JPS59117729A - Production of magnetic head core - Google Patents
Production of magnetic head coreInfo
- Publication number
- JPS59117729A JPS59117729A JP23298582A JP23298582A JPS59117729A JP S59117729 A JPS59117729 A JP S59117729A JP 23298582 A JP23298582 A JP 23298582A JP 23298582 A JP23298582 A JP 23298582A JP S59117729 A JPS59117729 A JP S59117729A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic
- core
- laminate
- amorphous alloy
- alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y25/00—Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/127—Structure or manufacture of heads, e.g. inductive
- G11B5/147—Structure or manufacture of heads, e.g. inductive with cores being composed of metal sheets, i.e. laminated cores with cores composed of isolated magnetic layers, e.g. sheets
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
- H01F1/147—Alloys characterised by their composition
- H01F1/153—Amorphous metallic alloys, e.g. glassy metals
- H01F1/15383—Applying coatings thereon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F10/00—Thin magnetic films, e.g. of one-domain structure
- H01F10/32—Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
- H01F10/3204—Exchange coupling of amorphous multilayers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/24—Magnetic cores
- H01F27/245—Magnetic cores made from sheets, e.g. grain-oriented
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/02—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
- H01F41/0206—Manufacturing of magnetic cores by mechanical means
- H01F41/0213—Manufacturing of magnetic circuits made from strip(s) or ribbon(s)
- H01F41/0226—Manufacturing of magnetic circuits made from strip(s) or ribbon(s) from amorphous ribbons
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Nanotechnology (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Dispersion Chemistry (AREA)
- Magnetic Heads (AREA)
Abstract
Description
【発明の詳細な説明】
この発明I−1′磁気へラドコアの製造方法に関するも
のであり、更に詳しく述べるならば非晶質合金全使用し
た磁気ヘッドコアの高周波特性を向上せしめる製造方法
に関するものである。[Detailed Description of the Invention] This invention I-1' relates to a method for manufacturing a magnetic helad core, and more specifically, it relates to a method for manufacturing a magnetic head core that uses entirely an amorphous alloy to improve the high frequency characteristics. .
従来、磁気へラドコアは主としてフェライト焼結体から
切ジ出されに薄片を積層接合して形成されてい女。近年
遷移金属とガラス化元素を種々組み合わせた非晶質磁性
合金が軟磁性材料として通することが注目さね、その研
究が活発に行なわわている。そして磁気へラドコアとし
て従来のフェライト等にかえて非晶質磁性合金を使用す
るようになり、非晶質磁性合金の薄帯を積層した磁気ヘ
ッドコアが市販されている。従来の非晶質合金磁気へラ
ドコアは主として変圧器又は音響機器などへの使用を意
図しkものであり、比較的低い周波数で作動させるもの
であった。一方、高密度磁気記録再生用磁気ヘッドの要
求が高まり又ビデオテープとしてメガヘルツの高周波領
域で磁気へラドコアを費用することが多くなつfc。と
ころが従来の非晶質磁性合金は薄帯形態のものであった
ため■
に仮に薄帯をさらに薄片に加工したとしても厚さ10μ
mぐらい薄#が経済的に限度であり、高周波領域では渦
電流損が大きい欠点がある。Conventionally, magnetic cores have been mainly formed by laminating and bonding thin pieces cut out from ferrite sintered bodies. In recent years, amorphous magnetic alloys made of various combinations of transition metals and vitrifying elements have attracted attention as soft magnetic materials, and research on the subject is being actively conducted. Amorphous magnetic alloys have come to be used instead of conventional ferrite and the like as magnetic head cores, and magnetic head cores made of laminated ribbons of amorphous magnetic alloys are now commercially available. Conventional amorphous alloy magnetic helical cores were mainly intended for use in transformers or audio equipment, and were operated at relatively low frequencies. On the other hand, the demand for magnetic heads for high-density magnetic recording and reproduction is increasing, and the cost of magnetic helad cores in the high frequency range of megahertz for video tapes is increasing. However, since conventional amorphous magnetic alloys were in the form of ribbons, even if the ribbons were further processed into thin pieces, the thickness would be only 10 μm.
The economical limit is a thin # of about 1.5 m, and there is a drawback that eddy current loss is large in the high frequency range.
