JPH0782615B2 - Substrate material for magnetic head and magnetic head - Google Patents

Substrate material for magnetic head and magnetic head

Info

Publication number
JPH0782615B2
JPH0782615B2 JP63196515A JP19651588A JPH0782615B2 JP H0782615 B2 JPH0782615 B2 JP H0782615B2 JP 63196515 A JP63196515 A JP 63196515A JP 19651588 A JP19651588 A JP 19651588A JP H0782615 B2 JPH0782615 B2 JP H0782615B2
Authority
JP
Japan
Prior art keywords
magnetic
magnetic head
head
substrate
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63196515A
Other languages
Japanese (ja)
Other versions
JPH02154307A (en
Inventor
三男 里見
浩幸 小方
健 広田
公一 釘宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63196515A priority Critical patent/JPH0782615B2/en
Publication of JPH02154307A publication Critical patent/JPH02154307A/en
Publication of JPH0782615B2 publication Critical patent/JPH0782615B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 産業上の利用分野 この発明は軟磁性金属膜を蒸着するための非磁性の磁気
ヘッド用基板材料および磁気ヘッドに関するものであ
る。
Description: TECHNICAL FIELD The present invention relates to a nonmagnetic substrate material for a magnetic head and a magnetic head for depositing a soft magnetic metal film.

従来の技術 従来より磁気ヘッド用コア材として、加工性、耐摩耗性
が良いという特長からフェライトが広く使用されている
が、飽和磁束密度BSが合金材料に比べて30〜50%低い。
従って、近年登場してきた高抗磁力の高密度記録媒体に
使用した場合、ヘッドコア材料の磁気飽和が問題とな
り、このような観点から、高密度記録媒体の対応ヘッド
として、センダストや非晶質の合金材料がヘッド用コア
材料に供されている。この様な合金材料用基板材料とし
てチタン酸バリウムBaTiO3、やチタン酸カルシウムCaTi
O3等のセラミック材料が提案されていた。所がこのよう
な材料で構成されたセラミック基板では、金属磁性材料
であるセンダストや非晶質の合金膜を蒸着もしくはスパ
ッタリング等の膜形成時に、熱膨張係数の違いにより金
属膜が剥離するという難点があった。この様な基板材料
に対して、熱膨張係数がほぼ、合金膜と等しくかつ、非
磁性の基板材料として露光により結晶化するLiO、SiO2
を主成分とする感光性結晶化ガラスが用いられている。
2. Description of the Related Art Conventionally, ferrite has been widely used as a core material for magnetic heads because of its good workability and wear resistance, but its saturation magnetic flux density B S is 30 to 50% lower than that of alloy materials.
Therefore, when it is used for a high-density recording medium with a high coercive force that has recently appeared, magnetic saturation of the head core material becomes a problem. From such a viewpoint, as a corresponding head for the high-density recording medium, sendust or an amorphous alloy is used. A material is provided for the head core material. Barium titanate BaTiO 3 and calcium titanate CaTi are used as substrate materials for such alloy materials.
Ceramic materials such as O 3 have been proposed. However, in the case of a ceramic substrate composed of such a material, the metal film peels off due to the difference in the coefficient of thermal expansion during film formation such as vapor deposition or sputtering of a metal magnetic material such as sendust or an amorphous alloy film. was there. With respect to such a substrate material, LiO, SiO 2 which has a thermal expansion coefficient almost equal to that of the alloy film and crystallizes by exposure as a non-magnetic substrate material.
A photosensitive crystallized glass containing as a main component is used.

