JPH03278409A - Laminated thin soft magnetic film - Google Patents

Laminated thin soft magnetic film

Info

Publication number
JPH03278409A
JPH03278409A JP20892290A JP20892290A JPH03278409A JP H03278409 A JPH03278409 A JP H03278409A JP 20892290 A JP20892290 A JP 20892290A JP 20892290 A JP20892290 A JP 20892290A JP H03278409 A JPH03278409 A JP H03278409A
Authority
JP
Japan
Prior art keywords
thin film
soft magnetic
laminated
transition metal
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20892290A
Other languages
Japanese (ja)
Inventor
Kunio Fukuda
邦夫 福田
Ikuo Yoshida
吉田 郁男
Masaki Ejima
正毅 江島
Kazuichi Yamamura
和市 山村
Kazuhiko Nakayama
和彦 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Publication of JPH03278409A publication Critical patent/JPH03278409A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3254Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the spacer being semiconducting or insulating, e.g. for spin tunnel junction [STJ]

Abstract

PURPOSE:To improve a magnetic characteristic by laminating a plurality of soft magnetic layers of thin soft magnetic films of a neighboring plurality of different compositions through thin film insulating layers. CONSTITUTION:Film forming is continuously performed on a board 1, in which crystallized glass having a thermal expansion coefficient near that of an Fe-Al-Si group alloy is optically polished, in the order of a pure Fe thin film 4 of 20nm, an Fe-Al-Si group alloy thin film 5 of 0.8mum, a thin film insulating layer 3 of SiO2 of 0.2mum without breaking a vacuum, and this operation is repeated twenty times to get a film of total film thickness of twenty mum. After the film is formed, heat treatment is performed in a vacuum at 600 deg.C for an hour. The films 4, 5 constitute a soft magnetic layer 2. In this way, an excellent magnetic characteristic can be obtained.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は高密度磁気記録用磁気へ・ンドのコアに用いる
積層軟磁性薄膜に関する。
The present invention relates to a laminated soft magnetic thin film used in the core of a magnetic head for high-density magnetic recording.

【従来の技術】[Conventional technology]