更に従来の非晶質合金磁気へラドコアの製造方法には高
周波領域での磁気特性を劣化させるなど問題が多い。す
なわち従来法では非晶質合金母材を急冷にまり薄帯とじ
たのち、磁気合、/ドコアの形状に加工し、続いて30
〜50μmの厚さの薄片にラッピング等により加工眸し
たのち、積層接合、コアのギャップ絶縁部形成及びコア
片接合の諸工程を経て磁気へラドコアを完成するもので
あつ霞。この方法ではラッピング等の研磨による薄如化
の限界上高周波特性に限界があるほかに、加工精度の面
から個々の薄片に厚み及び表面粗さのばらつきが生じ、
ヘッドコアの特性に影響を与えていた。しかも薄帯をコ
ア形状に力U工するときのばらつきによってコアの内周
面及び外周面の寸法が積層薄片間で不揃いになり、磁気
へラドコアの特性に影響を与えていた。更に前述の工程
は全体として煩雑であるために磁気ヘッドコアの製造能
率が低下していた。Furthermore, the conventional method of manufacturing an amorphous alloy magnetic helad core has many problems, such as deterioration of magnetic properties in a high frequency range. In other words, in the conventional method, the amorphous alloy base material is rapidly cooled and bound into a ribbon, then processed into a magnetic composite/docore shape, and then
After processing it into a thin piece with a thickness of ~50 μm by lapping, etc., the magnetic herad core is completed through various processes such as lamination bonding, forming the gap insulation part of the core, and bonding the core pieces. In this method, there is a limit to the high frequency characteristics due to the thinning caused by polishing such as lapping, and due to processing accuracy, variations in thickness and surface roughness of individual thin pieces occur.
This affected the characteristics of the head core. Moreover, due to variations in force-machining the thin ribbon into the core shape, the dimensions of the inner and outer circumferential surfaces of the core become uneven between laminated thin pieces, which affects the characteristics of the magnetic helad core. Furthermore, since the above-mentioned steps are complicated as a whole, the manufacturing efficiency of the magnetic head core has been reduced.
更に、非晶質合金磁気へラドコアの製造方岱として、非
晶質合金を薄膜の形態で得、こ62予め別途用意した非
磁性ブロックとの間に挟着した積層体を形成し、こh4
−コア状に加工し、そして以下ギヤツブ部絶縁及び接合
の工程を経て磁気−ラドコアにすることも公知である。Furthermore, as a manufacturing method of an amorphous alloy magnetic held core, an amorphous alloy is obtained in the form of a thin film, and a laminate is formed by sandwiching this between a non-magnetic block prepared separately in advance.
- It is also known to process the core into a magnetic rad core through the following steps of insulating the gear part and joining.
しかしながらこの方法では非晶質合金薄膜はベースとな
る非磁性ブロック状に形成され、そしてこi、=4上述
のように接合して多層体とするので、せいぜい3層程度
の多層体磁気へラドコアしか製謹できない。この場合コ
アの磁化の強さが弱く特性が劣るという問題がある。さ
らに現状のへラドコア加工法においては磁壁運動に伴う
バルクハウゼン雑音の発生と周波数特性の劣化が防止し
難い欠点がある。However, in this method, the amorphous alloy thin film is formed in the shape of a non-magnetic block as a base, and this i,=4 is bonded as described above to form a multilayer body. I can only apologize. In this case, there is a problem that the magnetization strength of the core is weak and the characteristics are inferior. Furthermore, the current herad core processing method has the drawback that it is difficult to prevent the occurrence of Barkhausen noise and deterioration of frequency characteristics due to domain wall motion.
本発明は以上のような技術の水準に鑑み、高周波領域で
の磁気特性に優わ、特にMHz領域での実′効透磁率の
減少が少なく、しかも加工工程に起因する磁気特性劣化
を防止しうる磁気へラドコアの製造方法を提供すること
を目的とする。In view of the above-mentioned state of the art, the present invention has excellent magnetic properties in the high frequency range, has little reduction in effective magnetic permeability especially in the MHz range, and prevents deterioration of magnetic properties due to processing steps. The purpose of the present invention is to provide a method for manufacturing a magnetic herad core.