他方、前述の合金材料を、磁気ヘッドのコア材料として
使用した場合、材料自身の比抵抗が70〜120μΩcmと低
いので、高周波領域で渦電流による損失が大きい為、通
常積層構造により改善をはかっている。オーディオヘッ
ドに於いては、トラック幅が数百μと大きく、周波数領
域も低いので1枚当たりのコアの厚みも200〜300μと厚
く、積層、ギャップ形成は、エポキシ系樹脂などの、い
わゆる接着剤が使用されている。しかしながら、ビデ
オ、コンピュータ、計測器用ヘッドとなると、トラック
幅が非常に小さく(例えば数十μ)、かつギャップ長が
非常に短い(例えば0.3μ以下)ので、接着剤によるヘ
ッド構成では高精度のギャップを維持することは困難で
ある。またトラック幅が小さく、かつ使用周波数領域も
数MHzと高いので、1枚当たりのコア厚みも10μあるい
はそれ以下がのぞましい。このような厚みでは、現在の
加工技術では難しく、超急冷法によりリボンアモルファ
スやリボンセンダストでも厚みが20μ以下では難しい。
従って上記観点より、磁性材料である非晶質合金やセン
ダスト合金を、スパッタ法や蒸着法によって薄板化する
方法が採用されている。これらの方法によると、1枚当
たりのコアの厚みが10μ以下のものが容易に得られ、か
つ磁性材料と層間絶縁材料を交互に積層することが可能
であり各材料間の付着強度も強いので、前記高精度のギ
ャップを維持する事が可能である。この時の層間絶縁材
料として、SiO2が用いられるのは公知である。(電子通
信学会論文誌別刷Trans.IECE′74/9VOL.57−CNo.9、電
気学会研究会資料 MAG82−36)。またギャップスペー
サ材料としてSiO2を用いるのも公知である。
On the other hand, when the above-mentioned alloy material is used as the core material of the magnetic head, the resistivity of the material itself is as low as 70 to 120 μΩcm, so there is a large loss due to eddy currents in the high frequency range, so improvement is usually made by a laminated structure. There is. In an audio head, the track width is as large as several hundred μ and the frequency range is low, so the core thickness per sheet is as thick as 200-300 μ, and so-called adhesive such as epoxy resin is used for lamination and gap formation. Is used. However, when it comes to video, computer, and measuring heads, the track width is very small (for example, tens of μ) and the gap length is very short (for example, 0.3 μ or less). Is difficult to maintain. Since the track width is small and the frequency range used is as high as several MHz, the core thickness per sheet is preferably 10 μm or less. Such a thickness is difficult with the current processing technology, and even with ribbon amorphous or ribbon sendust with a thickness of 20μ or less due to the ultra rapid cooling method.
Therefore, from the above viewpoint, a method of thinning an amorphous alloy or sendust alloy, which is a magnetic material, by a sputtering method or a vapor deposition method is adopted. According to these methods, it is possible to easily obtain cores with a thickness of 10 μm or less per sheet, and it is possible to stack magnetic materials and interlayer insulating materials alternately, and the adhesion strength between each material is also strong. It is possible to maintain the high precision gap. It is known that SiO 2 is used as the interlayer insulating material at this time. (Trans.IECE'74 / 9 VOL.57-C No.9, IEICE Technical Committee Material MAG82-36). It is also known to use SiO 2 as the gap spacer material.

発明が解決しようとする課題 しかしながら結晶化ガラスは機械加工性が悪く、例えば
ダイヤモンドカッターによる切断速さは、フェライト材
料の1/5〜1/10と悪く量産性に向いていない。また結晶
化ガラスを基板材料として用いまた層間絶縁材料、ギャ
ップスペーサ材料として、SiO2を用いて磁気ヘッドを作
製し、市販の塗布型メタルテープによる各種環境下にお
けるテープ走行試験をした所、特に低湿環境(例えば20
℃、10%RH)でヘッド出力の大きな低下がみられた。出
力が低下したヘッドのテープしゅう動面を観察したとこ
ろ、ガラス基板部及び層間絶縁材料、ギャップスペーサ
材料部に選択的に付着物があり、その程度を段差計によ
り測定した所、最大500〜600Åであった。この付着物を
オージエ分析によりしたところ、付着成分はテープ媒体
中の磁性材料であり、段差計による値とオージエ分析に
よる深さが一致した。
However, the crystallized glass has poor machinability, and the cutting speed with a diamond cutter is, for example, 1/5 to 1/10 that of a ferrite material, which is not suitable for mass production. Also, when a magnetic head was manufactured using crystallized glass as the substrate material and SiO 2 as the interlayer insulating material and the gap spacer material, and a tape running test was carried out in various environments using a commercially available coated metal tape, particularly low humidity. Environment (eg 20
A large drop in head output was observed at 10 ° C and 10% RH. Observing the tape sliding surface of the head with reduced output, it was found that there were deposits selectively on the glass substrate, interlayer insulation material, and gap spacer material. Met. When this deposit was subjected to Auger analysis, the adhering component was the magnetic material in the tape medium, and the value obtained by the step gauge and the depth obtained by Auger analysis were in agreement.

