JPH0624043B2 - Magnetic head - Google Patents

Magnetic head

Info

Publication number
JPH0624043B2
JPH0624043B2 JP62193406A JP19340687A JPH0624043B2 JP H0624043 B2 JPH0624043 B2 JP H0624043B2 JP 62193406 A JP62193406 A JP 62193406A JP 19340687 A JP19340687 A JP 19340687A JP H0624043 B2 JPH0624043 B2 JP H0624043B2
Authority
JP
Japan
Prior art keywords
film
glass
magnetic
substrate
magnetic head
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62193406A
Other languages
Japanese (ja)
Other versions
JPS6437705A (en
Inventor
和宏 斎藤
達司 清水
英則 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Japan Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Energy Corp filed Critical Japan Energy Corp
Priority to JP62193406A priority Critical patent/JPH0624043B2/en
Publication of JPS6437705A publication Critical patent/JPS6437705A/en
Publication of JPH0624043B2 publication Critical patent/JPH0624043B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Magnetic Heads (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、一般にFe−Si−A合金磁性膜を用いた
磁気ヘツドに関するものであり、特に高周波用で且つ高
いS/N比が要求される高密度記録用ヘツド、主として
ビデオヘツド、デジタル用ヘツド等に好適に利用し得
る。
Description: TECHNICAL FIELD The present invention relates generally to a magnetic head using a Fe—Si—A alloy magnetic film, and particularly for high frequencies and high S / N ratio required. It can be suitably used for density recording heads, mainly video heads, digital heads and the like.

従来の技術及び問題点 磁気記録技術の分野における最近の記録密度の向上は著
しく、これに伴なつて例えば電磁変換素子としての磁気
ヘツドに対する挟トラツク化及びコア材料の飽和磁化の
増大並びに高周波領域における透磁率の改善といつた要
求が高まつている。
2. Description of the Related Art Recent improvements in recording density in the field of magnetic recording technology have been remarkable, and accompanying this, for example, intertracking with respect to a magnetic head as an electromagnetic conversion element, increase in saturation magnetization of the core material, and high frequency region. There is a growing demand for improved magnetic permeability.

近年、磁気記録分野における上記要求を満足せしめる磁
気ヘツドとして、Fe−Si−A合金磁性膜を用いた
薄膜積層磁気ヘツドが急速に注目を浴びている。該磁気
ヘツドの一例が第1図及び第2図に図示される。簡単に
その構造を説明する。
In recent years, a thin film laminated magnetic head using a Fe—Si—A alloy magnetic film has been rapidly attracting attention as a magnetic head that satisfies the above requirements in the field of magnetic recording. An example of the magnetic head is shown in FIGS. The structure will be briefly described.

第2図を参照すると、SiO−LiO−A
系結晶化ガラスから成る基板11上にFe−Si−A
合金薄膜12が膜厚1〜20μmにて成膜される。次い
で、該合金磁性膜12上にSiOから成る非磁性絶縁
膜、即ち、層間膜13が膜厚0.03〜0.5μmにて
形成される。
Referring to FIG. 2 , SiO 2 —Li 2 O—A 2 O 3
Fe-Si-A is formed on the substrate 11 made of a crystallized glass.
The alloy thin film 12 is formed with a film thickness of 1 to 20 μm. Then, a nonmagnetic insulating film made of SiO 2 , that is, an interlayer film 13 is formed on the alloy magnetic film 12 to have a film thickness of 0.03 to 0.5 μm.

更に、磁性膜12と非磁性絶縁膜13が必要回数積層さ
れ、磁性膜構造体14が形成される。斯る磁性膜12と
非磁性絶縁膜13の膜厚及び積層回数は積層部の厚さが
トラツク幅w(第2図)となるように適宜設定される。
Further, the magnetic film 12 and the non-magnetic insulating film 13 are stacked a required number of times to form the magnetic film structure 14. The thickness of the magnetic film 12 and the non-magnetic insulating film 13 and the number of times of lamination are appropriately set so that the thickness of the laminated portion becomes the track width w (FIG. 2).

次いで、前記磁性膜構造体14の上にガラス膜15が形
成され、その上に他の基板16が積層される。ガラス膜
15としてはSiO−B−ZnO系の接合ガラ
スが使用されている。基板16は前記基板11と同様の
材料にて作製される。
Then, a glass film 15 is formed on the magnetic film structure 14, and another substrate 16 is laminated thereon. As the glass film 15, SiO 2 —B 2 O 3 —ZnO based bonding glass is used. The substrate 16 is made of the same material as the substrate 11.

