JPS62222416A - Member for thin film magnetic film - Google Patents

Member for thin film magnetic film

Info

Publication number
JPS62222416A
JPS62222416A JP6671286A JP6671286A JPS62222416A JP S62222416 A JPS62222416 A JP S62222416A JP 6671286 A JP6671286 A JP 6671286A JP 6671286 A JP6671286 A JP 6671286A JP S62222416 A JPS62222416 A JP S62222416A
Authority
JP
Japan
Prior art keywords
film
substrate
soft magnetic
low melting
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6671286A
Other languages
Japanese (ja)
Inventor
Kumio Nako
久美男 名古
▲かど▼野 勝
Masaru Kadono
Tatsushi Yamamoto
達志 山本
Masaji Michishima
道嶋 正司
Tetsuo Muramatsu
哲郎 村松
Mitsuhiko Yoshikawa
吉川 光彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP6671286A priority Critical patent/JPS62222416A/en
Publication of JPS62222416A publication Critical patent/JPS62222416A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To admit the dissidence of the thermal expansion between substrates consisting of ferrite, etc. and soft magnetic alloy film by interposing a stress relieving material consisting of the low melting glass film between the substrate an the alloy film at the time of sandwiching the soft magnetic alloy film between the 1st and 2nd substrates and forming a member for a thin film magnetic film. CONSTITUTION:The low melting glass film 6 which is the stress relieving material is interposed by a sputtering method to about 3,000Angstrom thickness between the 1st substrate 1 consisting of the ferrite or nonmagnetic material and the soft magnetic alloy film 3 consisting of 'Sendust(R)', etc., and having about 9mum film thickness at the time of depositing said alloy film on the substrate. The similar 2nd substrate 2 is provided via a protective film 4 consisting of Al2O3, etc. on the film 6 and a low melting glass film 5 similar to the film 6 is also interposed between the film 4 and the substrate 2 in this stage. The dissidence of the coefft. of thermal expansion between the substrate and the soft magnetic film is then not so much of a problem, the deterioration in magnetic characteristics is obviated and the magnetic head having high productivity and yield is obtd.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、2枚の基板間に軟磁性合金膜を挟んでなる、
薄膜磁気ヘッド用部材に関する。
[Detailed Description of the Invention] <Industrial Application Field> The present invention is directed to a method comprising a soft magnetic alloy film sandwiched between two substrates.
The present invention relates to a member for a thin film magnetic head.

〈従来の技術〉 近年、磁気記録技術の分野において情報の多様化に伴い
、記録密度の増大を求める要求が強まっている。磁気記
録の高密度化のひとつの方法として、磁気テープとして
は、磁気エネルギーの大きいメタルテープあるいは自己
減磁の小さい蒸着テープが使用されようとしており、ま
た、磁気へラドコア材料としては、高飽和磁束密度、高
透磁率を有する材料の開発が進められている。従来より
磁気ヘッドコア材料としてフェライトを用いた磁気ヘッ
ドが実用化されているが、フェライトでは飽和磁束密度
に限界があるため、結晶質合金材料あるいは非晶質合金
材料が適しており、これらの合金膜をコア材とする薄膜
磁気ヘッドの開発が進められている。薄膜磁気ヘッドは
基本的には2つの非磁性基板間、あるいはフェライト基
板間に軟磁性合金膜を挟み込んで構成されるものである
が、軟磁性合金膜の膜厚がトランク幅を決定するもので
あるから、軟磁性合金膜の膜厚を比較的大きくしなけれ
ばならない。
<Prior Art> In recent years, with the diversification of information in the field of magnetic recording technology, there has been an increasing demand for increased recording density. As a method for increasing the density of magnetic recording, metal tapes with high magnetic energy or vapor-deposited tapes with low self-demagnetization are being used as magnetic tapes, and magnetic helad core materials with high saturation magnetic flux are being used. Materials with high density and high magnetic permeability are being developed. Magnetic heads that use ferrite as the magnetic head core material have been in practical use for some time, but since ferrite has a limit in saturation magnetic flux density, crystalline alloy materials or amorphous alloy materials are suitable, and these alloy films The development of thin-film magnetic heads using the core material is progressing. Thin-film magnetic heads are basically constructed by sandwiching a soft magnetic alloy film between two nonmagnetic substrates or ferrite substrates, and the thickness of the soft magnetic alloy film determines the trunk width. Therefore, the thickness of the soft magnetic alloy film must be made relatively large.