以上の結果より、塗布型メタルテープを低湿環境下で走
行すると、ガラス基板部及び層間絶縁材料、ギャップス
ペーサ材料部に選択的にメタルテープ中の磁性材料が付
着し、その付着物の盛り上がりのために、ヘッドとテー
プ間のスペーシングロスにより、ヘッド出力が低下する
事がわかった。
From the above results, when the coated metal tape is run in a low humidity environment, the magnetic material in the metal tape selectively adheres to the glass substrate part, the interlayer insulating material, and the gap spacer material part, and the adhered material rises up. It was also found that the head output is reduced due to the spacing loss between the head and tape.

他方積層枚数を多くして行くと、磁性材料の厚みが同一
にもかかわらず、透磁率(μ′)が低下する傾向が見ら
れた。これは磁性材料の磁歪定数(λs)が完全に零に
なっていない事を意味するが、磁性材料とSiO2の熱膨脹
係数(α)が1桁以上大きい事にも起因する。
On the other hand, when the number of laminated layers was increased, the magnetic permeability (μ ') tended to decrease even though the thickness of the magnetic material was the same. This means that the magnetostriction constant (λs) of the magnetic material is not completely zero, but it is also due to the fact that the thermal expansion coefficient (α) of the magnetic material and SiO 2 is one digit or more.

課題を解決するための手段 磁気ヘッド用基板、層間絶縁材料、またはギャップスペ
ーサ材料を、CoO−MO−XO2を主成分(但しM=Niまたは
Mnの少なくとも一種、X=Ti、ZrまたはHfの少なくとも
一種)とする材料で構成する。
Means for Solving the Problems A magnetic head substrate, an interlayer insulating material, or a gap spacer material is mainly composed of CoO—MO—XO 2 (where M = Ni or
At least one of Mn and at least one of X = Ti, Zr or Hf).

作用 基板が金属磁性材料と熱膨張係数が一致しているので、
薄膜作製装置を用いて磁性膜が作製でき、また、Mn−Zn
フェライトに近い機械加工が可能であり、これらを基
板、層間絶縁材料、及びギャップスペーサ材料とした磁
気ヘッドはテープ媒体よりの付着がないので安定したヘ
ッド出力が得られる。また層間絶縁材料の熱膨脹係数が
SiO2に比べて1桁以上大きく、より金属磁性材料に近く
なるので、特に積層枚数が多くなった時の磁性材料に対
応する応力の影響が少なくなり、磁気ヘッド特性の劣化
がすくなくなる。
Since the substrate has the same coefficient of thermal expansion as the magnetic metal material,
A magnetic film can be produced using a thin film production system, and Mn-Zn
It can be machined close to ferrite, and a magnetic head using these as a substrate, interlayer insulating material, and gap spacer material does not adhere to the tape medium, so a stable head output can be obtained. In addition, the coefficient of thermal expansion of the interlayer insulating material
Since it is larger than SiO 2 by one digit or more and is closer to a metallic magnetic material, the influence of the stress corresponding to the magnetic material is reduced especially when the number of laminated layers is large, and the deterioration of the magnetic head characteristics is less likely to occur.

実施例1 第1表に示した組成になる様にCoO、NiO、MnO、TiO2
ひょう量し、ボールミルで16時間混合した後乾燥水をバ
インダーとして加え、油圧プレスで金型を用い500kg/cm
2で成形した後、空気中で1300℃2時間300kg/cm2で加圧
保持しホットプレス焼結した。こうして得られた焼結体
の熱膨張係数および同一寸法の焼結体をダイヤモンドカ
ッターで切断した時のスピンドルモータの負荷電流値を
同一寸法のMn−Znフェライト切断時を1に規格化した値
を切断負荷として示す。いずれの材料も結晶化ガラスよ
りも小さく、切断が容易であり、フェライトに近い加工
性をしめす。なお実施例ではXとしてTiについて示した
が、Zr、Hfについてもほぼ同様の結果を得た。但し熱膨
張係数についてはZr、Hfの方がやや小さい傾向がある。
Example 1 CoO, NiO, MnO and TiO 2 were weighed so that the composition shown in Table 1 was obtained, mixed with a ball mill for 16 hours, and then dry water was added as a binder, and a die was used with a hydraulic press to obtain 500 kg / cm
After being molded at 2 , it was hot pressed and sintered in air at 1300 ° C. for 2 hours under a pressure of 300 kg / cm 2 . The coefficient of thermal expansion of the sintered body thus obtained and the load current value of the spindle motor when the sintered body of the same size was cut with a diamond cutter were standardized to 1 when the Mn-Zn ferrite of the same size was cut. Shown as cutting load. Both materials are smaller than crystallized glass, easy to cut, and exhibit a workability close to that of ferrite. Although Ti is shown as X in the examples, almost the same results are obtained for Zr and Hf. However, the thermal expansion coefficients of Zr and Hf tend to be slightly smaller.