本発明は、非磁性基板上に非晶質合金と絶縁物質の薄膜
を交互に沈着させて多層膜積層体となし。In the present invention, thin films of an amorphous alloy and an insulating material are alternately deposited on a non-magnetic substrate to form a multilayer film stack.
ツブを介して接合することを特徴とする磁気へラドコア
の製造方法にある。以下本発明の詳細な説明する。本発
明に卦いてはコア用積層体を非晶質合金と絶縁物質の薄
膜を交互沈着にょ9形成しているために、従来の非晶質
合金薄帯積層方法と比較してコアの格段の薄型化が可能
になる。この場合非晶質合金の膜厚は2μm以下好捷し
くは1μm前物質の薄膜の総数は磁気ヘッドのトラック
幅に応じて決定さf1%VTRヘッドでハ38μm〜5
8μmに0
〜−である。本発明の非晶質磁性合金は高周波λ領域で
使用されるので、渦電流損失を少くして高周波領域にお
ける実効透磁率(μe)の、低下を防ぐために、厚さ数
ミクロン以下の薄膜を用いるのが有利である。しかし、
材料の厚さが薄くなると磁化の強さが小さくなるので多
層構造にして補う必要がある。次に沈着の方法としては
、真空蒸着、イオンビーム蒸着、イオンプレーティノブ
及びスパッタリングが考えらねるが、広範囲の組成に対
して適用が可能であり、薄膜相互間の密着性にも優わて
いる点で両者の薄膜ともスパッタリングで形成すること
が好ましい。A method for manufacturing a magnetic helad core, which is characterized by joining via a knob. The present invention will be explained in detail below. In the present invention, since the core laminate is formed by alternately depositing thin films of an amorphous alloy and an insulating material, the core laminate is significantly improved compared to the conventional method of laminating amorphous alloy ribbons. It becomes possible to make it thinner. In this case, the film thickness of the amorphous alloy is preferably 2 μm or less, preferably 1 μm.The total number of thin films of the pre-material is determined depending on the track width of the magnetic head.
It is 0 to - at 8 μm. Since the amorphous magnetic alloy of the present invention is used in the high frequency λ region, a thin film with a thickness of several microns or less is used in order to reduce eddy current loss and prevent a decrease in effective magnetic permeability (μe) in the high frequency region. is advantageous. but,
As the thickness of the material decreases, the strength of magnetization decreases, so it is necessary to compensate for this by creating a multilayer structure. Next, as a deposition method, vacuum evaporation, ion beam evaporation, ion platen knob, and sputtering are considered, but they are applicable to a wide range of compositions and have excellent adhesion between thin films. In this respect, both thin films are preferably formed by sputtering.
基板としては非磁性を有する物質であれば特に制限はも
ないが、ガラス、セラミック、ポリイミドフィルムなど
の耐熱樹脂、等非晶質合金膜との反応性、mN性、熱膨
腸係数等の面から1強゛罰な積層構造となるものが好ま
しい。基板の厚さも特に制限はないが厚さコア寸法の小
型および加工上の便利さから0.05〜02咽が好まし
い。There are no particular restrictions on the substrate as long as it is non-magnetic, but glass, ceramics, heat-resistant resins such as polyimide films, reactivity with amorphous alloy films, mN property, thermal expansion coefficient, etc. It is preferable to have a laminated structure with a maximum of 1. The thickness of the substrate is also not particularly limited, but is preferably from 0.05 to 0.02 mm from the viewpoint of small core dimensions and convenience in processing.
次に、本発明においては基板をあらかじめ半円形’J”
ftは馬蹄形の一対のへラドコア状に形成しておき、こ
のコア形状の基板上に非晶質合金薄膜と絶縁物質薄膜を
交互に沈着させ、沈着と同時にコア形状を有する多層膜
積層体を得るか、あるいけ捷斤、あらかじめ基板上に非
晶質合金の薄膜と絶縁物質の薄膜とを交互に沈着させて
多層膜積層体となし、しかる後に切削加工して一対のへ
ラドコア状に切削加工して、コア形状を有する多層膜積
層体を得ることができる。Next, in the present invention, the substrate is shaped in advance into a semicircular 'J' shape.
ft is formed in the shape of a pair of horseshoe-shaped helad cores, and an amorphous alloy thin film and an insulating material thin film are alternately deposited on the core-shaped substrate to obtain a multilayer film laminate having a core shape at the same time as the deposition. Alternatively, a thin film of an amorphous alloy and a thin film of an insulating material are alternately deposited on a substrate in advance to form a multilayer film laminate, and then cut into a pair of helad cores. As a result, a multilayer film laminate having a core shape can be obtained.