このようにして作製された積層膜構造体17は、第1図
に図示されるように、積層した厚さ方向に切断し、一対
のコア半体ブロツク18、19が形成され、少なくとも
片方のコア半体、本例ではコア半体18に巻線溝20を
形成する。
The laminated film structure 17 thus manufactured is cut in the laminated thickness direction to form a pair of core half blocks 18 and 19 as shown in FIG. 1, and at least one of the core half blocks is formed. The winding groove 20 is formed in the half body, in this example, the core half body 18.

続いて、両コア半体ブロツク18、19の突合せ面の接
合を強固なものとするために、従来、第1図に図示され
るように、巻線溝20に対向した、本例ではコア半体1
9の両側面部に面取部22を形成し、又、両コア半体の
前記ギヤツプ部とは反対側にも凹所23を形成した後、
両コア半体ブロツク18、19の突合せ面は研摩加工
後、SiOから成る非磁性のギヤツプスペーサー21
を形成する。
Then, in order to strengthen the joining of the abutting surfaces of the two core half blocks 18 and 19, conventionally, as shown in FIG. Body 1
After forming chamfered portions 22 on both side surface portions of 9, and also forming recesses 23 on the opposite side of both core halves from the gear tap portion,
The abutting surfaces of both core half blocks 18 and 19 are polished, and then a non-magnetic gap spacer 21 made of SiO 2 is formed.
To form.

この後、両コア半体ブロツク18、19を突合せ面にて
突合せ、該面取部及び凹所にPbO−B系モール
ドガラスを充填し両コア半体ブロツクを接合する。
Thereafter, the core half blocks 18 and 19 are butted against each other at the butted surfaces, and the chamfered portion and the recess are filled with PbO—B 2 O 3 based mold glass to join the two half block blocks.

最後に、テープ摺動面を形成するべくR研摩加工及び他
の成形加工並びに巻線加工が行なわれ、磁気ヘツド10
が得られる。
Finally, R polishing processing and other forming processing and winding processing are performed to form a tape sliding surface.
Is obtained.

斯る構成の磁気ヘツド10は、極めて良好な磁気特性を
有するものであるが、第3図に図示するように、使用時
に時間経過と共にギヤツプ部21に近接したモールドガ
ラス部22にクラツク24が生じ、結果的に両コア半体
の接合力が弱まり、ギヤツプ部が離間してしまい、所定
の磁気特性が得られなくなるといつた問題が発生した。
又、斯るモールドガラス部のクラツクは磁気ヘツド製造
時においても発生し、歩留りが10%未満であるといつ
た極めて製造効率の悪いものであつた。
The magnetic head 10 having such a structure has extremely good magnetic characteristics. However, as shown in FIG. 3, a crack 24 is generated in the mold glass portion 22 near the gear portion 21 with the passage of time during use. As a result, the joining force between the two core halves is weakened, the gear parts are separated from each other, and the predetermined magnetic characteristics cannot be obtained, which causes a problem.
In addition, such cracks in the mold glass portion also occur during the manufacture of the magnetic head, and if the yield is less than 10%, the manufacturing efficiency is extremely poor.

本発明者等は、このような問題を解決するべく多くの研
究実験を行なつた結果、上述したような材料が使用され
ている基板11、16、ガラス膜15、磁性膜構造体1
4、モールドガラス22の各熱膨張係数は大きく相違し
ており、斯る熱膨張係数の相違に起因してモールドガラ
ス部に過大の引張応力又は圧縮応力が発生し、モールド
ガラス部にクラツクが発生することを見出した。
The present inventors have conducted many research experiments to solve such problems, and as a result, the substrates 11, 16 using the materials as described above, the glass film 15, and the magnetic film structure 1 have been used.
4. The thermal expansion coefficients of the mold glass 22 are greatly different, and due to the difference in the thermal expansion coefficient, excessive tensile stress or compressive stress is generated in the mold glass part, and cracks are generated in the mold glass part. I found that

又、磁気ヘツドは熱膨張係数が概略一致することが重要
であると同時に、該ヘツドは一般に真空蒸着法、スパツ
タリング法、イオンプレーテイング法等にて製造される
ために、プロセス上の制約から、基板の耐熱温度、ガラ
ス膜及びモールドガラスの軟化点の間には(基板の耐熱
温度)>(ガラス膜の軟化点)>(モールドガラスの軟
化点)という関係が必要であり、更には基板、ガラス
膜、モールドガラスの各材料間で過度の化学的浸食反応
を起さないように各材料を選定することが必要であるこ
とを見出した。
Further, it is important that the magnetic heads have substantially the same thermal expansion coefficient, and at the same time, since the heads are generally manufactured by a vacuum deposition method, a sputtering method, an ion plating method, etc., due to process restrictions, Between the heat-resistant temperature of the substrate and the softening points of the glass film and the mold glass, the relationship of (heat-resistant temperature of the substrate)> (softening point of the glass film)> (softening point of the mold glass) is required. It was found that it is necessary to select each material so as not to cause an excessive chemical erosion reaction between each material of the glass film and the mold glass.