第3図に従来の薄膜磁気ヘッド用部材の構造を模式的に
示す。図において、1,2は非磁性基板あるいはフェラ
イト基板、3は軟磁性合金膜、4は保護膜、5は接合材
としての低融点ガラス膜である。第4図(al、 (b
)はこの従来の薄膜磁気ヘッド用部材の製造方法を示す
工程図であり、まず、表面が平坦な基板1,2を用意し
、第4図(a)に示すようにその一方の基板1上に蒸着
法やスパックリング法等によりセンダスト等の軟磁性合
金膜3を形成する。次に、第4図(blに示すように、
軟磁性合金膜3上にSiO2あるいはA2203等の保
護膜4を蒸着法、スパッタリング法等により形成する。
FIG. 3 schematically shows the structure of a conventional thin film magnetic head member. In the figure, 1 and 2 are nonmagnetic substrates or ferrite substrates, 3 is a soft magnetic alloy film, 4 is a protective film, and 5 is a low melting point glass film as a bonding material. Figure 4 (al, (b)
) is a process diagram showing the conventional manufacturing method of a thin film magnetic head member. First, substrates 1 and 2 with flat surfaces are prepared, and as shown in FIG. 4(a), one of the substrates 1 is Then, a soft magnetic alloy film 3 such as sendust is formed by a vapor deposition method, a spackling method, or the like. Next, as shown in Figure 4 (bl),
A protective film 4 made of SiO2 or A2203 is formed on the soft magnetic alloy film 3 by a vapor deposition method, a sputtering method, or the like.

そして、保護膜4上および基板2上に低融点ガラス膜5
をそれぞれ蒸着法、あるいはスパッタリング法等によっ
て被着し、これら低融点ガラス膜を突き合わせ、熱圧着
処理により保護膜4と基板2とを接合する。この結果、
軟磁性合金膜3が基板1.2によって挟まれた第3図に
示す薄膜磁気ヘッド用部材が得られる。
Then, a low melting point glass film 5 is formed on the protective film 4 and the substrate 2.
These low melting point glass films are abutted against each other, and the protective film 4 and the substrate 2 are bonded together by thermocompression bonding. As a result,
A thin film magnetic head member shown in FIG. 3 in which the soft magnetic alloy film 3 is sandwiched between the substrates 1.2 is obtained.

〈発明が解決しようとする問題点〉 一般に蒸着法、スパッタリング法等で基板上に薄膜を形
成すると基板と薄膜との熱膨張係数の差により、薄膜に
内部応力が生じ、特に薄膜の膜厚が大きくなると薄膜の
全応力が大きくなり、成膜燐基板のたわみ量が大きくな
るか、あるいは、基板材料が脆性材料であれば応力集中
により基板の破壊が起こるという問題が生じる。
<Problems to be Solved by the Invention> Generally, when a thin film is formed on a substrate by a vapor deposition method, a sputtering method, etc., internal stress is generated in the thin film due to the difference in thermal expansion coefficient between the substrate and the thin film. If it becomes large, the total stress of the thin film becomes large, and the amount of deflection of the phosphorus substrate on which the film is formed becomes large, or if the substrate material is a brittle material, there arises a problem that the stress concentration causes destruction of the substrate.