実施例2 本発明の一実施例を第1図、第2図を用いて説明する。
第1表に示した組成の焼結体を基板材料として鏡面研摩
し十分洗浄して基板1として、真空槽内を3×10-7Tor
に排気した後、Arガスを導入し2×10-2Torとし、ター
ゲット組成としてCo81Nb13Zr6をスパッタして10μの非
晶質合金膜2aを作製した。
Embodiment 2 An embodiment of the present invention will be described with reference to FIGS. 1 and 2.
The sintered body having the composition shown in Table 1 was mirror-polished as a substrate material and thoroughly washed to form a substrate 1 in a vacuum chamber with a pressure of 3 × 10 −7 Torr.
After evacuation to Ar, Ar gas was introduced to 2 × 10 −2 Tor, and Co 81 Nb 13 Zr 6 was sputtered as a target composition to form a 10 μ amorphous alloy film 2a.

次に層間絶縁材料としてSiO2及び第1表に示した組成の
焼結体をターゲットとして非晶質合金膜2a上にAr圧4×
10-2Torrでスパッタして約1000Åの層間絶縁材料3aを作
製した。以下同様に非晶質合金膜と層間絶縁材料を交互
に2b、3b、2cとスパッタし非晶質合金膜が3層のブロッ
クを得た。他方基板1と同じ材料の基板5を、接着用ガ
ラス層4を介して接着を行い積層コアを得た。
Next, using SiO 2 as an interlayer insulating material and a sintered body having the composition shown in Table 1 as a target, Ar pressure of 4 × was applied on the amorphous alloy film 2a.
Sputtering was performed at 10 -2 Torr to produce an interlayer insulating material 3a having a thickness of about 1000 Å. Similarly, the amorphous alloy film and the interlayer insulating material were alternately sputtered with 2b, 3b and 2c to obtain a block of three layers of the amorphous alloy film. On the other hand, a substrate 5 made of the same material as the substrate 1 was adhered to the laminated glass layer 4 to obtain a laminated core.

次にギャップ突き合わせ面に巻線窓6を加工した後、突
き合わせ面をダイヤモンドペーストで鏡面に加工した
後、この面にギャップスペーサ材として層間絶縁材料と
同じ材料を所定の厚みにスパッタして、ギャップ形成用
の片側が完成する。このブロックと全く同じ構造1′〜
5′からなる積層コア半体を突き合わせ、接着用ガラス
7によりギャップ形成を行った。この1対のバーより所
定のヘッドを切り出しヘッドを完成した。なお比較例と
して市販の結晶化ガラス基板を用い層間絶縁材料、ギャ
ップスペーサ材としてSiO2を用いたヘッドも合わせて作
製した。
Next, after processing the winding window 6 on the gap abutting surface, the abutting surface is processed into a mirror surface with diamond paste, and the same material as the interlayer insulating material is sputtered on this surface as a gap spacer material to a predetermined thickness to form a gap. One side for forming is completed. Exactly the same structure as this block 1 '~
The laminated core halves made of 5 ′ were butted against each other, and a gap was formed by the bonding glass 7. A predetermined head was cut out from this pair of bars to complete a head. As a comparative example, a commercially available crystallized glass substrate was used, and an interlayer insulating material and a head using SiO 2 as a gap spacer material were also manufactured.