本発明者等は、斯る観点から多くの材料を検討した結
果、基板としては(MnO)×(NiO)1-x(ただ
し、0<x<1)で表わされ、岩塩型構造が主たるもの
である非磁性基板材料を、ガラス膜としてはSiO
NaO−A系ガラスを、モールドガラスとし
てはSiO−B−NaO系ガラスを、層間膜
及びギヤツプ層としてはSiOを使用することによ
り、モールドガラス部にクラツクが発生することのない
高品質のFe−Si−A合金磁性膜を用いた磁気ヘツ
ドを製造し得ることを見出した。
As a result of studying many materials from such a viewpoint, the present inventors have shown that the substrate is represented by (MnO) × (NiO) 1-x (where 0 <x <1), and mainly has a rock salt structure. The non-magnetic substrate material used as the glass film is SiO 2 −.
By using Na 2 O—A 2 O 3 based glass, SiO 2 —B 2 O 3 —Na 2 O based glass as the mold glass, and SiO 2 as the interlayer film and the gap layer, the mold glass portion is formed. It has been found that it is possible to manufacture a magnetic head using a high quality Fe-Si-A alloy magnetic film that does not cause cracking.

本発明は斯る新規な知見に基づきなされたものである。The present invention has been made based on such novel findings.

発明の目的 本発明の目的は、モールドガラス部にクラツクが発生す
ることのない高品質のFe−Si−A合金磁性膜を用
いた磁気ヘツドを提供することである。
OBJECT OF THE INVENTION It is an object of the present invention to provide a magnetic head using a high quality Fe-Si-A alloy magnetic film in which no crack is generated in the mold glass part.

本発明の他の目的は、歩留りを従来の10%未満から8
0%程度にまで向上せしめることのできるFe−Si−
A合金磁性膜を用いた磁気ヘツドを提供することであ
る。
Another object of the present invention is to improve the yield from less than 10% of the conventional yield to 8%.
Fe-Si- which can be improved to about 0%
It is to provide a magnetic head using an A alloy magnetic film.

問題点を解決するための手段 上記諸目的は本発明に係るFe−Si−A合金磁性膜
を用いた磁気ヘツドにて達成される。要約すれば本発明
は、一方の基板と、該基板の上にFe(83〜94wt
%)−Si(4〜11wt%)−A(2〜6wt%)
の組成を有するFe−Si−A合金磁性膜と層間膜と
が交互に積層されて成る磁性膜構造体と、該薄膜構造体
の上に積層されたガラス層と、該ガラス膜の上に積層さ
れた他方の基板とを有した積層膜構造体から成る二つコ
ア半体を突合せ、該両コア半体をモールドガラスにて補
強接合して構成される磁気ヘツドにおいて、基板は(M
nO)×(NiO)1-x(ただし、0<x<1)で表わ
され、岩塩型構造が主たるものである非磁性基板材料で
作製し、ガラス膜はSiO−NaO−A
ガラスで作製し、そしてモールドガラスはSiO−B
−NaO系ガラスで作製されたことを特徴とす
る磁気ヘツドである。
Means for Solving the Problems The above-mentioned objects are achieved by a magnetic head using the Fe—Si—A alloy magnetic film according to the present invention. In summary, the present invention provides one substrate and Fe (83-94 wt.
%)-Si (4 to 11 wt%)-A (2 to 6 wt%)
A magnetic film structure formed by alternately laminating an Fe-Si-A alloy magnetic film having the composition of 10 and an interlayer film, a glass layer laminated on the thin film structure, and a glass layer laminated on the glass film. In a magnetic head constructed by abutting two core halves made of a laminated film structure having the other substrate formed thereon and reinforcing and joining the two core halves with mold glass, the substrate is (M
nO) × (NiO) 1-x (where 0 <x <1), and the glass film is made of SiO 2 —Na 2 O—A. It is made of 2 O 3 based glass, and the mold glass is SiO 2 -B.
The magnetic head is made of 2 O 3 —Na 2 O based glass.

次に、本発明の磁気ヘツドについて更に詳しく説明す
る。
Next, the magnetic head of the present invention will be described in more detail.

A.基板材料の選定: 本発明者等は、基板、ガラス膜及びモールドガラスの材
料を選定するに当り先ず、基板材料を検討した。
A. Selection of Substrate Material: The present inventors first examined the substrate material when selecting the materials for the substrate, the glass film and the mold glass.