ビデオテープレコーダ、ディジタルオーデイオデ・ンキ
、フロ・ンビーディスクドライブfFDD)ハードディ
スクドライブ(HDD)のような磁気記録機器は年々記
録密度が向上しており、高密度記録に対応した磁気ヘッ
ドが求められている。高密度記録用の磁気ヘッドには、
従来より飽和磁束密度Bsおよび実効透磁率μが高く、
抗磁力Hcが低いコアが必要である。 これら磁気記録機器の磁気ヘッドには従来フェライトな
どの軟磁性コア材が用いられてきたが、軟磁性フェライ
トを用いた従来の磁気ヘッドでは高保磁力の媒体に対応
しきれないため、フェライトよりも飽和磁束音度が高い
Fe−Al−Si系のセンダスト合金等が用いられるよ
うになった。 しかしFe−A1.−Si系合金には電気抵抗が低いと
いう合金特有の一般的性質がある。このためFe−Al
51系合金のみで磁気回路をバルク状に構成した磁気ヘ
ッドに高密度記録に必要な高周波磁場を加えた場合、磁
場がコア内部へ充分浸透せずに表層に集中し、渦電流が
発生する。その結果磁束伝達が不充分となり実効透磁率
μが低下してしまう。 実効透磁率μの低下防止には渦電流を抑制することが必
要で、渦電流の回路を遮断するには、薄膜の磁性材料と
絶縁層とを交互に積層すれば良い。これは種々の変圧器
などに用いられている一般的な方法である。渦電流を有
効に遮断するには、各磁性薄膜層の厚さが高周波スキン
デプスδより薄いことが必要である。スキンデプスδは
、(ω=角周波数、μ:透磁率、ρ=電気抵抗)で表わ
されるため、より高い周波数に対応するには絶縁層間の
各磁性薄膜層の厚みを薄くすることが求められる。また
、ヘッドコア磁気回路としては、その磁気抵抗を抑える
ことが必要である。そのためには、ヘッドのトラック幅
で規制された総膜厚(コア全体の厚さ)に対する磁性層
が占める割合を大きくし、絶縁層を薄くしなければなら
ない。即ち、各磁性層をより薄くして積層し、積層回数
をより多くとることで高周波特性を改善することが可能
になる。 ところがFe−Al−Si系合金を、積層ヘッドに用い
られるセラミックス基板、結晶化ガラス基板や絶縁層に
用いるSiO□等の表面に成膜する場合、膜厚が3〜4
μm以上にならないと結晶配向が不充分で結晶粒が成長
せず、良好な磁気特性が得られないという問題がある。 Fe−Al−Si系合金を3〜4um以上にすると積層
回数が限られるため、高周波特性の改善は充分とは言え
ない。
The recording density of magnetic recording devices such as video tape recorders, digital audio disc drives (FDDs), hard disk drives (HDDs) is increasing year by year, and magnetic heads that support high-density recording are required. ing. Magnetic heads for high-density recording include
The saturation magnetic flux density Bs and effective magnetic permeability μ are higher than before,
A core with low coercive force Hc is required. Soft magnetic core materials such as ferrite have traditionally been used in the magnetic heads of these magnetic recording devices, but conventional magnetic heads using soft magnetic ferrite cannot cope with high coercive force media, so they are more saturated than ferrite. Fe-Al-Si-based sendust alloys and the like, which have high magnetic flux sonicity, have come to be used. However, Fe-A1. -Si-based alloys have a general property unique to alloys, that is, they have low electrical resistance. Therefore, Fe-Al
When a high-frequency magnetic field necessary for high-density recording is applied to a magnetic head with a bulk magnetic circuit made of only 51-series alloy, the magnetic field does not penetrate sufficiently into the core and concentrates on the surface layer, generating eddy currents. As a result, magnetic flux transmission becomes insufficient and the effective magnetic permeability μ decreases. To prevent a decrease in the effective magnetic permeability μ, it is necessary to suppress eddy currents, and to interrupt the eddy current circuit, thin films of magnetic material and insulating layers may be alternately laminated. This is a general method used in various transformers. In order to effectively block eddy currents, the thickness of each magnetic thin film layer needs to be thinner than the high frequency skin depth δ. The skin depth δ is expressed as (ω = angular frequency, μ: magnetic permeability, ρ = electrical resistance), so in order to support higher frequencies, it is necessary to reduce the thickness of each magnetic thin film layer between the insulating layers. . Furthermore, it is necessary to suppress the magnetic resistance of the head core magnetic circuit. To achieve this, it is necessary to increase the ratio of the magnetic layer to the total film thickness (thickness of the entire core) regulated by the track width of the head, and to make the insulating layer thinner. That is, by making each magnetic layer thinner and laminating them, and increasing the number of laminations, it is possible to improve the high frequency characteristics. However, when a Fe-Al-Si alloy is formed on the surface of a ceramic substrate used in a lamination head, a crystallized glass substrate, or an SiO□ used for an insulating layer, the film thickness is 3 to 4 mm.
If the thickness is less than μm, there is a problem that crystal orientation is insufficient and crystal grains do not grow, making it impossible to obtain good magnetic properties. When the thickness of the Fe-Al-Si based alloy is 3 to 4 um or more, the number of laminations is limited, so the improvement in high frequency characteristics cannot be said to be sufficient.

【発明が解決しようとする課題】[Problem to be solved by the invention]

本発明は上記の課題を解決するためなされたもので、磁
気特性が良好で、抗磁力や高周波帯域における実効透磁
率μが優れた磁気へ・ンドコア材料としての積層軟磁性
薄膜を提供することを目的とする。
The present invention has been made to solve the above problems, and aims to provide a laminated soft magnetic thin film as a magnetic core material that has good magnetic properties and excellent coercive force and effective permeability μ in a high frequency band. purpose.

【課題を解決するだめの手段】[Means to solve the problem]

本発明者らは前記の目的を達成するために鋭意研究を重
ねた結果、基板上に下地として例えばFe、 Ni、 
Co、 Crやパーマロイ系合金のような遷移金属薄膜
を数nm〜数十nm成膜した後、その表面にFe−Al
−Si系合金膜を成膜すると結晶配向が促進され、Fe
−Al−Si系合金の膜厚が1〜2LII11と薄い場
合でも優れた磁気特性が得られることを見出し、本発明
を完成するに至った6 即ち本発明の第1発明である積層軟磁性薄膜は、実施例
に対応する第1図に示すように、複数の軟磁性層2が薄
膜絶縁層3を介して積層され。 その軟磁性層2は複数層の軟磁性薄膜4・5で構成され
ている。軟磁性薄膜4・5のうち少なくとも隣合う軟磁
性薄膜の組成が異なっている。 第2発明の積層軟磁性薄膜は、複数の軟磁性層2が薄膜
絶縁層3を介して積層され、その軟磁性層2が遷移金属
薄膜4とその表面に成膜されたFe−Al−Si系合金
薄膜5とで構成されている。 第3発明の積層軟磁性薄膜は、第2図に示すように複数
の軟磁性層2が薄膜絶縁層3を介して積層され、その軟
磁性層2は、第1の遷移金属薄膜4、Fe−Al−Si
系合金薄膜5および第2の遷移金属薄膜4aがこの順に
積層された3層構造である。 Fe−Al−Si系合金薄膜5の膜厚と遷移金属薄膜4
の膜厚との比率は1 : 0.001〜01の範囲が望
ましい。遷移金属薄膜4の膜厚は数nm〜1100n程
度に設定しておく。遷移金属薄膜4の比率が0.001
より小さくなると高い飽和磁束密度、低い抗磁力および
高い実効透磁率μが得られない。また01より大きくな
ると遷移金属の特性が強くあられれ、実効透磁率μが低
下して抗磁力が大きくなる。 遷移金属薄膜4には、例えばFe、 Ni、 Co、 
Cr、Mn、 Ru、  V、 Ti、 Zr、 Nb
、 Mo、 Rh、 Pd、 Agから選ばれる元素を
単独で用いたり、これらの元素を種または複数種含む合
金を使用する。なかでも純度97%以上のFe、 Ni
、Go、 Crやパーマロイ系合金が好適である。パー
マロイ系合金は、Niが75〜85重量%、Feが15
〜25重量%のものであり、Moを8重量%まで添加し
ても良い。 Fe−Al−Si系合金薄膜5の主成分Fe、 A1j
5よびSlは、良好な磁気特性を得るためにAlが2〜
8重皿%、Slが6〜12重量%、残りがFeであるこ
とが望ましい。特性改善のため、Fe−Al−Si系合
金に例えばCr、Nb、 Ni、 Ru、 Co、Ti
、 Cu、Ga、Ge、 Pdから選ばれる少なくとも
1の成分を5%以下加えても良い。 薄膜絶縁層3には例えばSiO□、A1□o3.Sis
N4、Ta2’sのような非磁性の絶縁体が使用可能で
ある。その厚さは電気的絶縁が確保される限り薄い方が
好ましい。 この積層軟磁性薄膜は、基板1上に遷移金属薄膜4を成
膜し、その上に直接Fe−Al−Si系合金薄膜5、薄
膜絶縁層3を積層して形成される。第3発明の積層軟磁
性薄膜の場合はFe−Al−Si系合金薄膜5と薄膜絶
縁層3との間にさらに遷移金属薄膜4aを成膜しておく
。 Fe−Al−Si系合金薄膜、遷移金属薄膜および薄膜
絶縁層3の成膜には種々のスパッタ法や蒸着法を用いる
The inventors of the present invention have conducted extensive research to achieve the above object, and as a result, we have found that, for example, Fe, Ni,
After forming a thin film of a transition metal such as Co, Cr or permalloy alloy to a thickness of several nanometers to several tens of nanometers, Fe-Al is deposited on the surface.
- When a Si-based alloy film is formed, crystal orientation is promoted, and Fe
- It was discovered that excellent magnetic properties can be obtained even when the film thickness of the Al-Si alloy is as thin as 1 to 2 LII11, and the present invention was completed6 That is, the laminated soft magnetic thin film which is the first invention of the present invention As shown in FIG. 1 corresponding to the embodiment, a plurality of soft magnetic layers 2 are laminated with a thin film insulating layer 3 interposed therebetween. The soft magnetic layer 2 is composed of a plurality of layers of soft magnetic thin films 4 and 5. At least adjacent soft magnetic thin films 4 and 5 have different compositions. In the laminated soft magnetic thin film of the second invention, a plurality of soft magnetic layers 2 are laminated with a thin film insulating layer 3 interposed therebetween, and the soft magnetic layer 2 is composed of a transition metal thin film 4 and a Fe-Al-Si film formed on the surface thereof. The alloy thin film 5 is made up of a thin film 5. In the laminated soft magnetic thin film of the third invention, as shown in FIG. -Al-Si
It has a three-layer structure in which the alloy thin film 5 and the second transition metal thin film 4a are laminated in this order. Thickness of Fe-Al-Si alloy thin film 5 and transition metal thin film 4
The ratio between the film thickness and the film thickness is preferably in the range of 1:0.001 to 0.01. The thickness of the transition metal thin film 4 is set to about several nm to 1100 nm. The ratio of transition metal thin film 4 is 0.001
If it is smaller, high saturation magnetic flux density, low coercive force, and high effective magnetic permeability μ cannot be obtained. When the value is larger than 01, the characteristics of the transition metal become stronger, the effective magnetic permeability μ decreases, and the coercive force increases. The transition metal thin film 4 includes, for example, Fe, Ni, Co,
Cr, Mn, Ru, V, Ti, Zr, Nb
, Mo, Rh, Pd, and Ag may be used alone, or an alloy containing one or more of these elements may be used. Among them, Fe, Ni with a purity of 97% or more
, Go, Cr and permalloy alloys are suitable. Permalloy alloy contains 75-85% by weight of Ni and 15% by weight of Fe.
~25% by weight, and up to 8% by weight of Mo may be added. Main component Fe of Fe-Al-Si alloy thin film 5, A1j
5 and Sl have Al in the range of 2 to 2 to obtain good magnetic properties.
It is preferable that the weight is 8% by weight, 6 to 12% by weight of Sl, and the balance is Fe. For example, Cr, Nb, Ni, Ru, Co, Ti is added to the Fe-Al-Si alloy to improve its properties.
, Cu, Ga, Ge, and Pd may be added in an amount of 5% or less. The thin film insulating layer 3 includes, for example, SiO□, A1□o3. Sis
Non-magnetic insulators such as N4, Ta2's can be used. The thinner the thickness is, the better, as long as electrical insulation is ensured. This laminated soft magnetic thin film is formed by forming a transition metal thin film 4 on a substrate 1, and directly laminating an Fe--Al--Si alloy thin film 5 and a thin film insulating layer 3 thereon. In the case of the laminated soft magnetic thin film of the third invention, a transition metal thin film 4a is further formed between the Fe--Al--Si alloy thin film 5 and the thin film insulating layer 3. Various sputtering methods and vapor deposition methods are used to form the Fe-Al-Si alloy thin film, the transition metal thin film, and the thin film insulating layer 3.

【作用】[Effect]

本発明の積層軟磁性薄膜は、遷移金属薄膜4の表面にF
e−Al−Si系合金薄膜5を積層させることによって
Fe−Al−Si系合金の膜厚が1〜2um以下と薄い
場合でも結晶粒が成長するため、充分に抑制された抗磁
力や高周波帯域におGづる良好な実効透磁率が確保され
る。
The laminated soft magnetic thin film of the present invention has F on the surface of the transition metal thin film 4.
By laminating the e-Al-Si alloy thin film 5, crystal grains grow even when the film thickness of the Fe-Al-Si alloy is as thin as 1 to 2 um or less, resulting in sufficiently suppressed coercive force and high frequency band. Good effective magnetic permeability is ensured.

【実施例】【Example】

以下、本発明の詳細な説明する。 第1図に本発明を適用する積層軟磁性薄膜の一実施例の
側面図を示す。この積層軟磁性薄膜は、基板lの表面に
遷移金属薄膜4、Fe−Al−Si系合金薄It! 5
および薄膜絶縁層3をこの順に繰返して積層したもので
ある。基板1は熱膨張係数がFe−Al51系合金に近
い結晶化ガラスを光学研磨したものである。Fe−Al
−Si系合金薄膜5の組成はFeが85重量%、A1が
 5.4重量%、Siが 9.6重量%になっている。 薄膜絶縁層3はSiO□を用いている。 以下は本発明の具体的な実験例である。 先ず遷移金属としてFeを用いる例を説明する。 実施例1 3個のターゲラ]−が取り付は可能なマグネトロン型高
周波スパッタ装置に、ターゲットとして純度999%の
Fe、 Fe−At−Si系合金および5102のター
ゲットを取り付ける。基板lに純Fel膜4を20nm
、 Fe−Al−Si系合金薄膜5を0.811m、そ
して5102の薄膜絶縁層3を0.2μmの順で真空を
破らずに連続して成膜し、この操作を20回繰返して総
膜厚20μmの積層軟磁性薄膜を成膜する。各物質の成
膜は、膜中に応力が発生しないように夫々最適のスパッ
タ放電条件を選んで行なう。成膜終了後、この積層薄膜
試料に真空中で600℃、1時間の熱処理を施すと積層
軟磁性薄膜が得られる。 比較例1 純Fe薄膜を設けず、基板lに3.8+onのFe−A
l−Si系合金膜を直接成膜し、その表面にSiO□の
薄膜絶縁層を0.2 um成膜するにの操作を5回繰返
して総膜厚を2011mとした積層軟磁性薄膜を作成し
た。 成膜条件、熱処理条件等は実施例1と同一である。 比較例2 Fe−Al−Si系合金のみで厚さ20μmの単層薄膜
を作成した。成膜条件、熱処理条件等は実施例1と同一
である。 実施例1、比較例1および比較例2で作成した各磁性薄
膜の高周波実効透磁率μを8の字コイル法で測定した。 測定結果を第3図に示す。なお、同図では高周波域にお
ける磁気特性の比較を容易にするために、0.51)l
zにおける透磁率の値で規格化したものである。 0.
5MHzにおける各磁性薄膜の実効透磁率μは、実施例
1、比較例1.比較例2の順に夫々2800.2400
.2500であった。 第3図から明らかなように、Fe−Al−Si系合金薄
膜の下地としてわずか2(lnm厚の純Fe薄膜を成膜
し、Fe−Al−Si系合金膜の一層の膜厚を薄くして
積層回数を多くすることにより、高周波領域における実
効透磁率μが大きく改善されていることがわかる。 次に、遷移金属としてパーマロイ系合金を用いた例を説
明する。 実施例2 実施例1で使用したマグネトロン型高周波スパッタ装置
のFeターゲットを、Niが75〜85重量%、Feが
15〜25重量%からなるパーマロイ系合金ターゲット
に替え、成膜な行なう。基板1にパーマロイ系合金薄膜
4を5 nm、 Fe−A1Si系合金薄膜5を5.0
gm、そしてSiOzの薄膜絶縁層3を0.21+mの
順に真空を破らずに連続して成膜し、この操作を4回繰
返して総膜厚20.8amの積層軟磁性薄膜を成膜する
。各物質の成膜は、膜中に応力が発生しないように夫々
最適のスパック放電条件を選ぶ。 成膜終了後、この積層薄膜試料に真空中で600℃、1
時間の熱処理を施し、積層軟磁性薄膜を得た。 比較例3 パーマロイ系合金薄膜4を設けず、基板1に5.0μm
のFe−Al−Si系合金膜を直接成膜し、その表面に
3102の薄膜絶縁層を0.311m成膜する。この操
作を4回繰返して総膜厚が21.21Imの積層軟磁性
薄膜を作成した。成膜条件、熱処理条件等は実施例2と
同一である。 比較例4 Fe−Al−Si系合金のみで厚さ201℃mの単層薄
膜を作成した。成膜条件、熱処理条件等は実施例2と同
一である。 実施例2、比較例38よび比較例4で作成した各磁性薄
膜の飽和磁束密度Bsと抗磁力Hcとを、振動試料型磁
力計を用いて測定した。第4図に測定結果を示す。 第4図の結果より、Fe−Al−Si系合金薄膜の下地
としてわず°か5nm厚のパーマロイ系合金薄膜を成膜
し、Fe−Al−Si系合金膜の一層の膜厚を薄くして
積層回数を多くすることにより抗磁力Hcが太き(改善
されていることがわかる。 また、遷移金属としでFeのかわりにNiやGo、 C
rを用い、実施例1と同様にして積層軟磁性薄膜を作成
したところ、得られた積層軟磁性薄膜は実施例1や実施
例2と同等の優れた磁気特性を有していた。 なお、第2図は別の積層軟磁性薄膜の実施例である。こ
れは第1図を用いて説明した積層軟磁性薄膜の軟磁性層
2を、第1の遷移金属薄膜4、Fe−Al−Si系合金
薄膜5および第2の遷移金属薄膜4aをこの順に積層し
て3層構造にしたものである。遷移金属薄膜4・4aに
はFe、 Ni、Co、 Crやパーマロイ系合金を使
用している。このように軟磁性層2を3層構造にすると
、前述した遷移金属薄膜の効果をさらに強化することが
出来る。 【発明の効果] 以上詳細に説明したように、本発明の積層軟磁性薄膜は
、従来のFe−Al−Si系合金薄膜とSiO□膜を交
互に成膜した積層膜に比べて実効透磁率や抗磁力が改善
されており、優れた磁気特性を有している。そのため、
高密度記録用磁気へ・ンドのコア材として最適である。
The present invention will be explained in detail below. FIG. 1 shows a side view of an embodiment of a laminated soft magnetic thin film to which the present invention is applied. This laminated soft magnetic thin film includes a transition metal thin film 4 on the surface of a substrate l, and a Fe-Al-Si alloy thin It! 5
and thin film insulating layer 3 are repeatedly laminated in this order. The substrate 1 is optically polished crystallized glass having a coefficient of thermal expansion close to that of Fe-Al51 alloy. Fe-Al
The composition of the -Si-based alloy thin film 5 is 85% by weight of Fe, 5.4% by weight of A1, and 9.6% by weight of Si. The thin film insulating layer 3 uses SiO□. The following are specific experimental examples of the present invention. First, an example using Fe as the transition metal will be explained. Example 1 A target of 999% pure Fe, Fe-At-Si alloy, and 5102 was attached to a magnetron-type high-frequency sputtering device to which three targeters could be attached. 20 nm pure Fel film 4 on substrate l
, Fe-Al-Si alloy thin film 5 of 0.811 m and 5102 thin film insulating layer 3 of 0.2 μm were successively formed without breaking the vacuum, and this operation was repeated 20 times to form a total film. A laminated soft magnetic thin film with a thickness of 20 μm is formed. Films of each substance are formed by selecting optimal sputter discharge conditions for each material so as not to generate stress in the film. After the film formation is completed, this laminated thin film sample is heat treated in vacuum at 600° C. for 1 hour to obtain a laminated soft magnetic thin film. Comparative Example 1 No pure Fe thin film was provided, and 3.8+on Fe-A was used on the substrate l.
The operation of directly depositing an l-Si alloy film and depositing a thin insulating layer of SiO□ with a thickness of 0.2 um on its surface was repeated five times to create a laminated soft magnetic thin film with a total film thickness of 2011 m. did. The film forming conditions, heat treatment conditions, etc. are the same as in Example 1. Comparative Example 2 A single-layer thin film with a thickness of 20 μm was created using only a Fe-Al-Si alloy. The film forming conditions, heat treatment conditions, etc. are the same as in Example 1. The high-frequency effective magnetic permeability μ of each of the magnetic thin films prepared in Example 1, Comparative Example 1, and Comparative Example 2 was measured using the figure-eight coil method. The measurement results are shown in Figure 3. In addition, in the same figure, in order to facilitate comparison of magnetic properties in the high frequency range, 0.51) l
It is normalized by the value of magnetic permeability at z. 0.
The effective magnetic permeability μ of each magnetic thin film at 5 MHz is as follows: Example 1, Comparative Example 1. 2800.2400 respectively in the order of comparative example 2
.. It was 2500. As is clear from Fig. 3, a pure Fe thin film with a thickness of only 2 (lnm) was formed as the base of the Fe-Al-Si alloy thin film, and the thickness of one layer of the Fe-Al-Si alloy film was reduced. It can be seen that by increasing the number of laminations, the effective magnetic permeability μ in the high frequency region is greatly improved.Next, an example using a permalloy alloy as the transition metal will be explained.Example 2 In Example 1 The Fe target of the magnetron-type high-frequency sputtering device used was replaced with a permalloy alloy target consisting of 75 to 85% by weight of Ni and 15 to 25% by weight of Fe, and film formation was performed. 5 nm, Fe-A1Si alloy thin film 5 5.0
gm, and SiOz thin film insulating layers 3 of 0.21+m are successively formed in the order of 0.21+m without breaking the vacuum, and this operation is repeated four times to form a laminated soft magnetic thin film with a total thickness of 20.8 am. For film formation of each substance, the optimum spuck discharge conditions are selected so as not to generate stress in the film. After film formation, this laminated thin film sample was heated at 600°C for 1 hour in a vacuum.
A laminated soft magnetic thin film was obtained by heat treatment for several hours. Comparative Example 3 Permalloy alloy thin film 4 was not provided, and the substrate 1 had a thickness of 5.0 μm.
A Fe-Al-Si alloy film is directly formed, and a thin insulating layer 3102 is formed to a thickness of 0.311 m on the surface thereof. This operation was repeated four times to create a laminated soft magnetic thin film with a total film thickness of 21.21 Im. The film forming conditions, heat treatment conditions, etc. are the same as in Example 2. Comparative Example 4 A single-layer thin film with a thickness of 201° C.m was created using only a Fe-Al-Si alloy. The film forming conditions, heat treatment conditions, etc. are the same as in Example 2. The saturation magnetic flux density Bs and coercive force Hc of each of the magnetic thin films prepared in Example 2, Comparative Example 38, and Comparative Example 4 were measured using a vibrating sample magnetometer. Figure 4 shows the measurement results. From the results shown in Figure 4, it is possible to form a permalloy alloy thin film with a thickness of only 5 nm as the base of the Fe-Al-Si alloy thin film, and to reduce the thickness of one layer of the Fe-Al-Si alloy film. It can be seen that by increasing the number of laminations, the coercive force Hc becomes thicker (improved).Also, in place of Fe as a transition metal, Ni, Go, C
When a laminated soft magnetic thin film was prepared using r in the same manner as in Example 1, the obtained laminated soft magnetic thin film had excellent magnetic properties equivalent to those of Examples 1 and 2. Note that FIG. 2 shows an example of another laminated soft magnetic thin film. This is done by laminating the soft magnetic layer 2 of the laminated soft magnetic thin film explained using FIG. It has a three-layer structure. Fe, Ni, Co, Cr, and permalloy alloys are used for the transition metal thin films 4 and 4a. When the soft magnetic layer 2 has a three-layer structure in this way, the effect of the transition metal thin film described above can be further enhanced. Effects of the Invention As explained in detail above, the laminated soft magnetic thin film of the present invention has a lower effective magnetic permeability than the conventional laminated film in which Fe-Al-Si alloy thin films and SiO□ films are alternately formed. It has improved magnetic properties and coercive force. Therefore,
It is ideal as a core material for magnetic heads for high-density recording.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は本発明の積層軟磁性薄膜の実施例
を示す側面図、第3図および第4図は積層軟磁性薄膜の
磁気特性を示す図である1・・・基板     2・・
・軟磁性層3・・・薄膜絶縁層  4・4a・・・遷移
金属薄膜5 =−Fe−Al−Si系合金薄膜
1 and 2 are side views showing examples of the laminated soft magnetic thin film of the present invention, and FIGS. 3 and 4 are diagrams showing the magnetic properties of the laminated soft magnetic thin film. 1...Substrate 2.・
- Soft magnetic layer 3... Thin film insulating layer 4, 4a... Transition metal thin film 5 = -Fe-Al-Si alloy thin film

Claims (11)

【特許請求の範囲】[Claims] 1.複数の軟磁性層が薄膜絶縁層を介して積層され、前
記軟磁性層が複数層の軟磁性薄膜で構成されており、該
軟磁性薄膜のうち少なくとも隣合う軟磁性薄膜の組成が
異なることを特徴とする積層軟磁性薄膜。
1. A plurality of soft magnetic layers are laminated with a thin film insulating layer interposed therebetween, the soft magnetic layer is composed of a plurality of soft magnetic thin films, and at least adjacent soft magnetic thin films among the soft magnetic thin films have different compositions. Features a laminated soft magnetic thin film.
2.複数の軟磁性層が薄膜絶縁層を介して積層され、前
記軟磁性層が遷移金属薄膜とその表面に成膜されたFe
−Al−Si系合金薄膜とで構成されていることを特徴
とする積層軟磁性薄膜。
2. A plurality of soft magnetic layers are laminated with thin film insulating layers interposed therebetween, and the soft magnetic layer includes a transition metal thin film and an Fe layer formed on the surface of the transition metal thin film.
- A laminated soft magnetic thin film comprising: - an Al-Si alloy thin film.
3.複数の軟磁性層が薄膜絶縁層を介して積層され、前
記軟磁性層は第1の遷移金属薄膜、Fe−Al−Si系
合金薄膜および第2の遷移金属薄膜がこの順に積層され
た3層構造であることを特徴とする積層軟磁性薄膜。
3. A plurality of soft magnetic layers are laminated with thin film insulating layers interposed therebetween, and the soft magnetic layer is a three-layer structure in which a first transition metal thin film, an Fe-Al-Si alloy thin film, and a second transition metal thin film are laminated in this order. A laminated soft magnetic thin film characterized by its structure.
4.請求項第2項または第3項記載のFe−Al−Si
系合金薄膜の膜厚と遷移金属薄膜の膜厚との比率が1:
0.001〜0.1であることを特徴とする積層軟磁性
薄膜。
4. Fe-Al-Si according to claim 2 or 3
The ratio of the thickness of the alloy thin film to the thickness of the transition metal thin film is 1:
A laminated soft magnetic thin film characterized in that the magnetic flux is 0.001 to 0.1.
5.請求項第2項または第3項記載の遷移金属薄膜が純
度97%以上のFeであることを特徴とする積層軟磁性
薄膜。
5. A laminated soft magnetic thin film, wherein the transition metal thin film according to claim 2 or 3 is Fe with a purity of 97% or more.
6.請求項第2項または第3項記載の遷移金属薄膜が純
度97%以上のNiであることを特徴とする積層軟磁性
薄膜。
6. A laminated soft magnetic thin film, wherein the transition metal thin film according to claim 2 or 3 is Ni with a purity of 97% or more.
7.請求項第2項または第3項記載の遷移金属薄膜が純
度97%以上のCoであることを特徴とする積層軟磁性
薄膜。
7. A laminated soft magnetic thin film, wherein the transition metal thin film according to claim 2 or 3 is Co with a purity of 97% or more.
8.請求項第2項または第3項記載の遷移金属薄膜が純
度97%以上のCrであることを特徴とする積層軟磁性
薄膜。
8. The laminated soft magnetic thin film according to claim 2 or 3, wherein the transition metal thin film is Cr with a purity of 97% or more.
9.請求項第2項または第3項記載の遷移金属薄膜は、
Niが75〜85重量%、Feが15〜25重量%およ
び8重量%以下のMoからなるパーマロイ系合金である
ことを特徴とする積層軟磁性薄膜。
9. The transition metal thin film according to claim 2 or 3,
A laminated soft magnetic thin film characterized in that it is a permalloy alloy consisting of 75 to 85% by weight of Ni, 15 to 25% by weight of Fe, and 8% by weight or less of Mo.
10.請求項第2項または第3項記載のFe−Al−S
i系合金薄膜の主成分Fe、AlおよびSiは、Alが
2〜8重量%、Siが6〜12重量%、残りがFeであ
ることを特徴とする積層軟磁性薄膜。
10. Fe-Al-S according to claim 2 or 3
A laminated soft magnetic thin film characterized in that the main components Fe, Al and Si of the i-based alloy thin film are 2 to 8% by weight of Al, 6 to 12% by weight of Si, and the remainder Fe.
11.請求項第2項または第3項記載のFe−Al−S
i系合金にCr、Nb、Ni、Ru、Co、Ti、Cu
、Ga、Ge、Pdから選ばれる少なくとも1の成分が
5%以下含まれていることを特徴とする積層軟磁性薄膜
11. Fe-Al-S according to claim 2 or 3
i-based alloys include Cr, Nb, Ni, Ru, Co, Ti, Cu
, Ga, Ge, and Pd in an amount of 5% or less.
JP20892290A 1990-03-23 1990-08-06 Laminated thin soft magnetic film Pending JPH03278409A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP7221990 1990-03-23
JP2-72219 1990-03-23

Publications (1)

Publication Number Publication Date
JPH03278409A true JPH03278409A (en) 1991-12-10

Family

ID=13482919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20892290A Pending JPH03278409A (en) 1990-03-23 1990-08-06 Laminated thin soft magnetic film

Country Status (1)

Country Link
JP (1) JPH03278409A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108022751A (en) * 2016-10-31 2018-05-11 北京北方华创微电子装备有限公司 Deposition process, thin magnetic film lamination and the micro-inductor device of thin magnetic film lamination

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108022751A (en) * 2016-10-31 2018-05-11 北京北方华创微电子装备有限公司 Deposition process, thin magnetic film lamination and the micro-inductor device of thin magnetic film lamination
JP2020501341A (en) * 2016-10-31 2020-01-16 北京北方華創微電子装備有限公司Beijing Naura Microelectronics Equipment Co., Ltd. Deposition method of magnetic thin film laminated structure, magnetic thin film laminated structure, and micro inductance device
US11699541B2 (en) 2016-10-31 2023-07-11 Beijing Naura Microelectronics Equipment Co., Ltd. Magnetic thin film laminated structure deposition method

Similar Documents

Publication Publication Date Title
JPS59130408A (en) Magnetic film
JPH0622170B2 (en) Magnetic head
JPH0770020B2 (en) Magnetic head
JPH08273930A (en) Thin-film magnetic element and its manufacture
US4943879A (en) Thin film magnetic head including magnetic layers having high saturation magnetic flux density and metal film for avoiding deterioration during manufacturing
JPH07116563B2 (en) Fe-based soft magnetic alloy
JP2950917B2 (en) Soft magnetic thin film
JPH03278409A (en) Laminated thin soft magnetic film
JPH0329104A (en) Thin-film magnetic head
JPS58100412A (en) Manufacture of soft magnetic material
JPS61202310A (en) Composite type magnetic head
JPH0462162B2 (en)
JP2925257B2 (en) Ferromagnetic film, method of manufacturing the same, and magnetic head
JPH0282601A (en) Multilayer magnetic film
JP3232592B2 (en) Magnetic head
JPS63254709A (en) Laminated thin magnet film and magnetic head using the same
JPH06176315A (en) Thin film magnetic head
JP2001250223A (en) Magnetic recording medium and magnetic recorder
JPH03203008A (en) Production of laminated film of fe-si-al ferromagnetic alloy for magnetic head
JPS6260113A (en) Magnetic head having thin ferromagnetic film
JP2000114041A (en) Thin-film laminated body manufacture thereof and thin- film transformer using the same, thin-film inductor, and thin-film magnetic head
JP3452594B2 (en) Manufacturing method of magnetic head
JP2531145B2 (en) Thin film magnetic head
JPH0555036A (en) Soft magnetic thin film and its manufacture, soft magnetic multilayer film and its manufacture as well as magnetic head
JPH03263307A (en) Laminated layer soft magnetic thin film