これらのヘッドをビデオテープレコーダ(ヘッドテープ
相対速度3.8m/秒)に取り突け、市販の塗布型メタルテ
ープを用いて各種環境下におけるテープ走行試験をした
所、結晶化ガラス基板を用い、SiO2を層間絶縁材料もし
くはギャップ材で構成したヘッドでは、低湿環境下でヘ
ッド出力の大きな低下が見られたのに対して、本発明の
材料を基板に用い、層間絶縁またはギャップ材で構成し
たヘッドでは、全ての環境下で安定した出力が得られ
た。
These heads were thrust into a video tape recorder (head tape relative speed 3.8 m / sec), and tape running tests were performed in various environments using commercially available coated metal tapes. Using a crystallized glass substrate, SiO 2 In the head composed of the interlayer insulating material or the gap material, a large decrease in the head output was observed in a low humidity environment, while in the head composed of the interlayer insulating material or the gap material using the material of the present invention as the substrate. , Stable output was obtained under all environments.

なお本発明の材料、すなわち基板材料、層間絶縁または
ギャップ材とはCoO−MO−XO2を主成分(但しM=Niまた
はMnの少なくとも一種、X=Ti、ZrまたはHfの少なくと
も一種)とするもので、いずれの材料も、同様の効果が
ある。第2表に23℃、10%相対湿度下における本発明の
ヘッドと、参考に従来のヘッドのヘッド出力をしめす。
なおヘッド出力は23℃、70%相対湿度下のヘッド出力を
0(dB)で示す。
Incidentally material of the present invention, namely the substrate material, the interlayer insulation or gap material to the CoO-MO-XO 2 (at least one where M = Ni or Mn, X = Ti, at least one of Zr or Hf) main component However, both materials have the same effect. Table 2 shows the head output of the head of the present invention at 23 ° C. and 10% relative humidity and the head output of the conventional head for reference.
The head output is shown as 0 (dB) at 23 ° C and 70% relative humidity.

実施例3 次に基板に非磁性ステンレスを用い、センダスト合金
(Fe,Si,Al合金)をターゲットとして、真空槽内5×10
-7Torrに排気した後、Arガスを導入して1.5×10-3Torr
とし、スパッタした。次に層間絶縁材料をターゲットと
してセンダスト膜上にAr圧4×10-2TOrrでスパッタして
約1000Åの層間絶縁材料を作製した。
Example 3 Next, non-magnetic stainless steel was used as a substrate, and a sendust alloy (Fe, Si, Al alloy) was used as a target, and 5 × 10 5 in a vacuum chamber was used.
After evacuating to -7 Torr, Ar gas is introduced and 1.5 × 10 -3 Torr
And sputtered. Next, using the interlayer insulating material as a target, sputtering was performed on the sendust film at an Ar pressure of 4 × 10 -2 TOrr to produce an interlayer insulating material of about 1000 Å.

以下同様にセンダスト合金膜と層間絶縁材料を交互に積
層して多層センダスト膜を作製した。
Similarly, a sendust alloy film and an interlayer insulating material were alternately laminated to form a multilayer sendust film.

こうして得られた膜の1KHzにおける1mOeの透磁率を第3
表にしめす。
The permeability of 1 mOe at 1 KHz of the film thus obtained is
Shown on the table.

なお表中の透磁率は磁性材料の厚みに対して、すなわち
層間絶縁材料は無視して示してある。
The magnetic permeability in the table is shown with respect to the thickness of the magnetic material, that is, ignoring the interlayer insulating material.