従来、基板材料としては、上述のように、SiO−L
O−A系結晶化ガラスが使用されていた
が、本発明者等の研究によると、斯る結晶化ガラスは耐
熱温度が650〜800℃程度と低く、該基板の上に積
層されるガラス膜12の材料の選択範囲を極度にせばめ
ていることが分かつた。又、マトリツクス相(主成分は
SiO)と、従来PbO−B系ガラスが用いら
れたモールドガラスとの間では、塩基度の差が大きいた
めに、化学的浸食反応が生じ、基板が浸食され、基板の
残し量又はギヤツプ深さを正確に設定するのが困難であ
るという問題を有していた。
Conventionally, as a substrate material, as described above, SiO 2 -L is used.
Although i 2 O-A 2 O 3 -based crystallized glass has been used, according to the study by the present inventors, such crystallized glass has a low heat resistance temperature of about 650 to 800 ° C. It was found that the selection range of the material of the laminated glass film 12 was extremely limited. In addition, a chemical erosion reaction occurs due to a large difference in basicity between the matrix phase (main component is SiO 2 ) and the mold glass in which the conventional PbO-B 2 O 3 based glass is used. However, there is a problem that it is difficult to accurately set the remaining amount of the substrate or the depth of the gap.

従つて、本発明者等は、基板の材料選定に当り、 (1)Fe−Si−A合金磁性膜の熱膨張係数(12
0〜150×10-7/℃)に近い熱膨張係数を有するこ
と、 (2)耐熱温度が800℃以上であること、 (3)モールドガラス等の低融点ガラスと極度に反応し
ないこと、 が選定条件として必須であることが分かつた。
Therefore, the inventors of the present invention selected (1) the thermal expansion coefficient (12) of the Fe--Si--A alloy magnetic film when selecting the material of the substrate.
Having a coefficient of thermal expansion close to 0 to 150 × 10 −7 / ° C., (2) heat resistant temperature of 800 ° C. or higher, (3) not extremely reacting with low melting point glass such as mold glass, We have found that it is essential as a selection condition.

本発明者等の研究実験の結果、(MnO)×(NiO)
1-x(ただし、0<x<1)で表わされ、岩塩型構造が
主たるものである非磁性基板材料、特にx=0.55で
ある基板材料は上記選択条件を満足していることを見出
した。表1に該材料の諸特性を従来の材料と比較して示
す。
As a result of the research and experiment by the present inventors, (MnO) × (NiO)
The non-magnetic substrate material represented by 1-x (where 0 <x <1) and mainly having a rock-salt structure, especially the substrate material with x = 0.55 must satisfy the above selection conditions. Found. Table 1 shows various properties of the material in comparison with conventional materials.

B.ガラス膜材料の選定 従来ガラス膜材料としては、SiO−B−Zn
O系の接合ガラスが使用されていたが、本発明者等の研
究実験の結果によると、ZnOを含むガラスは、通常磁
気ヘツドの製造時に採用されているスパツタリング等の
方法では膜中にZnOが入り難いという問題があり、こ
のように組成ずれが生じると、磁気ヘツドを構成する上
で重要な諸特性、例えば熱膨張係数や軟化点が変化する
という問題を引起すことが分かつた。表2にバルク組成
と膜組成とを示す。
B. The Selection conventional glass film material of the glass film material, SiO 2 -B 2 O 3 -Zn
Although an O-based bonding glass was used, according to the results of the research and experiments conducted by the present inventors, ZnO-containing glass was found to have ZnO in the film by a method such as spattering that is usually adopted when manufacturing a magnetic head. It has been found that there is a problem that it is difficult to enter, and such compositional deviations cause problems that various properties important in constructing the magnetic head, such as the thermal expansion coefficient and the softening point, change. Table 2 shows the bulk composition and the film composition.

従つて、本発明者等は、ガラス膜の材料選定に当り、 (1)基板の熱膨張係数(134×10-7/℃)に近い
熱膨張係数を有すること、 (2)耐熱温度(軟化点)がモールドガラスの作業温度
より50℃以上高いこと、 (3)組成ずれを小さくするためにZnOを含まないこ
と、 (4)基板と極度に反応しないこと、 が選定条件として必須であることが分かつた。
Therefore, the inventors of the present invention, when selecting the material for the glass film, have (1) a coefficient of thermal expansion close to that of the substrate (134 × 10 −7 / ° C.), and (2) heat resistance temperature (softening). It is essential as a selection condition that (point) is higher than the working temperature of the mold glass by 50 ° C. or more, (3) does not contain ZnO to reduce the compositional deviation, and (4) does not react extremely with the substrate. I understand.

