とする磁気ヘッドコア基材の製造方法。
(1) In the process of forming a thick Fe-Si-Al alloy film on a brittle material substrate, the process of forming the alloy film is divided into two or more, and after each film forming process, A method for producing a magnetic head core base material, the method comprising performing heat treatment at ℃.
JP11756887A 1987-05-13 1987-05-13 Production of base material for magnetic head core Granted JPS63281204A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11756887A JPS63281204A (en) 1987-05-13 1987-05-13 Production of base material for magnetic head core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11756887A JPS63281204A (en) 1987-05-13 1987-05-13 Production of base material for magnetic head core

Publications (2)

Publication Number Publication Date
JPS63281204A true JPS63281204A (en) 1988-11-17
JPH0554166B2 JPH0554166B2 (en) 1993-08-11

Family

ID=14715038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11756887A Granted JPS63281204A (en) 1987-05-13 1987-05-13 Production of base material for magnetic head core

Country Status (1)

Country Link
JP (1) JPS63281204A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5413864A (en) * 1990-07-05 1995-05-09 Asahi Glass Company Ltd. Low emissivity film
US5419969A (en) * 1990-07-05 1995-05-30 Asahi Glass Company Ltd. Low emissivity film
US5532062A (en) * 1990-07-05 1996-07-02 Asahi Glass Company Ltd. Low emissivity film

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5413864A (en) * 1990-07-05 1995-05-09 Asahi Glass Company Ltd. Low emissivity film
US5419969A (en) * 1990-07-05 1995-05-30 Asahi Glass Company Ltd. Low emissivity film
EP0698585A1 (en) * 1990-07-05 1996-02-28 Asahi Glass Company Ltd. A low emissivity film
US5532062A (en) * 1990-07-05 1996-07-02 Asahi Glass Company Ltd. Low emissivity film
USRE37446E1 (en) 1990-07-05 2001-11-13 Asahi Glass Company Ltd. Low emissivity film

Also Published As

Publication number Publication date
JPH0554166B2 (en) 1993-08-11

Similar Documents

Publication Publication Date Title
JPH0466366B2 (en)
JPS63281204A (en) Production of base material for magnetic head core
JP2690893B2 (en) Laminated magnetic thin film and magnetic head using the same
JPS62222416A (en) Member for thin film magnetic film
JPS61233409A (en) Production of laminated magnetic core for high frequency and magnetic head core
US5267113A (en) Magnetic head
JP2731409B2 (en) Manufacturing method of magnetic head
JP2925257B2 (en) Ferromagnetic film, method of manufacturing the same, and magnetic head
KR100324730B1 (en) Method for fabricating magnetic head
JP2000114041A (en) Thin-film laminated body manufacture thereof and thin- film transformer using the same, thin-film inductor, and thin-film magnetic head
JPH0751743B2 (en) Method for forming sendust thin film
JPS63247905A (en) Production of magnetic head core for high frequency
JPS637509A (en) Magnetic head
JPH07331429A (en) Formation of thin film
JPH0624043B2 (en) Magnetic head
JPH0254405A (en) Magnetic head
JP2882927B2 (en) Magnetic head and method of manufacturing magnetic head
JPS62128109A (en) Manufacture of high-permeability laminating film
JPH0643810U (en) Magnetic head
JPS61240434A (en) Production of magnetic thin film
JPH02295104A (en) Ferromagnetic thin film and magnetic head using same
JPH03278409A (en) Laminated thin soft magnetic film
JPH06176314A (en) Thin-film magnetic head
JPH01248606A (en) Magnetic film and manufacture thereof
JPS62252507A (en) Manufacture of thin film magnetic head