第5図は前述した従来の薄膜磁気ヘッド用部材の製造工
程中、第4図(a)に示す状態での軟磁性合金膜3の膜
厚に対する膜の内部応力σおよび股の全応力Sの関係を
示すグラフで、軟磁性センダスト膜を基板上に電子ビー
ム蒸着法により形成し、これを真空中で600°Cで熱
処理した場合の測定結果を示している。このグラフから
明らかなように、膜の内部応力σは膜厚に依存せず一定
値を示し、全応力Sは膜厚に対してリニアに増加してい
る。既に述べたように、薄膜磁気ヘッド用部材において
軟磁性合金膜3すなわちセンダスト膜の膜厚がトラック
幅を決定するものであるから、センダスト膜の膜厚をあ
る程度大きくする必要があるが、膜厚の増加とともに膜
の全応力Sは前述の関係から大きくなり、成膜燐基板の
たわみ量は大き(なって、次の製造工程、すなわち第4
図(b)の工程での熱圧着が困難になる。またセンダス
ト膜成膜用基板がフェライト等のぜい性材料である場合
、全応力Sの増加により基板の破壊が生じ、生産性が悪
くなる等の欠点がある。
FIG. 5 shows the internal stress σ of the film and the total stress S of the crotch with respect to the film thickness of the soft magnetic alloy film 3 in the state shown in FIG. This is a graph showing the relationship, and shows measurement results when a soft magnetic sendust film was formed on a substrate by electron beam evaporation and then heat-treated at 600° C. in vacuum. As is clear from this graph, the internal stress σ of the film shows a constant value regardless of the film thickness, and the total stress S increases linearly with the film thickness. As already mentioned, in a thin-film magnetic head member, the thickness of the soft magnetic alloy film 3, that is, the sendust film, determines the track width, so it is necessary to increase the thickness of the sendust film to some extent. The total stress S of the film increases with the increase in the above-mentioned relationship, and the amount of deflection of the film-forming phosphorus substrate increases (as a result, the amount of deflection in the next manufacturing process, i.e., the fourth
Thermocompression bonding in the process shown in Figure (b) becomes difficult. Furthermore, when the substrate for forming the sendust film is made of a brittle material such as ferrite, the increase in total stress S causes destruction of the substrate, resulting in disadvantages such as poor productivity.

更に、軟磁性合金膜3に歪が生ずると、これを磁気ヘッ
ドとして作用する際に、逆磁歪効果によって磁気特性を
劣化させるという問題がある。
Furthermore, if strain occurs in the soft magnetic alloy film 3, there is a problem in that when it acts as a magnetic head, the magnetic properties are deteriorated due to the reverse magnetostriction effect.

本発明は、上述した従来の薄膜磁気ヘッド用部材の諸問
題を一挙に解決することを目的としている。
The present invention aims to solve all the problems of the conventional thin film magnetic head members mentioned above at once.

〈問題点を解決するための手段〉 本発明の構成を、実施例図面に対応する第1図を参照し
つつ説明すると、本発明は、第1の基板1上に形成され
た軟磁性合金膜(例えばセンダスト膜)3の上面側に、
第2の基板2が配設されてなる磁気ヘッド用部材におい
て、第1の基板1と軟磁性合金膜3との間に、応力緩和
材として低融点ガラス膜6を介在させたことによって特
徴づけられる。
<Means for Solving the Problems> The structure of the present invention will be explained with reference to FIG. 1 corresponding to the drawings of the embodiment. (For example, sendust film) On the top side of 3,
The magnetic head member provided with the second substrate 2 is characterized by interposing a low melting point glass film 6 as a stress relaxation material between the first substrate 1 and the soft magnetic alloy film 3. It will be done.

〈作用〉 基板l上に軟磁性合金膜3を形成する前に、基板1上に
低融点ガラス膜6を形成しておくことにより、軟磁性合
金膜3を蒸着またはスパッタリング法で形成する際に生
ずる膜3の内部応力が緩和され、第2図(alに示す製
造工程における膜3の内部応力σおよび全応力Sの値が
著しく低減し、所期の目的を達成することができる。
<Function> By forming the low melting point glass film 6 on the substrate 1 before forming the soft magnetic alloy film 3 on the substrate l, it is possible to form the soft magnetic alloy film 3 by vapor deposition or sputtering. The resulting internal stress in the film 3 is relaxed, and the values of the internal stress σ and the total stress S of the film 3 in the manufacturing process shown in FIG.