前者の場合は沈着と同時にコアの半体形状物が得らねる
ので加工応力による磁性劣化の問題がない。In the former case, since a core half-shaped object cannot be obtained at the same time as the deposition, there is no problem of magnetic deterioration due to processing stress.
1介加工法としてはダイヤモンドカッター、超音波加工
、レーザー加工、及び打抜きなどの加工法す持能である
。打抜加工は絶縁基板がポ1)イミドフィルムの場合に
高生産性を達成できる。One processing method is diamond cutter, ultrasonic processing, laser processing, and punching. High productivity can be achieved in the punching process when the insulating substrate is an imide film.
一般に各コア半休は対称形状であり、突合わせにより生
じる一対の突合わせ端のうち磁気記録媒体と接するコア
ギャップには5in2.スピネル(ン?203・Mg0
) 等の公知の絶縁材料をスパッタ等により配置充填
し、ニアギャップの反対側のギャップには公知のCu−
Ag等の導電性材料スペーサーを介挿することにより、
これらのギャップを介して各コア半片を接合し所定の磁
路を形成する。Generally, each core half has a symmetrical shape, and the core gap that contacts the magnetic recording medium between the pair of abutted ends resulting from the abutment has a 5in2. Spinel (N?203・Mg0
) and other known insulating materials are placed and filled by sputtering or the like, and the gap on the opposite side of the near gap is filled with a known insulating material such as Cu-
By inserting a conductive material spacer such as Ag,
Each core half piece is joined through these gaps to form a predetermined magnetic path.
必要であわば、焼鈍をコア半片接合前又は後に行った後
に基板と同形状であり又好1しくは同質の非磁性材料を
ダミー基板として上面に接着すると、ニアの形状の安定
性を高めることができる。If necessary, after annealing is performed before or after joining the core halves, a non-magnetic material having the same shape and preferably the same quality as the substrate is bonded to the upper surface as a dummy substrate to increase the stability of the near shape. I can do it.
この場合ダミー基板はあらかじめ孔明き円板上に加工し
て積層体の上面にエポキン樹脂等を使用して接着すハば
よい。In this case, the dummy substrate may be formed into a perforated disk in advance and bonded to the upper surface of the laminate using Epoquin resin or the like.
本発明によりは高周波特性は、現状の10MHz以下か
ら500 Ml(zEで使用可能範囲が広がり、高密度
記録が達成さね、かつ磁気へラドコアの小型化及び軽量
化が達成される。According to the present invention, the usable range of high frequency characteristics is expanded from the current 10 MHz or less to 500 Ml (zE), high density recording is achieved, and the magnetic herad core is made smaller and lighter.
非晶質合金は従来液体急冷法及びスパッター法すること
ができる。その例の組成として1ce−C。Amorphous alloys can be conventionally liquid quenched and sputtered. An example composition is 1ce-C.
−8i−B系の遷移金属トロイダル系合金などミがが特
に優ねた高周波特性を奏するものである。-8i-B series transition metal toroidal alloys exhibit particularly excellent high frequency characteristics.
以下好ましい組成の非晶質合金について説明する。この
合金は組成式(T −M) + −x (Mr、 Mn
) xで表わさ力るものである。この組成式において
。An amorphous alloy having a preferable composition will be explained below. This alloy has the compositional formula (T -M) + -x (Mr, Mn
) is represented by x. In this composition formula.
’1”−MはCo((主成分とする強磁性金属であり、
C。'1''-M is Co ((a ferromagnetic metal whose main component is
C.
が全体の90a籐以上含有さねている。磁性を損なわな
い範囲でCo f 、Fe又はNiのうちの1釉以上の
金属で置換しkものでも良い。置換可能な限界は1゜の
うち少くとも1鍾以上を使用する。It contains more than 90a of rattan. The glaze may be replaced with one or more metals among Co f , Fe, and Ni as long as the magnetism is not impaired. The limit of possible replacement is to use at least one peg out of 1°.