本発明者等の研究実験の結果、SiO−NaO−A
系ガラスが最適であることを見出した。該材料
の組成の一実施例を表3に、表4に該材料の諸特性を示
す。又表5には本発明に従つたガラス膜材料を使用し
て、Ar圧力4×10-3スパツタリングにて膜の作製を
行なつた際のバルク組成と膜組成とを示すが、組成ずれ
を生じていないことが理解されるであろう。
As a result of research and experiments conducted by the present inventors, SiO 2 —Na 2 O—A
It has been found that 2 O 3 based glass is optimal. An example of the composition of the material is shown in Table 3 and Table 4 shows various characteristics of the material. Further, Table 5 shows the bulk composition and the film composition when the film was prepared by using the glass film material according to the present invention with Ar pressure of 4 × 10 -3 sputtering. It will be understood that it has not occurred.

C.モールドガラス材料の選定 従来、モールドガラス材料としては、上述のように、P
bO−B系ガラスが用いられ、モールドガラスと
基板との間では、塩基度の差が大きいために、化学的浸
食反応が生じ、基板が浸食され、基板の残し量又はギヤ
ツプ深さを正確に設定するのが困難であるという問題を
有していた。
C. Selection of Mold Glass Material Conventionally, as a mold glass material, as described above, P
bO-B 2 O 3 based glass is used, between the mold glass and the substrate, for the difference in basicity is large, cause chemical erosion reaction, the substrate is eroded, leaving the amount or Giyatsupu depth of the substrate Had a problem that it was difficult to set up correctly.

従つて、本発明者等は、モールドガラスの材料選定に当
り、 (1)基板の熱膨張係数(134×10-7/℃)に近い
熱膨張係数を有すること、 (2)作業温度がガラス膜の軟化点が630℃以下であ
ること、望ましくはガラス膜の軟化点より50℃以上低
いこと、 (3)基板と極度に反応しないこと、 が選定条件として必須であることが分かつた。
Therefore, the inventors of the present invention, when selecting the material for the mold glass, have (1) a coefficient of thermal expansion close to that of the substrate (134 × 10 −7 / ° C.), and (2) a working temperature of glass. It has been found that the softening point of the film is 630 ° C. or lower, preferably 50 ° C. or more lower than the softening point of the glass film, and (3) does not react extremely with the substrate, which are essential as selection conditions.

本発明者等の研究実験の結果、モールドガラスとしては
SiO−B−NaO系ガラスが最適であるこ
とを見出した。該材料の組成の一実施例を表6に、表7
に該材料の諸特性を、従来のモールドガラス材料と比較
して示す。
As a result of research and experiment by the present inventors, it was found that SiO 2 —B 2 O 3 —Na 2 O based glass is the most suitable as the mold glass. Examples of the composition of the material are shown in Table 6 and Table 7.
The various characteristics of the material are shown in comparison with the conventional mold glass material.

次に、本発明に係る薄膜積層磁気ヘツドを実施例につい
て説明する。
Next, examples of the thin film magnetic head according to the present invention will be described.

実施例1 第1図に図示されるような構造をした本発明に係る磁気
ヘツドをDCマグネトロンスパツタ(RFバイアス印
加)装置を使用して作製した。第4図に該スパツタ装置
の概略が図示される。
Example 1 A magnetic head according to the present invention having a structure as shown in FIG. 1 was produced using a DC magnetron sputtering device (RF bias application). FIG. 4 schematically shows the sputter device.

DCスパツタ装置30は高圧直流電源31に接続された
陰極32と、RFバイアス電源33に接続され電気的に
絶縁された基板ホルダー34とを具備し、前記陰極32
にはターゲツト35が配置され、ホルダー34には基板
11が配置された。又、装置は一方の口36から真空ポ
ンプ(図示せず)にて真空引され、又他方の口37から
Arガスが導入された。
The DC sputtering device 30 includes a cathode 32 connected to a high voltage DC power supply 31 and a substrate holder 34 connected to an RF bias power supply 33 and electrically insulated.
The target 35 was placed in the holder, and the substrate 11 was placed in the holder 34. The apparatus was evacuated from one port 36 with a vacuum pump (not shown), and Ar gas was introduced from the other port 37.

ターゲツト35としてはSi10.5wt%、A5.
5wt%、残部Feから成るホツトプレスされた直径4
インチ、厚さ4mmのものを使用した。
As the target 35, Si 10.5 wt%, A5.
Hot-pressed diameter 4 consisting of 5 wt% balance Fe
An inch with a thickness of 4 mm was used.

基板11は、熱膨張係数が134×10-7/℃の(Mn
O)×(NiO)1-x(ただし、x=0.55)で表わ
され、岩塩型構造が主たるものである非磁性基板材料の
直径が2インチのものを表面粗さ150Åにポリツシユ
して使用した。
The substrate 11 has a coefficient of thermal expansion of 134 × 10 −7 / ° C. (Mn
O) × (NiO) 1−x (where x = 0.55), and the non-magnetic substrate material with a diameter of 2 inches, which is mainly composed of rock salt type structure, is polished to a surface roughness of 150Å. Used.

Ar圧力は4×10-3Torr、投入電力は500Wと
した。基板11上にFe−Si−A合金膜12を膜厚
4.7μmにて成膜した。該成膜された軟磁性膜は、そ
の後熱処理した。
Ar pressure was 4 × 10 −3 Torr, and input power was 500W. The Fe—Si—A alloy film 12 was formed on the substrate 11 to have a film thickness of 4.7 μm. The formed soft magnetic film was then heat-treated.

続いて、このFe−Si−A合金膜12の上に層間膜
13を形成した。層間膜の作製は、Fe−Si−A合
金膜作製に使用した前記マグネトロンスパツタ装置にR
F電源を接続したものを用い、ターゲツトとして直径4
インチ、厚さ5mmのSiOを使用した。Ar圧力は
4×10-3Torr、投入電力は300Wとした。斯る
条件にて基板の磁性膜上にSiO膜が膜厚0.3μm
にて形成された。
Then, an interlayer film 13 was formed on the Fe-Si-A alloy film 12. The interlayer film was produced by using the magnetron sputtering apparatus used for producing the Fe-Si-A alloy film as an R film.
Use the one connected to the F power supply, and the target diameter is 4
Inch, 5 mm thick SiO 2 was used. Ar pressure was 4 × 10 −3 Torr, and input power was 300W. Under these conditions, the SiO 2 film is 0.3 μm thick on the magnetic film of the substrate.
Formed in.

次いで、上記方法にて前記層間膜13上に磁性膜12及
び絶縁膜13の順に4回繰り返し、磁性膜構造体14を
得た。該磁性膜構造体14の全膜厚は20μmであつ
た。
Next, the magnetic film 12 and the insulating film 13 were sequentially repeated four times on the interlayer film 13 by the above method to obtain a magnetic film structure 14. The total film thickness of the magnetic film structure 14 was 20 μm.

更に、前記磁性膜構造体14の上にガラス膜15を通常
のスパツタリング等で形成した。該ガラス膜15はSi
(50wt%)−NaO(20wt%)−A
(10wt%)、残部としてBaO、KO、Ca
O等を含んだ組成のガラスを使用し、Ar圧力4×10
-3Torr、RF入力100W、基板温度100℃の条
件でスパツタリングにより膜厚1μmのガラス膜を作製
した。次いで、前記基板11と同じ材料で形成された他
の基板16を前記ガラス膜の上に積層して積層膜構造体
17を作製した。該積層膜構造体17は、650℃で1
5分の溶融圧着を行なつた。
Further, a glass film 15 was formed on the magnetic film structure 14 by ordinary sputtering or the like. The glass film 15 is made of Si
O 2 (50 wt%)-Na 2 O (20 wt%)-A 2
O 3 (10 wt%), balance BaO, K 2 O, Ca
A glass having a composition containing O and the like is used, and the Ar pressure is 4 × 10.
A glass film having a thickness of 1 μm was formed by sputtering under the conditions of −3 Torr, RF input of 100 W, and substrate temperature of 100 ° C. Next, another substrate 16 made of the same material as the substrate 11 was laminated on the glass film to produce a laminated film structure 17. The laminated film structure 17 has a temperature of 1 at 650 ° C.
Melt pressing was performed for 5 minutes.

次に、このようにして作製された積層膜構造体17は、
第1図に図示されるように、積層した厚さ方向に切断
し、一対のコア半体ブロツク18、19を形成し、コア
半体18に巻線溝20を形成した後、両コア半体ブロツ
ク18、19の突合せ面の接合を強固なものとするため
に、第1図に図示されるように、巻線溝20に対向し
た、コア半体19の両側面部に面取部を形成し、又、両
コア半体の前記ギヤツプ部とは反対側にも凹所を形成
し、同コア半体ブロツク18、19の突合せ面は研摩加
工後、SiOから成る非磁性のギヤツプスペーサー2
1をスパツタリングにより形成した。次いで、該面取部
及び凹所にSiO(38wt%)−B(20w
t%)−NaO(22wt%)、残部としてKO、
LiO等から成る組成を有したモールドガラスを溶融
充填した。
Next, the laminated film structure 17 manufactured in this way is
As shown in FIG. 1, the laminated cores are cut in the thickness direction to form a pair of core half blocks 18 and 19, and a winding groove 20 is formed in the core half body 18. In order to strengthen the joining of the abutting surfaces of the blocks 18 and 19, chamfered portions are formed on both side surfaces of the core half body 19 facing the winding groove 20 as shown in FIG. Also, a recess is formed on the opposite side of both core halves from the gear part, and the abutting surfaces of the core half blocks 18 and 19 are non-magnetic gear spacers made of SiO 2 after polishing. Two
1 was formed by spattering. Then, SiO 2 (38 wt%)-B 2 O 3 (20 w
t%)-Na 2 O (22 wt%), the balance K 2 O,
Mold glass having a composition such as Li 2 O was melt-filled.