〈実施例〉 本発明の実施例を、以下、図面に基づいて説明する。<Example> Embodiments of the present invention will be described below based on the drawings.

第1図は本発明実施例の構造を模式的に示す図である。FIG. 1 is a diagram schematically showing the structure of an embodiment of the present invention.

第1の基板1とセンダスト膜3との間に応力緩和材とし
ての低融点ガラス膜6が挿入されており、センダスト膜
3の上面には保護膜4を介して低融点ガラス膜5により
第2の基板2が圧着されている。
A low melting point glass film 6 as a stress relaxation material is inserted between the first substrate 1 and the Sendust film 3, and a second low melting point glass film 5 is formed on the upper surface of the Sendust film 3 via a protective film 4. The substrate 2 is crimped.

第2図(a)、 (b)は、この本発明実施例の製造工
程の説明図で、この図を参照しつつ以下、製造方法の例
を説明する。
FIGS. 2(a) and 2(b) are explanatory diagrams of the manufacturing process of this embodiment of the present invention, and an example of the manufacturing method will be described below with reference to these figures.

まず、フェライトまたは非磁性材によって形成された平
板状の第1および第2の基板1および2を用意する。次
に、第1の基板1上に、応力緩和材として低融点ガラス
膜6をスパッタリング法により約3000人形成し、こ
の低融点ガラス膜6上にセンダスト膜3を電子ビーム蒸
着法により膜厚9μmとなるよう形成し、真空中で60
0°Cで熱処理する。この状態を第2図(a)に示す。
First, flat first and second substrates 1 and 2 made of ferrite or nonmagnetic material are prepared. Next, on the first substrate 1, a low melting point glass film 6 is formed as a stress relaxation material by sputtering, and on this low melting point glass film 6, a sendust film 3 is formed with a thickness of 9 μm by electron beam evaporation. 60 minutes in vacuum.
Heat treatment at 0°C. This state is shown in FIG. 2(a).

ここで低融点ガラス膜の膜厚は上に成膜する軟磁性膜の
厚さ及び後工程熱処理の際、低融点ガラス層からの発泡
をある基準以下に抑えるという条件から選択すべきであ
る。
Here, the thickness of the low melting point glass film should be selected based on the thickness of the soft magnetic film formed thereon and the condition that foaming from the low melting point glass layer is suppressed to below a certain standard during post-process heat treatment.

次に、従来の製造工程と同様に、センダスト膜3の上面
に5i02あるいは/1203等の保護膜4を蒸着法も
しくはスパッタリング法によって形成する。この状態を
第2図(b)に示す。そして、この保護膜4上、および
第2の基板2上に、それぞれ低融点ガラス膜5を蒸着法
またはスパッタリング法により被着し、この低融点ガラ
ス膜5を互いに突き合わせて、熱圧着処理により保護膜
4と第2の基板2とを接合し、第1図に示す薄膜磁気ヘ
ッド用部材を得る。
Next, similar to the conventional manufacturing process, a protective film 4 such as 5i02 or /1203 is formed on the upper surface of the sendust film 3 by vapor deposition or sputtering. This state is shown in FIG. 2(b). Then, a low melting point glass film 5 is deposited on the protective film 4 and the second substrate 2 by vapor deposition or sputtering, and the low melting point glass films 5 are butted against each other and protected by thermocompression bonding. The film 4 and the second substrate 2 are bonded together to obtain the thin film magnetic head member shown in FIG.

以上の製造工程において、第2図(a)の状態、すなわ
ち第1の基板1上に低融点ガラス膜6を介してセンダス
ト膜3を形成して熱処理を施した状態で、センダスト膜
3の内部応力σおよび全応力Sを測定した結果、それぞ
れ8.0 X 10’ dyne/ cIJおよび7.
0X10もdyne/cmであった。これらの値は、第
5図に示す従来の製造工程中の値、2.I Xl09d
yne/cnlおよび1.8X10  dyne/cm
に比して、約173に減少している。
In the above manufacturing process, the inside of the sendust film 3 is formed in the state shown in FIG. As a result of measuring the stress σ and the total stress S, they were 8.0 x 10' dyne/cIJ and 7.0, respectively.
0X10 was also dyne/cm. These values are the values during the conventional manufacturing process shown in FIG. 5, 2. I Xl09d
dyne/cnl and 1.8X10 dyne/cm
This has decreased to about 173 compared to 2017.

この事実により、第2図(a)に示す状態での部材の歪
が大幅に低減し、以降の工程である圧着工程が容易化さ
れる。また、フェライト等の脆性材料基板上にセンダス
ト膜を成膜する場合の基板破壊を生ずるしきい値の全応
力に達する膜厚が、高膜厚側に移行するため、形成し得
るトラック幅を太き(することが可能となる。
Due to this fact, the distortion of the member in the state shown in FIG. 2(a) is significantly reduced, and the subsequent crimping process is facilitated. In addition, when a sendust film is formed on a brittle material substrate such as ferrite, the film thickness that reaches the threshold total stress that causes substrate destruction shifts to the higher film thickness side, so the track width that can be formed is increased. It becomes possible to

〈発明の効果〉 以上説明したように、本発明によれば、軟磁性合金膜と
この膜を被着させる下地基板との間に、応力緩和材とし
て低融点ガラス膜を介在合せたので、軟磁性合金膜の蒸
着またはスパッタリング時にその膜の内部応力が著しく
緩和されることになり、基板と磁性膜との熱膨張係数の
不一致が余り問題にはならず、基板の選択範囲が広がり
、熱応力逆磁歪効果による磁気特性劣化が抑えられ、コ
アの磁気特性劣化を防止し、ひいては磁気ヘッド効率改
善を図ることができる。また、軟磁性合金膜の内部応力
及び全応力が減少するから、製造工程における歪が低減
して、以降の製造工程が容易になり、磁気ヘッドの生産
性の向上、および歩留りの向上が図れるとともに、トラ
ック幅を大きくすることが可能となる。
<Effects of the Invention> As explained above, according to the present invention, a low melting point glass film is interposed as a stress relaxation material between a soft magnetic alloy film and a base substrate on which this film is attached. During vapor deposition or sputtering of a magnetic alloy film, the internal stress of the film is significantly relaxed, and the mismatch in thermal expansion coefficient between the substrate and the magnetic film becomes less of a problem, expanding the range of substrate selection and reducing thermal stress. Deterioration of the magnetic properties due to the inverse magnetostrictive effect is suppressed, preventing deterioration of the magnetic properties of the core, and thus improving the efficiency of the magnetic head. In addition, since the internal stress and total stress of the soft magnetic alloy film are reduced, distortion in the manufacturing process is reduced, making the subsequent manufacturing process easier, improving the productivity and yield of the magnetic head. , it becomes possible to increase the track width.

【図面の簡単な説明】 第1図は本発明実施例の構造を模式的に示す図、第2図
はその製造工程の説明図、第3図は従来の薄膜磁気ヘッ
ド用部材の構造を模式的に示す図、第4図はその製造工
程の説明図、第5図は従来の製造工程中における軟磁性
合金膜の内部応力σおよび全応力と膜厚との相関を示す
グラフである。 1−第1の基板 2−第2の基板 3−センダスト膜 4・・・保護膜 5−低融点ガラス膜(接着剤)
[Brief Description of the Drawings] Figure 1 is a diagram schematically showing the structure of an embodiment of the present invention, Figure 2 is an explanatory diagram of its manufacturing process, and Figure 3 is a diagram schematically showing the structure of a conventional thin film magnetic head member. FIG. 4 is an explanatory diagram of the manufacturing process, and FIG. 5 is a graph showing the correlation between the internal stress σ and total stress of the soft magnetic alloy film and the film thickness during the conventional manufacturing process. 1-First substrate 2-Second substrate 3-Sendust film 4...Protective film 5-Low melting point glass film (adhesive)

Claims (1)

【特許請求の範囲】[Claims] 第1の基板上に形成された軟磁性合金膜の上面側に、第
2の基板が配設されてなる磁気ヘッド用部材において、
上記第1の基板と上記軟磁性合金膜との間に、応力緩和
材として低融点ガラス膜を介在させたことを特徴とする
、薄膜磁気ヘッド用部材。
In a magnetic head member in which a second substrate is disposed on the upper surface side of a soft magnetic alloy film formed on a first substrate,
A member for a thin film magnetic head, characterized in that a low melting point glass film is interposed between the first substrate and the soft magnetic alloy film as a stress relaxation material.
JP6671286A 1986-03-24 1986-03-24 Member for thin film magnetic film Pending JPS62222416A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6671286A JPS62222416A (en) 1986-03-24 1986-03-24 Member for thin film magnetic film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6671286A JPS62222416A (en) 1986-03-24 1986-03-24 Member for thin film magnetic film

Publications (1)

Publication Number Publication Date
JPS62222416A true JPS62222416A (en) 1987-09-30

Family

ID=13323801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6671286A Pending JPS62222416A (en) 1986-03-24 1986-03-24 Member for thin film magnetic film

Country Status (1)

Country Link
JP (1) JPS62222416A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0229905A (en) * 1988-03-10 1990-01-31 Matsushita Electric Ind Co Ltd Production of magnetic head
JPH0237510A (en) * 1988-07-27 1990-02-07 Matsushita Electric Ind Co Ltd Magnetic head
JPH02141909A (en) * 1988-11-24 1990-05-31 Matsushita Electric Ind Co Ltd Magnetic head
JPH04324104A (en) * 1991-04-24 1992-11-13 Nec Corp Magnetic core for magnetic head

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0229905A (en) * 1988-03-10 1990-01-31 Matsushita Electric Ind Co Ltd Production of magnetic head
JPH0237510A (en) * 1988-07-27 1990-02-07 Matsushita Electric Ind Co Ltd Magnetic head
JPH02141909A (en) * 1988-11-24 1990-05-31 Matsushita Electric Ind Co Ltd Magnetic head
JPH04324104A (en) * 1991-04-24 1992-11-13 Nec Corp Magnetic core for magnetic head

Similar Documents

Publication Publication Date Title
JPS62222416A (en) Member for thin film magnetic film
JP2554041B2 (en) Method of manufacturing magnetic head core
JPS5845617A (en) Magnetic head
JPH06215325A (en) Laminate type core of magnetic head
JPH0554166B2 (en)
JPS60201509A (en) Manufacture of magnetic head
JPS63293802A (en) Laminated magnetic thin film and magnetic head using the same
US5267113A (en) Magnetic head
JPS6194210A (en) Floating thin film head
JPS6362805B2 (en)
JP2882927B2 (en) Magnetic head and method of manufacturing magnetic head
JPH04102308A (en) Manufacture of fe-si-al-based alloy magnetic film
JPH0351771Y2 (en)
JPH03132005A (en) Magnetic thin film and magnetic head using this film
KR930001146B1 (en) Magnetic head
JPH03168909A (en) Production of magnetic head
JPH0376102A (en) Multilayer magnetic thin film and magnetic head using the same
JPS62137711A (en) Production of magnetic head
JPS6187212A (en) Thin-film magnetic head
JPS6047215A (en) Magnetic head and its manufacture
JPS62128109A (en) Manufacture of high-permeability laminating film
JPH01132109A (en) Ferromagnetic thin film and magnetic head employing same
JPH025206A (en) Production of magnetic head
JPS60234210A (en) Magnetic head using amorphous magnetic alloy
JPH06244048A (en) Method for formation of magnetically soft thin film and magnetic head