Mrlは磁歪を負の成分にする元素でるV〜b、 Ta
、MOlWのうち少くとも1種以上を使用する。Mrと
Mu 〕割合(,1一般K M11/([4N−MII
)=0.3〜0.98度が良い。左とえばCoにNb
、Ta全添加した場合i/i−第1図に示すとおり磁歪
(入−、)は負を示す。Mrl is an element that makes magnetostriction a negative component, V~b, Ta
, MOLW is used. Mr and Mu] ratio (,1 general K M11/([4N-MII
) = 0.3 to 0.98 degrees is good. On the left, for example, Co and Nb
, when all Ta is added, the magnetostriction (in-, ) is negative as shown in i/i-FIG.
MlおよびMuの割合は飽和磁化、磁歪、異方性磁界等
の磁気的性質を考慮して選択することができの割合を変
化させfr場合の磁歪(入S)の変化と磁界熱処理中に
誘起される異方性磁界(Hk) −i示したものである
。第2図ではNb/(Zr+Nb ) −0,65付近
で磁歪がほとんど零であり、異方性磁界も小さくなる。The ratio of Ml and Mu can be selected taking into account the magnetic properties such as saturation magnetization, magnetostriction, and anisotropic magnetic field. The anisotropic magnetic field (Hk) −i is shown. In FIG. 2, the magnetostriction is almost zero near Nb/(Zr+Nb) -0.65, and the anisotropic magnetic field also becomes small.
このようにして得らt1女非晶質合金は非晶質化が容易
で高飽和磁化特性を有し、零磁歪であり且つ誘導磁気異
方性が小さい、、、’Fjr、零磁歪とすることにより
高温に放置しRUの透磁率の低下が少なくなり、熱的安
定性を著しく改善することが可能となる。たとえば第3
図はCo−ZrとC)oB7Zrs Nb8の薄膜を高
温に放置した時の透磁率の低下を示しkものであるが、
Co−Zr′r:は透磁率の低さらに、本発明によねば
MIま女は■の合金成分造することができる。The thus obtained t1 female amorphous alloy is easily made amorphous, has high saturation magnetization characteristics, has zero magnetostriction, and has small induced magnetic anisotropy. This reduces the decrease in magnetic permeability of RU when left at high temperatures, making it possible to significantly improve thermal stability. For example, the third
The figure shows the decrease in magnetic permeability when thin films of Co-Zr and C)oB7ZrsNb8 are left at high temperatures.
Co--Zr'r: has a low magnetic permeability.Furthermore, according to the present invention, the MI material can be made of the alloy component (2).
スパック−法による非晶質合金の薄膜の製造はT−Mr
−x (ME、 Mn)x組成においてけX成分量が少
な(ても可能となる。したがってT−M成分をそれだけ
多く含有させることが可能となる利点を有する。The production of thin films of amorphous alloys by the spuck method is T-Mr.
-x (ME, Mn) It is possible even if the amount of the X component is small in the x composition.Therefore, it has the advantage that it is possible to contain a correspondingly large amount of the TM component.
次に実施例をあげて説明する。Next, an example will be given and explained.
実施例 1
第4図に示すスパッタ装置を用いて多層膜積層体をスパ
ッター法により沈着させて形成した。図せしめられる基
板、5及び6は直流又は交流電源である。Example 1 A multilayer film stack was deposited by sputtering using the sputtering apparatus shown in FIG. 4 to form a multilayer film stack. The illustrated substrates, 5 and 6, are DC or AC power supplies.
充分平滑な表面を有するガラス基板4(寸法50H(g
B X 50m+n X 0.1 mm )の表面に、
C087ZI°5 N1)8 ノ組成を有する非晶質合
金2を薄膜8(第5図)として10μmの厚さにガラス
基板4上に沈着した。スパツタリング条件は
入力電力 500W
Arカス圧力 3 X 10−” Torr膜厚
形成速度 05μtn/” であった。Glass substrate 4 with a sufficiently smooth surface (dimensions 50H (g
B x 50m + n x 0.1 mm) on the surface,
An amorphous alloy 2 having a composition of C087ZI°5N1)8 was deposited as a thin film 8 (FIG. 5) on a glass substrate 4 to a thickness of 10 μm. The sputtering conditions were: input power of 500 W, Ar gas pressure of 3×10-” Torr, and film thickness formation rate of 05 μtn/”.