最後に、テープ摺動面を形成するべくR研摩加工及び他
の成形加工並びに巻線加工が行なわれ、薄膜積層磁気ヘ
ツド10が得られた。
Finally, R polishing and other forming processes and winding process were performed to form a tape sliding surface, and a thin film laminated magnetic head 10 was obtained.

上記方法にて50個の磁気ヘツドを作製したが、モール
ドガラス部にクラツクが発生することに起因した不良品
は8個発生したに過ぎず、歩留りは84%であつた。
Fifty magnetic heads were manufactured by the above method, but only eight defective products were generated due to the generation of cracks in the mold glass portion, and the yield was 84%.

斯る構成の磁気ヘツド10は、極めて良好な磁気特性を
有するものであり、保磁力0.18 Oe、1MHzで
の比初透磁率2000が得られた。又、本磁気ヘツドを
トラツク巾が膜厚方向とされるVTR用磁気ヘツドと
し、トラツク幅20μm、テープヘツド相対速度5.8
m/secとし、メタルテープを用いて、再生出力を測
定したところ、5MHzでの再生出力で従来の基板、ガ
ラス膜、モールドガラスを用いた磁気ヘツドと同程度の
性能が得られた。
The magnetic head 10 having such a structure has extremely good magnetic properties, and a relative initial magnetic permeability of 2000 at a coercive force of 0.18 Oe and 1 MHz was obtained. Further, this magnetic head is a VTR magnetic head whose track width is in the film thickness direction, the track width is 20 μm, and the tape head relative speed is 5.8.
When the reproduction output was measured using a metal tape at m / sec, the same performance as that of a conventional magnetic head using a substrate, a glass film, and mold glass was obtained at a reproduction output of 5 MHz.

本発明に従つた薄膜磁気ヘツドは、製造過程において
も、又、長時間の使用においてもギヤツプ部に近接した
モールドガラス部にクラツクが生じることはなかつた。
In the thin film magnetic head according to the present invention, cracks did not occur in the mold glass portion near the gear portion even during the manufacturing process and during long-term use.

発明の効果 以上の如くに構成される本発明に係る薄膜積層磁気ヘツ
ドは、モールドガラス部にクラツクが発生することのな
い高品質のFe−Si−A合金磁性膜を用いた薄膜積
層磁気ヘツドを提供することができ、更に、歩留りを従
来の10%未満から80%程度にまで向上せしめること
のできるという利益を提供することができる。
The thin-film laminated magnetic head according to the present invention configured as described above is a thin-film laminated magnetic head using a high-quality Fe-Si-A alloy magnetic film that does not cause cracks in the mold glass portion. Further, it is possible to provide the advantage that the yield can be improved from less than 10% of the conventional case to about 80%.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明に係る薄膜積層磁気ヘツドの一実施例
を示す斜視図である。 第2図は、第1図の磁気ヘツドの層構成を示す部分平面
図である。 第3図は、第1図の磁気ヘツドのギヤツプ部を示す平面
図である。 第4図は、薄膜積層磁気ヘツドを作成するためのスパツ
タリング装置の概略構成図である。 10:薄膜積層磁気ヘツド 11、16:基板 12:磁性膜 13:層間膜 15:ガラス膜
FIG. 1 is a perspective view showing an embodiment of a thin film laminated magnetic head according to the present invention. FIG. 2 is a partial plan view showing the layer structure of the magnetic head of FIG. FIG. 3 is a plan view showing the gear part of the magnetic head shown in FIG. FIG. 4 is a schematic configuration diagram of a sputtering device for producing a thin film laminated magnetic head. 10: Thin film laminated magnetic head 11, 16: Substrate 12: Magnetic film 13: Interlayer film 15: Glass film

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】一方の基板と、該基板の上にFe−Si−
A合金磁性膜と層間膜とが交互に積層されて成る磁性
膜構造体と、該薄膜構造体の上に積層されたガラス膜
と、該ガラス膜の上に積層された他方の基板とを有した
積層膜構造体から成る二つのコア半体を突合せ、該両コ
ア半体をモールドガラスにて補強接合して構成される磁
気ヘツドにおいて、基板は(MnO)×(NiO)1-x
(ただし、0<x<1)で表わされ、岩塩型構造が主た
るものである非磁性基板材料で作製し、ガラス膜はSi
−NaO−A系ガラスで作製し、そして
モールドガラスはSiO−B−NaO系ガラ
スで作製されたことを特徴とする磁気ヘツド。
1. A substrate, and Fe--Si-- on the substrate.
It has a magnetic film structure in which an A alloy magnetic film and an interlayer film are alternately laminated, a glass film laminated on the thin film structure, and the other substrate laminated on the glass film. In a magnetic head formed by abutting two core halves made of the laminated film structure, and reinforcing the two core halves with a mold glass, the substrate is (MnO) × (NiO) 1-x
(However, 0 <x <1), and the glass film is made of Si with a non-magnetic substrate material that mainly has a rock salt structure.
O 2 -Na 2 O-A prepared in 2 O 3 based glass, and molded glass magnetic head, characterized in that it is produced by the SiO 2 -B 2 O 3 -Na 2 O -based glass.
【請求項2】基板は、x=0.55である(MnO)×
(NiO)1-x(ただし、0<x<1)で表わされ、岩
塩型構造が主たるものである非磁性基板材料で作製され
て成る特許請求の範囲第1項記載の磁気ヘツド。
2. The substrate is (MnO) × where x = 0.55.
The magnetic head according to claim 1, which is represented by (NiO) 1-x (where 0 <x <1) and is made of a non-magnetic substrate material having a rock-salt type structure as a main component.
【請求項3】ガラス膜は、SiO(40〜60wt
%)−NaO(10〜30wt%)−A(5
〜15wt%)を主たる成分とするガラスで作製されて
成る特許請求の範囲第1項又は第2項記載の磁気ヘツ
ド。
3. The glass film is made of SiO 2 (40-60 wt.
%) - Na 2 O (10~30wt %) - A 2 O 3 (5
The magnetic head according to claim 1 or 2, wherein the magnetic head is made of glass whose main component is -15 wt%.
【請求項4】モールドガラスは、SiO(25〜45
wt%)−B(10〜30wt%)−Na
(10〜30wt%)を主たる成分とするガラスで作製
されて成る特許請求の範囲第1項、第2項又は第3項記
載の磁気ヘツド。
4. The mold glass is made of SiO 2 (25 to 45).
wt%) - B 2 O 3 (10~30wt%) - Na 2 O
The magnetic head according to claim 1, 2, or 3, which is made of glass containing (10 to 30 wt%) as a main component.
JP62193406A 1987-07-31 1987-07-31 Magnetic head Expired - Lifetime JPH0624043B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62193406A JPH0624043B2 (en) 1987-07-31 1987-07-31 Magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62193406A JPH0624043B2 (en) 1987-07-31 1987-07-31 Magnetic head

Publications (2)

Publication Number Publication Date
JPS6437705A JPS6437705A (en) 1989-02-08
JPH0624043B2 true JPH0624043B2 (en) 1994-03-30

Family

ID=16307425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62193406A Expired - Lifetime JPH0624043B2 (en) 1987-07-31 1987-07-31 Magnetic head

Country Status (1)

Country Link
JP (1) JPH0624043B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE68915569T2 (en) * 1988-02-25 1994-09-29 Nippon Mining Co Non-magnetic substrate of a magnetic head, magnetic head, and substrate manufacturing method.
JP2542946B2 (en) * 1990-04-27 1996-10-09 株式会社ジャパンエナジー Magnetic head and manufacturing method thereof
JPH05117023A (en) * 1991-10-25 1993-05-14 Nec Corp Non-magnetic substrate for magnetic head and magnetic heat

Also Published As

Publication number Publication date
JPS6437705A (en) 1989-02-08

Similar Documents

Publication Publication Date Title
EP0220012B1 (en) Layered magnetic film structure, method of its production and application in a magnetic head
US4535376A (en) Magnetic head incorporating an amorphous magnetic metallic film having a thickness equal to a track width
EP0356155B1 (en) Magnetic head
EP0128586B1 (en) Magnetic head
JP2554041B2 (en) Method of manufacturing magnetic head core
JPH0624043B2 (en) Magnetic head
JPH0526244B2 (en)
JPH0439733B2 (en)
US5208971A (en) Process of manufacturing a magnetic head
US5584116A (en) Method for fabricating a magnetic head
JPH06180816A (en) Production of magnetic head
JP2874787B2 (en) Manufacturing method of alloy magnetic thin film laminate
JPS61104412A (en) Magnetic head
JPS61250810A (en) Magnetic head and its production
JPS59117729A (en) Production of magnetic head core
JPH0668423A (en) Thin-film magnetic head
JPS63302406A (en) Magnetic head
JPH0254405A (en) Magnetic head
JPS63249913A (en) Magnetic head
JPS6352312A (en) Thin film magnetic head
JPS6331855B2 (en)
JPS6192408A (en) Magnetic head
JP2005141843A (en) Manufacturing method of magnetic head
JPH0468682B2 (en)
JPS62141609A (en) Manufacture of magnetic head