本発明において、CoOを25〜80モル%、MOを0〜50モル
%、XO2を5〜20モル%と限定したのは、この範囲を越
えると熱膨張係数が125以上もしくは100以下となり、非
晶質合金をスパッタ−装置等により蒸着すると合金膜が
剥離する恐れがある為である。また層間絶縁材料の熱膨
張係数も、より合金膜に近づけるためである。また数%
内のレベルでの他の元素の混入は熱膨張係数及び機械加
工性が損なわなければ許されるものである。又、非晶質
合金膜としてはメタル−メタル系であるCo−M(MはN
b,Ti,Ta,Zr,W等の金属元素)やCo−M1−M2(M1,M2は上
記Mで示された金属元素)はもとよりSi,B,C,Pを含むメ
タル−メタロイド系等についても特に不都合はない。な
お、上記実施例中ではヘッドコアを基板で挟んだサンド
イッチ構造を有する磁気ヘッドについて述べたが、テー
プ摺動面に基板を含まない、すなわちテープ摺動面が全
て多層構造の磁性体からなる磁気ヘッドでも同様の効果
を有するものである。センダスト合金についても組成の
限定は特になく、Fe−Si−Al合金組成で効果がある。こ
の事は同様に合金磁性材料であるパーマロイ(鉄ニッケ
ル系合金)についても、特に磁歪に対する透磁率の影響
が大きいので同様の効果が期待できる。
In the present invention, CoO is limited to 25 to 80 mol%, MO is limited to 0 to 50 mol%, and XO 2 is limited to 5 to 20 mol%. This is because if the amorphous alloy is vapor-deposited by a sputtering apparatus or the like, the alloy film may peel off. Also, the thermal expansion coefficient of the interlayer insulating material is closer to that of the alloy film. A few percent
Incorporation of other elements at internal levels is permissible provided that the coefficient of thermal expansion and machinability are not compromised. The amorphous alloy film is a metal-metal type Co-M (M is N
b, Ti, Ta, Zr, W, etc.) and Co-M 1 -M 2 (M 1 , M 2 are the metal elements shown by M above), as well as Si, B, C, P-containing metals. -There is no particular inconvenience for metalloids. Although the magnetic head having the sandwich structure in which the head core is sandwiched between the substrates has been described in the above embodiments, the magnetic head does not include the substrate on the tape sliding surface, that is, the tape sliding surface is entirely made of a magnetic material having a multilayer structure. However, it has the same effect. There is no particular limitation on the composition of the sendust alloy, and an Fe-Si-Al alloy composition is effective. This is also true for Permalloy (iron-nickel alloy), which is an alloy magnetic material, because the effect of magnetic permeability on magnetostriction is large, and the same effect can be expected.

発明の効果 本発明の基板材料は、従来の結晶化ガラスに比べて機械
加工性が良いので加工し易く、これを基板材料とし、か
つ層間絶縁材料もしくはギヤップ材が構成された磁気ヘ
ッドは、熱膨張係数が非晶質合金とほぼ同じであるので
スパッタ−装置等により蒸着しても合金膜が剥離する心
配がない。、また実用的に使用される幅広い環境のテー
プ走行に対して、テープ中の磁性材料成分の付着がな
く、したがって安定した出力が得られ、信頼の高い磁気
ヘッドが供給出来る。
EFFECTS OF THE INVENTION The substrate material of the present invention has better machinability than conventional crystallized glass and is therefore easy to process, and a magnetic head in which this is used as a substrate material and an interlayer insulating material or a gearup material is Since the expansion coefficient is almost the same as that of the amorphous alloy, there is no fear that the alloy film will be peeled off even if it is vapor-deposited by a sputtering apparatus or the like. In addition, the magnetic material component in the tape does not adhere to the tape running in a wide range of practically used environments, so that a stable output can be obtained and a reliable magnetic head can be supplied.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例における磁気ヘッドのテープ
摺動面を示す正面図、第2図はその側面図である。 1、1′……基板、2a、2a′……非晶質合金、3a、3a′
……絶縁材料、4、4′……接着用ガラス層、5、5′
……基板、6……巻線窓、7……接着用ガラス、8……
ギャップ。
FIG. 1 is a front view showing a tape sliding surface of a magnetic head in one embodiment of the present invention, and FIG. 2 is a side view thereof. 1, 1 '... Substrate, 2a, 2a' ... Amorphous alloy, 3a, 3a '
... Insulating material 4, 4 '... Adhesive glass layer 5, 5'
…… Substrate, 6 …… Winding window, 7 …… Adhesive glass, 8 ……
gap.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】CoOを25〜80モル%、MOを0〜50モル%、X
O2を5〜20モル%含むことを特徴とする磁気ヘッド用基
板材料。(但し、MはNiまたはMnの少なくとも一種、X
はTi、ZrまたはHfのすくなくとも一種)。
1. CoO of 25 to 80 mol%, MO of 0 to 50 mol%, X
A substrate material for a magnetic head, containing O 2 in an amount of 5 to 20 mol%. (However, M is at least one of Ni and Mn, X
Is at least one of Ti, Zr or Hf).
【請求項2】熱膨張係数が100〜125×10-7/℃であるこ
とを特徴とする請求項1記載の磁気ヘッド用基板材料。
2. The magnetic head substrate material according to claim 1, wherein the thermal expansion coefficient is 100 to 125 × 10 −7 / ° C.
【請求項3】少なくとも磁気テープと接触するヘッドチ
ップのテープ摺動面が、多層構造の磁性体からなり、前
記多層構造の層間絶縁材料またはギャップスペーサ材料
が、CoOを25〜80モル%、MOを0〜50モル%、XO2を5〜
20モル%(但しMはNiまたはMnの少なくとも一種、Xは
Ti、ZrまたはHfの少なくとも一種)含む材料からなる事
を特徴とする磁気ヘッド。
3. A tape sliding surface of a head chip, which is in contact with at least a magnetic tape, is made of a multi-layer magnetic material, and the multi-layer interlayer insulating material or gap spacer material contains 25 to 80 mol% of CoO and MO. 0 to 50 mol% and XO 2 to 5
20 mol% (where M is at least one of Ni and Mn, X is
A magnetic head comprising a material containing at least one of Ti, Zr and Hf.
【請求項4】多層構造の磁性体が、非晶合金からなる請
求項3記載の磁気ヘッド。
4. The magnetic head according to claim 3, wherein the magnetic material having a multilayer structure is made of an amorphous alloy.
【請求項5】多層構造の磁性体が、センダスト合金また
はパーマロイ合金からなる請求項3記載の磁気ヘッド。
5. A magnetic head according to claim 3, wherein the multi-layered magnetic body is made of Sendust alloy or Permalloy alloy.
JP63196515A 1988-08-05 1988-08-05 Substrate material for magnetic head and magnetic head Expired - Fee Related JPH0782615B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63196515A JPH0782615B2 (en) 1988-08-05 1988-08-05 Substrate material for magnetic head and magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63196515A JPH0782615B2 (en) 1988-08-05 1988-08-05 Substrate material for magnetic head and magnetic head