次に同一装置を用いて絶縁物質3のスパツタリングを行
い、非晶質合金薄膜8(第5図)の上に高周波スパッタ
法により0.015μmの膜厚を有するSin、、絶縁
体9を形成した。この操作を交互に繰返し、非晶質合金
薄膜層を15層、絶縁物薄膜層を14層有寸る多層膜積
層体12を得た。Next, the insulating material 3 was sputtered using the same equipment, and an insulator 9 of 0.015 μm thick was formed on the amorphous alloy thin film 8 (FIG. 5) by high-frequency sputtering. . This operation was repeated alternately to obtain a multilayer film laminate 12 having 15 amorphous alloy thin film layers and 14 insulating thin film layers.
次いで該多層膜積層体たから超音波加工により所定寸法
の半環状のコア半体14(第6図)を切り出し、このコ
ア半休を回転磁場中で370℃、30分の熱処理をして
磁気異方性を除去した。Next, a semi-annular core half 14 (FIG. 6) of a predetermined size is cut out from the multilayer film laminate by ultrasonic processing, and this core half is heat-treated in a rotating magnetic field at 370° C. for 30 minutes to obtain magnetic anisotropy. Removed gender.
このコア半体14の磁気特性を測定したところ次の結果
を得た。When the magnetic properties of this core half body 14 were measured, the following results were obtained.
抗磁力 HC”” 0.020e
飽和磁束密1fBS=11,0OOG
初期透磁率 μi = 20,000
実効透磁率(IOMI−1z )μe f f = 2
000このようにして得らi”Ifrコアは実効透磁率
が高く特にMHz以上の高周波域における磁気特性にす
ぐねたものとなる。Coercive force HC"" 0.020e Saturation magnetic flux density 1fBS = 11,0OOG Initial magnetic permeability μi = 20,000 Effective magnetic permeability (IOMI-1z) μe f f = 2
The i''Ifr core thus obtained has a high effective magnetic permeability and excellent magnetic properties, particularly in the high frequency range of MHz or higher.
次に一対のコア半体14を用意し、ギャップ面14aお
よびパックギャップ面14b ’iラッピノグ加工で平
滑に仕上げた後、ギャップ面14aに高周波スパッタ法
に二り、03%厚さのS1←)2皮膜月(第8図)を形
成したのち、一対のコア半体14を対向させてバックギ
ャップgB14bをAg−Cu合金スヘーサ−12で接
合1−斤、、最後に基板4と同質の0.1mm厚さのガ
ラス保獲板10i接着剤で接着して磁気ヘッドコア16
を得た。Next, a pair of core halves 14 are prepared, and the gap surface 14a and the pack gap surface 14b are smoothed by lapping process, and then the gap surface 14a is coated with a high frequency sputtering method to give a thickness of 0.3% (S1←) After forming the 2-layer film (FIG. 8), the pair of core halves 14 are made to face each other, and the back gap gB 14b is bonded with an Ag-Cu alloy spacer 12. 1mm thick glass retaining plate 10I Glue with adhesive and attach magnetic head core 16
I got it.
このようにして得られた多層膜構造の磁気へラドコアは
高周波域(Ml−1,z域)での磁気特性(特に実効導
磁率1te f f )が曖jだものが得られる。捷た
生産工程が従来に比しきわめて簡略化できるので経済的
である他に磁気特性の劣化も少ない。The thus obtained magnetic herad core having a multilayer film structure has ambiguous magnetic properties (particularly effective magnetic permeability 1te ff ) in a high frequency region (Ml-1, z region). Since the production process for cutting can be extremely simplified compared to the conventional method, it is not only economical but also has little deterioration in magnetic properties.
特に、□□□−ZrJ弗系磁性体を使用すると、磁歪常
数(入S)が零になりそして磁気異方性が減少するので
磁気ヘッドとして優fまた特性が得られる。さらに、磁
気特性の使用又は放置中の劣化が少ない、組成の多少の
変動にもかかわらす零磁歪特性が安定的に保frhる、
等の磁気ヘッドとして要求される性能が高度のレベルで
晶足さ力、る。In particular, when a □□□-ZrJ fluoro-based magnetic material is used, the magnetostriction constant (input S) becomes zero and the magnetic anisotropy decreases, so that excellent f-characteristics can be obtained as a magnetic head. Furthermore, the magnetic properties hardly deteriorate during use or storage, and the zero magnetostriction properties are stably maintained despite some fluctuations in the composition.
The performance required for magnetic heads such as these is achieved at a high level.
第1図はCo−NL+、Co−Ta 合金(D磁歪’f
:示fクラフ、第2図1d Co 87 (Zr、 N
b WRハ磁歪と異方性磁界を示すグラフ、第3図は熱
処理による透磁率の変化を示すグラフ、第4図はスパッ
タ装置の概念図、第5図は多層膜積層体の断面図、第6
図はコア半休の斜視図、第7図はガラス保護基板を接着
した多層膜積層体の断面図、及び第8図は第6図のコア
半休を接着したー具体例1に係る磁気ヘッドコアの斜視
図である。 □
1・・・真空槽、 2・・・非晶質合金、3・・・絶縁
物質、4・基板、 8・・・非晶質合金薄膜、 9
・・・絶縁体10・・・ガラス保護基板、14−・・コ
ア半休、]6磁気へラドコア
特許出願人 昭和電工株式会社
10” 帛1図
尾2図
Nb/(Zr+Nb)
第3因
熱処理時間(岨m)
馬7図
児6図Figure 1 shows Co-NL+, Co-Ta alloy (D magnetostrictive 'f
: Show f graph, Fig. 2 1d Co 87 (Zr, N
b WR graph showing magnetostriction and anisotropic magnetic field, Figure 3 is a graph showing changes in magnetic permeability due to heat treatment, Figure 4 is a conceptual diagram of the sputtering equipment, Figure 5 is a cross-sectional view of the multilayer film stack, 6
The figure is a perspective view of a half-core core, FIG. 7 is a cross-sectional view of a multilayer film laminate with a glass protection substrate bonded to it, and FIG. 8 is a perspective view of a magnetic head core according to Example 1 in which the half-core core of FIG. 6 is bonded. It is a diagram. □ 1... Vacuum chamber, 2... Amorphous alloy, 3... Insulating material, 4... Substrate, 8... Amorphous alloy thin film, 9
...Insulator 10...Glass protection substrate, 14-...Core half-closed, ]6 Magnetic Herad Core Patent Applicant Showa Denko Co., Ltd. 10" (岨m) 7 horses, 6 children
Claims (1)
に沈着させて多層膜積層体となし、該多層膜積層体を沈
着と同時に又は沈着後に一対のコア形状に形成し、この
一対のコア形状体をギヤツブ全弁し、て接合することを
特徴とする磁気へラドコアの製造方法。 2 非晶質合金が組成式(1゛・fVl)、、、、x(
Ml、MTI)Xで示されるもので、’]”−Mけ主と
してCoから成ジ、C。 の−MeiたはN1のうち少くとも1種により10チ」
ン、内で置換用能であジ、MTはZrJff、 Yのう
ち少くとも1種以上の金属元素から成9、rvlnは寅
′PへMo、 Wのうち少くとも1種以上の金属元素か
ら成す、0.05 ≦X ≦0.2ihYMn/(MI
−I−Mn )−0,3〜0.9 ff1ff+a足す
ることを特徴とする特許請求の範囲第1項記載の磁気ヘ
ッドコアの製造方法。 3 非晶質合金と絶縁物質の薄膜を沈着させる方法がス
パンター法によることを特徴とする特許請求の範囲第1
項記載の磁気へラドコアの製造方法。[Claims] 1. Thin films of an amorphous alloy and an insulating material are alternately deposited on a non-magnetic substrate to form a multilayer film stack, and the multilayer film stack is formed into a pair of core shapes at the same time or after the deposition. A method for manufacturing a magnetic helad core, characterized in that the pair of core-shaped bodies are connected by a full gear valve. 2 The amorphous alloy has the composition formula (1゛・fVl), ,,x(
Ml, MTI)
MT is composed of at least one metal element among ZrJff and Y, and rvln is composed of at least one metal element among Mo and W to P. 0.05 ≦X ≦0.2ihYMn/(MI
-I-Mn)-0.3 to 0.9 ff1ff+a is added to the method of manufacturing a magnetic head core according to claim 1. 3. Claim 1, characterized in that the method of depositing the thin film of the amorphous alloy and the insulating material is by the Spunter method.
A method for manufacturing a magnetic herad core as described in .
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23298582A JPS59117729A (en) | 1982-12-24 | 1982-12-24 | Production of magnetic head core |
US06/734,827 US4608297A (en) | 1982-04-21 | 1985-05-17 | Multilayer composite soft magnetic material comprising amorphous and insulating layers and a method for manufacturing the core of a magnetic head and a reactor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23298582A JPS59117729A (en) | 1982-12-24 | 1982-12-24 | Production of magnetic head core |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS59117729A true JPS59117729A (en) | 1984-07-07 |
Family
ID=16947983
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23298582A Pending JPS59117729A (en) | 1982-04-21 | 1982-12-24 | Production of magnetic head core |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59117729A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2698479A1 (en) * | 1992-11-25 | 1994-05-27 | Commissariat Energie Atomique | Anisotropic microwave composite. |
EP0780912A1 (en) * | 1995-12-19 | 1997-06-25 | Matsushita Electric Industrial Co., Ltd. | Magnetoresistance element, magnetoresistive head and magnetoresistive memory |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5591106A (en) * | 1978-12-27 | 1980-07-10 | Matsushita Electric Ind Co Ltd | Magnetic substance-insulator multi-layer compound and production of the same |
JPS58185742A (en) * | 1982-04-21 | 1983-10-29 | Showa Denko Kk | Amorphous magnetic alloy magnetic material |
-
1982
- 1982-12-24 JP JP23298582A patent/JPS59117729A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5591106A (en) * | 1978-12-27 | 1980-07-10 | Matsushita Electric Ind Co Ltd | Magnetic substance-insulator multi-layer compound and production of the same |
JPS58185742A (en) * | 1982-04-21 | 1983-10-29 | Showa Denko Kk | Amorphous magnetic alloy magnetic material |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2698479A1 (en) * | 1992-11-25 | 1994-05-27 | Commissariat Energie Atomique | Anisotropic microwave composite. |
WO1994012992A1 (en) * | 1992-11-25 | 1994-06-09 | Commissariat A L'energie Atomique | Anisotropic microwave composite |
EP0780912A1 (en) * | 1995-12-19 | 1997-06-25 | Matsushita Electric Industrial Co., Ltd. | Magnetoresistance element, magnetoresistive head and magnetoresistive memory |
US5715121A (en) * | 1995-12-19 | 1998-02-03 | Matsushita Electric Industrial Co., Ltd. | Magnetoresistance element, magnetoresistive head and magnetoresistive memory |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4608297A (en) | Multilayer composite soft magnetic material comprising amorphous and insulating layers and a method for manufacturing the core of a magnetic head and a reactor | |
JPH0542726B2 (en) | ||
EP0206658A2 (en) | Magnetic head | |
JPS6134707A (en) | Magnetic head | |
JPH06318516A (en) | Soft magnetic multilayer film and magnetic head using same | |
JPS59117729A (en) | Production of magnetic head core | |
JPH0624044B2 (en) | Composite type magnetic head | |
JP3524421B2 (en) | Magnetic head | |
JPS5826310A (en) | Magnetic head | |
KR100324730B1 (en) | Method for fabricating magnetic head | |
JP3211295B2 (en) | Stacked magnetic head | |
JPS63112809A (en) | Magnetic head | |
JPH0782615B2 (en) | Substrate material for magnetic head and magnetic head | |
JPH03144904A (en) | Manufacture of laminate type magnetic head | |
KR950011127B1 (en) | Magnetic head | |
JPH0624043B2 (en) | Magnetic head | |
JP2882927B2 (en) | Magnetic head and method of manufacturing magnetic head | |
JPS61230607A (en) | Magnetic head core | |
JP2542946B2 (en) | Magnetic head and manufacturing method thereof | |
JPH02137104A (en) | Magnetic head and manufacture thereof | |
JPH113506A (en) | Magnetic head | |
JPH08130114A (en) | Multilayer soft magnetic film | |
JPS59119712A (en) | Manufacture of reactor core | |
JPH07110910A (en) | Manufacture of magnetic head | |
JPH09120504A (en) | Production of magnetic head |