Publications (2)

Publication Number Publication Date
JPH02154307A JPH02154307A (en) 1990-06-13
JPH0782615B2 true JPH0782615B2 (en) 1995-09-06

Family

ID=16359025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63196515A Expired - Fee Related JPH0782615B2 (en) 1988-08-05 1988-08-05 Substrate material for magnetic head and magnetic head

Country Status (1)

Country Link
JP (1) JPH0782615B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0490345B1 (en) * 1990-12-12 1995-04-12 Japan Energy Corporation Non-magnetic substrate of magnetic head, Magnetic head and method for producing substrate
JPH04364206A (en) * 1991-06-11 1992-12-16 Nikko Kyodo Co Ltd Production of magnetic head

Also Published As

Publication number Publication date
JPH02154307A (en) 1990-06-13

Similar Documents

Publication Publication Date Title
US4901179A (en) Magnetic head having a laminated structure
EP0081239A2 (en) Magnetic head
JPS6124806B2 (en)
US5537278A (en) Thin film laminate magnetic head with reaction prevention layers
EP0234879B1 (en) Ferromagnetic thin film and magnetic head using it
JPH0782615B2 (en) Substrate material for magnetic head and magnetic head
JPH0624044B2 (en) Composite type magnetic head
JPS58100412A (en) Manufacture of soft magnetic material
JPS5888814A (en) Magnetic head
JPS5898824A (en) Magnetic head
JPH0328722B2 (en)
JP2775770B2 (en) Method for manufacturing soft magnetic thin film
JPS58118015A (en) Magnetic head
EP0392675B1 (en) Substrate material for magnetic head and magnetic head using same
JPH0917632A (en) Soft magnetic film and magnetic head using the same
JPH0656643B2 (en) Magnetic head
JPH02121107A (en) Magnetic head
JPS61104412A (en) Magnetic head
KR950001603B1 (en) Magnetic head for multi-layer
JPH01227206A (en) Magnetic head
JPS59117729A (en) Production of magnetic head core
JPH07122924B2 (en) Soft magnetic metal film Magnetic head
JPH01296415A (en) Magnetic head
JPS6191058A (en) Ceramic composition
JPS6192408A (en) Magnetic head

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees