JPH03263307A - Laminated layer soft magnetic thin film - Google Patents

Laminated layer soft magnetic thin film

Info

Publication number
JPH03263307A
JPH03263307A JP20892190A JP20892190A JPH03263307A JP H03263307 A JPH03263307 A JP H03263307A JP 20892190 A JP20892190 A JP 20892190A JP 20892190 A JP20892190 A JP 20892190A JP H03263307 A JPH03263307 A JP H03263307A
Authority
JP
Japan
Prior art keywords
thin film
film layer
transition metal
soft magnetic
coercive force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20892190A
Other languages
Japanese (ja)
Inventor
Kunio Fukuda
邦夫 福田
Ikuo Yoshida
吉田 郁男
Masaki Ejima
正毅 江島
Kazuichi Yamamura
和市 山村
Kazuhiko Nakayama
和彦 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Publication of JPH03263307A publication Critical patent/JPH03263307A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices

Abstract

PURPOSE:To realize high saturation magnetic flux density, low coercive force, and high effective magnetic permeability, by laminating a thin film layer of sendust based alloy whose main component is Fe, Al, and Si, on a transition metal thin film layer. CONSTITUTION:A thin film layer 3 of sendust based alloy whose main component is Fe, Al, and Si is laminated on a transition metal thin film layer 2 formed on a substrate 1. By laminating the transition metal thin film layer 2 and the thin film layer 3 of sendust based alloy, crystal is sufficiently grown even when the film thickness of sendust based alloy is thin to be equal to or thinner than 2mum, so that high saturation magnetic flux density, low coercive force, and high effective magnetic permeability can be obtained. As to the above laminated layer soft magnetic thin film, magnetic characteristics of effective magnetic permeability higher than or equal to 1500 are obtained, e.g. under the following conditions, saturation magnetic flux density is higher than or equal to 10000 gauss, coercive force is smaller than or equal to 0.5 oersted, and frequency is 1MHz. Said thin film is suitable for magnetic head core material for high density recording.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は磁気へラドコアの材料に適した積層軟磁性薄膜
に関するものである。
The present invention relates to a laminated soft magnetic thin film suitable as a material for a magnetic helad core.

【従来の技術】[Conventional technology]

ビデオテープレコーダーや磁気ディスク装置は年々記録
密度が向上しており、高密度記録に対応した磁気ヘッド
が強く求められている。 高密度記録用の磁気ヘッドには、従来より飽和磁束密度
Bsおよび実効透磁率μが高く、かつ抗磁力Hcが低い
素材からなるコアが必要である。 高密度記録用磁気ヘッドのコア材には、例えばパーマロ
イ系合金やアルパーム合金、また、Fe−Al−Si三
元系を母体とするセンダスト系合金がある。中てもセン
ゲスト系合金は、組成を調整することによって磁歪定数
および結晶磁気異方性定数をゼロにすることができ、極
めて優れた軟磁気特性を有している。しか’bFeの含
有率が比較的高いため、Feの大きな磁気モーメントを
反映して飽和磁束密度も高い。 しかし、このセンダスト系合金は機械加工が難しく、バ
ルク材から磁気ヘッドを製造するにはコストダウンが難
しいという欠点がある。近年ではスパッタ法などの薄膜
形成技術を用いて成膜したものが高密度記録用磁気へラ
ドコア材として用いられているが、薄膜化したセンダス
ト合金は磁歪定数、結晶磁気異方性定数を共にゼロにす
ることが困難で、バルク材はどの軟磁気特性を実現する
までには至っていない。 高密度記録磁気ヘッド用コア材としての特性を満たすに
は、抗磁力Heを小さくしてヒステリシス損失やノイズ
を低減し、実効透磁率μを大きくして再生出力を確保す
ることが必要だが、薄膜化したセンダスト合金において
は抗磁力Hcが0.3〜0.5工ルステツド程度であり
、周波数I MHzにおける実効透磁率Uが1000〜
3000程度である。また、その膜厚がl〜2++m以
下のときは結晶成長が充分でなく軟磁気特性の劣化が見
られる。 しかし、このセンタスト系合金は基本的に優れた軟磁気
特性を有しているため、磁気ディスク用に使用されつつ
ある薄膜ヘッドや、フェライトヘッドのギャップ近傍の
みに高飽和磁束密度の金属を配したメタルインギャップ
ヘッドなどへの応用が望まれている。
The recording density of video tape recorders and magnetic disk devices is improving year by year, and there is a strong demand for magnetic heads that can handle high-density recording. A magnetic head for high-density recording requires a core made of a material that has a higher saturation magnetic flux density Bs and an effective magnetic permeability μ and a lower coercive force Hc than before. Core materials for high-density recording magnetic heads include, for example, permalloy alloys, alperm alloys, and sendust alloys having a Fe-Al-Si ternary system as a matrix. Among these, Sengest alloys can have a magnetostriction constant and a magnetocrystalline anisotropy constant of zero by adjusting their composition, and have extremely excellent soft magnetic properties. However, since the content of 'bFe is relatively high, the saturation magnetic flux density is also high, reflecting the large magnetic moment of Fe. However, this sendust alloy is difficult to machine, and it is difficult to reduce costs when manufacturing magnetic heads from bulk materials. In recent years, films formed using thin film formation techniques such as sputtering have been used as magnetic herad core materials for high-density recording, but the thinned Sendust alloy has both a magnetostriction constant and a magnetocrystalline anisotropy constant of zero. However, bulk materials have not yet achieved any soft magnetic properties. In order to satisfy the characteristics as a core material for high-density recording magnetic heads, it is necessary to reduce the coercive force He to reduce hysteresis loss and noise, and to increase the effective magnetic permeability μ to ensure reproduction output. In the developed Sendust alloy, the coercive force Hc is about 0.3 to 0.5 degrees, and the effective magnetic permeability U at the frequency I MHz is about 1000 to 1000.
It is about 3000. Further, when the film thickness is less than 1 to 2++ m, crystal growth is insufficient and deterioration of soft magnetic properties is observed. However, since this Centast alloy basically has excellent soft magnetic properties, it is necessary to place metal with high saturation magnetic flux density only in the vicinity of the gap of thin film heads and ferrite heads that are being used for magnetic disks. Application to metal-in-gap heads, etc. is desired.

【発明が解決しようとする課題】[Problem to be solved by the invention]

本発明は上述の点に鑑みてFe−Al−3i系合金(セ
ンダスト系合金〕の高い飽和磁束密度を保有し、なおか
つ従来よりも低い抗磁力、高い実効透磁率を有する積層
軟磁性薄膜、更にはその膜厚が1〜2++m以下と薄く
てち充分に高い飽和磁束密度、低い抗磁力、高い実効透
磁率を有する積層軟磁性薄膜を提供することを目的とす
る。
In view of the above-mentioned points, the present invention provides a laminated soft magnetic thin film that has a high saturation magnetic flux density of Fe-Al-3i alloy (sendust alloy), and also has lower coercive force and higher effective magnetic permeability than conventional ones. The object of the present invention is to provide a laminated soft magnetic thin film having a thin film thickness of 1 to 2++ m or less and having sufficiently high saturation magnetic flux density, low coercive force, and high effective magnetic permeability.

【課題を解決するための手段】[Means to solve the problem]

前記の課題を解決するためになされた本発明の積層軟磁
性薄膜を、実施例に対応する第1図を用いて説明する。 同図に示すように本発明の第1発明である積層軟磁性薄
膜は、基板l上に成膜された遷移金属薄膜層2上に主成
分がFe、 AlおよびSiであるセンダスト系合金の
薄膜層3が積層されている。 また、第2発明の積層軟磁性薄膜は、基板1上に成膜さ
れた遷移金属薄膜層2上に主成分がFe、AlおよびS
iであるセンダスト系合金の薄膜層3が積層され、飽和
磁束密度が10000ガウス以上、抗磁力が0.5エル
ステッド以下で、周波数I MHzにおける実効透磁率
が1000以上である。 センダスト系合金薄膜層3の膜厚と遷移金属薄膜層2の
膜厚との比率は、前者が1に対して後者が0.001〜
01であることが望ましい。遷移金属薄膜層2の比率が
0.001より小さくなると、高い飽和磁束密度、低い
抗磁力および高い透磁率は得られ難い。また 0.1よ
り大きくなると遷移金属の特性が強くあられれ、実効透
磁率が低下し、抗磁力が大きくなる。 遷移金属薄膜層2は、例えば純度97%以上のFe、 
Ni、 Go、 Crや、パーマロイ系合金を使用する
。パーマロイ系合金はNiが75〜85重量%、Feが
15〜25重量%であり、Moを8重量%まで添加して
も良い。 センダスト系合金の主成分Fe、 AlおよびSiは、
Alが2〜8重量%、Siが6〜12重量%および残量
がFeである。この組成範囲からはずれると磁歪定数お
よび結晶磁気異方性の値が増大し、抗磁力が大きくなり
、高い実効透磁率μが確保できなくなる。 積層軟磁性薄膜の特性改善のため、Fe−Al−3i系
のセンダスト系合金に例えばCr、 Nb、Ni、Ru
、Go、Ti、 Cu、 Ga、 Ge、 Pdから選
ばれる少なくともlの成分を5%以下加えても良い。 この積層軟磁性薄膜は、基板1上に遷移金属薄膜層2を
形成し、その上に直接センダスト系合金薄膜層3を積層
して製造される。遷移金属薄膜層2およびセンダスト系
合金薄膜層3の形成には、例えばスパッタ法を用いる。
The laminated soft magnetic thin film of the present invention, which has been made to solve the above problems, will be explained with reference to FIG. 1, which corresponds to an embodiment. As shown in the figure, the laminated soft magnetic thin film which is the first invention of the present invention is a thin film of a sendust alloy whose main components are Fe, Al and Si on a transition metal thin film layer 2 formed on a substrate l. Layer 3 is laminated. Further, in the laminated soft magnetic thin film of the second invention, the main components are Fe, Al and S on the transition metal thin film layer 2 formed on the substrate 1.
A thin film layer 3 of a Sendust-based alloy i is laminated, and has a saturation magnetic flux density of 10,000 Gauss or more, a coercive force of 0.5 Oe or less, and an effective magnetic permeability at a frequency of I MHz of 1,000 or more. The ratio between the thickness of the sendust alloy thin film layer 3 and the thickness of the transition metal thin film layer 2 is 1 for the former and 0.001 for the latter.
01 is desirable. When the ratio of the transition metal thin film layer 2 is smaller than 0.001, it is difficult to obtain high saturation magnetic flux density, low coercive force, and high magnetic permeability. Moreover, when it is larger than 0.1, the characteristics of the transition metal become strong, the effective magnetic permeability decreases, and the coercive force increases. The transition metal thin film layer 2 is made of, for example, Fe with a purity of 97% or more,
Use Ni, Go, Cr, or permalloy alloy. The permalloy alloy contains 75 to 85% by weight of Ni, 15 to 25% by weight of Fe, and may contain up to 8% by weight of Mo. The main components of sendust alloys are Fe, Al and Si.
Al is 2 to 8% by weight, Si is 6 to 12% by weight, and the balance is Fe. When the composition deviates from this range, the values of the magnetostriction constant and magnetocrystalline anisotropy increase, the coercive force increases, and a high effective magnetic permeability μ cannot be ensured. In order to improve the characteristics of the laminated soft magnetic thin film, for example, Cr, Nb, Ni, Ru, etc. are added to the Fe-Al-3i-based sendust alloy.
, Go, Ti, Cu, Ga, Ge, and Pd in an amount of 5% or less. This laminated soft magnetic thin film is manufactured by forming a transition metal thin film layer 2 on a substrate 1 and directly laminating a sendust alloy thin film layer 3 thereon. For example, a sputtering method is used to form the transition metal thin film layer 2 and the sendust alloy thin film layer 3.

【作用】[Effect]

本発明の積層軟磁性薄膜は、遷移金属薄膜層2とセンダ
スト系合金薄膜層3とを前述のように積層することによ
り、センダスト系合金の膜厚が1〜2μm以下と薄い場
合でも結晶が充分に成長するため、高い飽和磁束密度、
低い抗磁力および高い実効透磁率が得られている。 この積層軟磁性薄膜は、例えば飽和磁束密度が1000
0ガウス以上、抗磁力が0.5エルステッド以下で、周
波数I MHzにおける実効透磁率が1500以上の磁
気特性が得られ、高密度記録用の磁気ヘッドコア材料と
して適している。
By laminating the transition metal thin film layer 2 and the sendust alloy thin film layer 3 as described above, the laminated soft magnetic thin film of the present invention has sufficient crystallization even when the film thickness of the sendust alloy is as thin as 1 to 2 μm or less. High saturation magnetic flux density,
Low coercive force and high effective permeability are obtained. This laminated soft magnetic thin film has a saturation magnetic flux density of 1000, for example.
It has magnetic properties of 0 Gauss or more, a coercive force of 0.5 Oe or less, and an effective magnetic permeability of 1500 or more at a frequency of I MHz, and is suitable as a magnetic head core material for high-density recording.

【実施例】【Example】

以下、本発明の詳細な説明する。 第1図に本発明を適用する積層軟磁性薄膜の一実施例を
示す。この積層軟磁性薄膜は、基板1の表面に遷移金属
薄膜層2と、Fe−Al−Si三元系のセンダスト系合
金薄膜層3とを順次積層したものである。センダスト系
合金薄膜層3の組成はFeが85重量%、A1が5.4
重量%、Siが9.6重量%になっている。 本発明の実験例は以下の通りである。 実施例1(遷移金属としてFeを用いた例)表面を光学
研磨した10mmX IDmmX l mmサイズの結
晶化ガラス基板lの表面に、高周波マグネトロンスパッ
タ装置を用いて純度99.9%のFe薄膜層2を成膜し
、続いてその表面に厚さ111mのセンダスト系合金薄
膜層3を成膜して積層軟磁性薄膜を作成する。Fe薄膜
層2の厚さは1.5.1O150,100,500,1
1000nに設定した。スパッタ条件は、RF電力80
0w、アルゴンガス圧カー、 2X10−2Torrで
ある。 得られた積層軟磁性薄膜に真空中で600T:、1時間
の熱処理を施した後、振動試料型磁力計を用いて飽和磁
束密度Bsおよび抗磁力Hcを測定した。実効透磁率μ
は8の字コイル法で測定した。 第2図にFe薄膜層2が1onn+、センダスト系合金
薄膜層3がllImである積層軟磁性薄膜のB−H曲線
を示す。同図に示したFe薄膜層10nmのときの磁気
特性は、Bs=12000ガウス、Hc=0.05エル
スデツド、μ= 500Off=1MHz)である。 第3図にFe薄膜層2の厚さを変化させた積層軟磁性薄
膜の飽和磁束密度Bsを、第4図に抗磁力Hcおよび実
効透磁率μを示す。これらの図よりFe薄膜層2の膜厚
が1〜1100n、即ちセンダスト系合金薄膜層3の膜
厚を1とした場合、Fe薄膜層2の膜厚が0.001〜
0.1の範囲に設定してあれば、飽和磁束密度Bs、抗
磁力Heともに良好な値が得られることがわかる。 次に前記と同じ成膜方法を用い、Fe薄膜層2を20n
mと一定にし、センダスト系合金薄膜層3の膜厚を0.
1.0.2.0.5、1.5.10gmと変化させて、
積層磁性合金膜を作成した。同様の熱処理を行なった後
、飽和磁束密度Bs、抗磁力Heおよび実効透磁率μの
測定を行なった。第5図にセンダスト系合金薄膜3の厚
さを変化させた積層軟磁性薄膜の飽和磁束密度Bs、第
6図に抗磁力Hcおよび実効透磁率μを示す。これらの
図よりセンダスト系合金薄膜層3の膜厚が0.2〜lO
μm、即ちセンダスト系合金薄膜層3の膜厚を1とした
場合、Fe薄膜層2の膜厚が0.002〜0.1の範囲
に設定してあれば、飽和磁束密度Bs、抗磁力Hcおよ
び実効透磁率Uとも0 に良好なことがわかる。なかでも、センタスト系合金薄
膜層3の膜厚を1μmに設定したときの磁気特性は、B
s= 12000ガウス、Hc=0.05エルステッド
、μ=500Off・IMoz)と良好な値が得られた
。 参考のため、Fe薄膜層2を設けずに基板1へ直接セン
タスト系合金を111m成膜し、その磁気特性を洞定し
た。第16図にB −8曲線を示す。この試料の飽和磁
束密度Bs、抗磁力Hcおよび実効透磁率Hの測定値を
第3図および第4図に示す。 実施例2〔遷移金属としてNiを用いた例)表面を光学
研磨した5 mmX lOmmX l mmサイズの結
晶化ガラス基板1の表面に、高周波マグネトロンスパッ
タ装置を用いて純度999%のNi薄膜層2を成膜し、
続いてその表面に厚さIIImのセンダスト系合金薄膜
層3を成膜して積層軟磁性薄膜を作成する。遷移金属薄
膜層2の厚さは1.5.10.30、100r+mに設
定した。スパッタ条件はRF電力600W、アルゴンガ
ス圧力1.0XlO−2Torrである。 得られた積層軟磁性薄膜に実施例1と同様の熱処理を施
した後、飽和磁束密度Bs、抗磁力Hcおよ1 び実効透磁率μを洞定した。 第7図にNi薄膜層2の厚さを変化させた積層軟磁性薄
膜の飽和磁束密度Bsを、第8図に抗磁力Hcおよび実
効透磁率μを示す。これらの図より、遷移金属薄膜層2
の膜厚が1〜50nm、即ちセンダスト系合金薄膜層3
の膜厚を1とした場合、遷移金属薄膜層2の膜厚が0.
001〜0.05の範囲に設定してあれば、飽和磁束密
度Bs、抗磁力Hcともに良好な値が得られることがわ
かる。 実施例3(遷移金属としてCoを用いた例)遷移金属と
して純度99.7%のGoを用いて実施例2と同様にし
て積層軟磁性薄膜を作成し、飽和磁束密度Bs、抗磁力
Hcおよび実効透磁率11を測定した。 第9図にCo薄膜層2の厚さを変化させた積層軟磁性薄
膜の飽和m束密度Bsを、第10図に抗磁力Hcおよび
実効透磁率μを示す。これらの図より、遷移金属薄膜層
2の膜厚が1〜50nm、即ちセンダスト系合金薄膜層
3の膜厚を1とした場合、遷移金属薄膜層2の膜厚が0
.001〜0.05の範囲に設定 2 してあれば、飽和磁束密度Bs、抗磁力Heともに良好
な値が得られることがわかる。 実施例4 (iJ:移金属としてCrを用いた例)遷移
金属として純度99.9%のCrを用いて実施例2と同
様にして積層軟磁性薄膜を作成し、飽和磁束密度Bs、
抗磁力Hcオよび実効透磁率μを測定した。 第11図にCr薄膜層2の厚さを変化させた積層軟磁性
薄膜の飽和磁束密度Bsを、第12図に抗磁力Hcおよ
び実効透磁率μを示す。これらの図より、遷移金属薄膜
層2の膜厚がl〜1100n、即ちセンダスト系合金薄
膜層3の膜厚を1とした場合、遷移金属薄膜層2の膜厚
が0.0[ll−0,1の範囲に設定してあれば、飽和
磁束密度Bs、抗磁力Hcともに良好な値が得られるこ
とがわかる。 参考のため、実施例2〜4と同一の条件で基板1へ厚さ
11Imのセンダスト系合金薄膜層3を直接成膜し、磁
気特性を測定した。飽和磁束密度Bsを第7図、第9図
および第11図に示す。また、抗磁力Hcと実効透磁率
μとを第8図、第10図およ3 び第12図に示す。 実施例5(遷移金属としてパーマロイ系合金を用いた例
) 表面を光学研磨した5 mmX lommX 1 mm
サイズの結晶化ガラス基板1の表面に、高周波マグネト
ロンスパッタ装置を用いてパーマロイ系合金薄膜層2を
成膜し、続いてその表面に厚さlIImのセンダスト系
合金薄膜層3を成膜して積層軟磁性薄膜を作成する。薄
膜層2の厚さは5.10.30.1100nに設定した
。パーマロイ系合金の組成はN1が81重量%、Feが
19重量%である。スパッタ条件および熱処理条件は実
施例2と同一である。 第13図にパーマロイ系合金薄膜層2の厚さを変化させ
た積層軟磁性薄膜の飽和磁束密度Bsを、第14図に抗
磁力Heおよび実効透磁率μを示す。 これらの図より、遷移金属薄膜層2の膜厚が5〜110
0n、即ちセンダスト系合金薄膜層3の膜厚を1とした
場合、遷移金属薄膜層2の膜厚が0.005〜0.1の
範囲に設定してあれば、飽和磁束密度Bs、抗磁力Hc
ともに良好な値が得られることがわか4 る。 参考のため、実施例2〜4と同一の条件で基板1へ厚さ
lpmのセンダスト系合金薄膜層3のみを直接成膜し、
その磁気特性を測定した。飽和磁束密度Bs、抗磁力H
eおよび実効透磁率μを第13図および第14図に示す
。また、そのB−8曲線は第16図と略同じであった。 第15図は実施例1〜5をまとめたもので、各実施例に
おいて遷移金属薄膜層2の厚みを変えて作成した磁性薄
膜のうち、抗磁力Hcの最低値同士を比較した図である
。同図によればFeが最も良好な値を示しているが、N
i、 Co、 Crおよびパーマロイの何れにも、下地
層による顕著な抗磁力抑制効果が見られる。 これらの結果より、基板1とセンダスト系合金3との間
にわずか17nm〜数十nmの遷移金属薄膜層2を設け
るだけで磁気特性が大きく改善されることがわかる。特
に抗磁力Hcと実効透磁率μにおいて顕著である。
The present invention will be explained in detail below. FIG. 1 shows an embodiment of a laminated soft magnetic thin film to which the present invention is applied. This laminated soft magnetic thin film is obtained by sequentially laminating a transition metal thin film layer 2 and a Fe-Al-Si ternary sendust alloy thin film layer 3 on the surface of a substrate 1. The composition of the sendust alloy thin film layer 3 is 85% by weight of Fe and 5.4% of A1.
% by weight, Si is 9.6% by weight. Experimental examples of the present invention are as follows. Example 1 (Example using Fe as the transition metal) A Fe thin film layer 2 with a purity of 99.9% was formed on the surface of a crystallized glass substrate l with a size of 10 mm x ID mm x 1 mm, the surface of which was optically polished, using a high frequency magnetron sputtering device. , and then a sendust alloy thin film layer 3 having a thickness of 111 m is formed on the surface thereof to create a laminated soft magnetic thin film. The thickness of the Fe thin film layer 2 is 1.5.1O150,100,500,1
It was set to 1000n. Sputtering conditions are RF power 80
0W, argon gas pressure car, 2X10-2 Torr. The obtained laminated soft magnetic thin film was heat treated in vacuum at 600 T for 1 hour, and then the saturation magnetic flux density Bs and coercive force Hc were measured using a vibrating sample magnetometer. Effective permeability μ
was measured using the figure-eight coil method. FIG. 2 shows a B-H curve of a laminated soft magnetic thin film in which the Fe thin film layer 2 is 1onn+ and the Sendust alloy thin film layer 3 is llIm. The magnetic properties when the Fe thin film layer is 10 nm shown in the same figure are Bs=12000 Gauss, Hc=0.05 elsde, μ=500 Off=1 MHz). FIG. 3 shows the saturation magnetic flux density Bs of laminated soft magnetic thin films with varying thicknesses of the Fe thin film layer 2, and FIG. 4 shows the coercive force Hc and effective magnetic permeability μ. These figures show that when the thickness of the Fe thin film layer 2 is 1 to 1100 nm, that is, the thickness of the sendust alloy thin film layer 3 is 1, the thickness of the Fe thin film layer 2 is 0.001 to 1100 nm.
It can be seen that if the value is set within the range of 0.1, good values can be obtained for both the saturation magnetic flux density Bs and the coercive force He. Next, using the same film forming method as above, a Fe thin film layer 2 of 20nm was formed.
m and the thickness of the sendust alloy thin film layer 3 to be 0.
Change it to 1.0.2.0.5, 1.5.10gm,
A laminated magnetic alloy film was created. After similar heat treatment, the saturation magnetic flux density Bs, coercive force He, and effective magnetic permeability μ were measured. FIG. 5 shows the saturation magnetic flux density Bs of laminated soft magnetic thin films with varying thicknesses of the sendust alloy thin film 3, and FIG. 6 shows the coercive force Hc and effective magnetic permeability μ. From these figures, the thickness of the sendust alloy thin film layer 3 is 0.2 to 1O.
μm, that is, the film thickness of the sendust alloy thin film layer 3 is set to 1, and if the film thickness of the Fe thin film layer 2 is set in the range of 0.002 to 0.1, the saturation magnetic flux density Bs, coercive force Hc It can be seen that both the effective magnetic permeability and the effective magnetic permeability U are 0. Among them, the magnetic properties when the thickness of the centast alloy thin film layer 3 is set to 1 μm are B
Good values were obtained: s=12000 Gauss, Hc=0.05 Oersted, μ=500Off・IMoz). For reference, 111 m of centast alloy was directly formed on the substrate 1 without providing the Fe thin film layer 2, and its magnetic properties were determined. FIG. 16 shows the B-8 curve. Measured values of the saturation magnetic flux density Bs, coercive force Hc, and effective magnetic permeability H of this sample are shown in FIGS. 3 and 4. Example 2 [Example using Ni as the transition metal] A Ni thin film layer 2 with a purity of 999% is formed on the surface of a crystallized glass substrate 1 with a size of 5 mm x 10 mm x 1 mm, the surface of which has been optically polished, using a high frequency magnetron sputtering device. Form a film,
Subsequently, a sendust alloy thin film layer 3 having a thickness of IIIm is formed on the surface to form a laminated soft magnetic thin film. The thickness of the transition metal thin film layer 2 was set to 1.5.10.30, 100r+m. The sputtering conditions were RF power of 600 W and argon gas pressure of 1.0XlO-2 Torr. After the obtained laminated soft magnetic thin film was subjected to the same heat treatment as in Example 1, the saturation magnetic flux density Bs, coercive force Hc and 1, and effective magnetic permeability μ were determined. FIG. 7 shows the saturation magnetic flux density Bs of laminated soft magnetic thin films with varying thicknesses of the Ni thin film layer 2, and FIG. 8 shows the coercive force Hc and effective magnetic permeability μ. From these figures, the transition metal thin film layer 2
The film thickness is 1 to 50 nm, that is, the sendust alloy thin film layer 3
When the film thickness of the transition metal thin film layer 2 is 1, the film thickness of the transition metal thin film layer 2 is 0.
It can be seen that good values can be obtained for both the saturation magnetic flux density Bs and the coercive force Hc if the value is set in the range of 001 to 0.05. Example 3 (Example using Co as the transition metal) A laminated soft magnetic thin film was prepared in the same manner as in Example 2 using Go with a purity of 99.7% as the transition metal, and the saturation magnetic flux density Bs, coercive force Hc, and Effective magnetic permeability 11 was measured. FIG. 9 shows the saturation m-flux density Bs of laminated soft magnetic thin films with varying thicknesses of the Co thin film layer 2, and FIG. 10 shows the coercive force Hc and effective magnetic permeability μ. From these figures, when the thickness of the transition metal thin film layer 2 is 1 to 50 nm, that is, the thickness of the sendust alloy thin film layer 3 is 1, the thickness of the transition metal thin film layer 2 is 0.
.. It can be seen that good values can be obtained for both the saturation magnetic flux density Bs and the coercive force He if it is set in the range of 001 to 0.05. Example 4 (iJ: Example using Cr as the transition metal) A laminated soft magnetic thin film was prepared in the same manner as in Example 2 using 99.9% pure Cr as the transition metal, and the saturation magnetic flux density Bs,
The coercive force Hc and the effective magnetic permeability μ were measured. FIG. 11 shows the saturation magnetic flux density Bs of laminated soft magnetic thin films with varying thicknesses of the Cr thin film layer 2, and FIG. 12 shows the coercive force Hc and effective magnetic permeability μ. From these figures, when the thickness of the transition metal thin film layer 2 is l to 1100n, that is, the thickness of the sendust alloy thin film layer 3 is 1, the thickness of the transition metal thin film layer 2 is 0.0 [ll-0 , 1, good values can be obtained for both the saturation magnetic flux density Bs and the coercive force Hc. For reference, a sendust alloy thin film layer 3 having a thickness of 11 Im was directly formed on the substrate 1 under the same conditions as Examples 2 to 4, and the magnetic properties were measured. The saturation magnetic flux density Bs is shown in FIGS. 7, 9, and 11. Further, the coercive force Hc and the effective magnetic permeability μ are shown in FIGS. 8, 10, 3, and 12. Example 5 (example using permalloy alloy as the transition metal) The surface was optically polished to 5 mm x lomm x 1 mm.
A permalloy alloy thin film layer 2 is formed on the surface of a crystallized glass substrate 1 of the same size using a high frequency magnetron sputtering device, and then a sendust alloy thin film layer 3 of a thickness lIIm is formed and laminated on the surface. Create a soft magnetic thin film. The thickness of the thin film layer 2 was set to 5.10.30.1100 nm. The composition of the permalloy alloy is 81% by weight of N1 and 19% by weight of Fe. The sputtering conditions and heat treatment conditions are the same as in Example 2. FIG. 13 shows the saturation magnetic flux density Bs of the laminated soft magnetic thin film in which the thickness of the permalloy alloy thin film layer 2 is changed, and FIG. 14 shows the coercive force He and effective magnetic permeability μ. From these figures, the thickness of the transition metal thin film layer 2 is 5 to 110 mm.
0n, that is, the thickness of the sendust alloy thin film layer 3 is 1, and if the thickness of the transition metal thin film layer 2 is set in the range of 0.005 to 0.1, the saturation magnetic flux density Bs and coercive force Hc
It can be seen that good values can be obtained in both cases4. For reference, only the sendust alloy thin film layer 3 with a thickness of lpm was directly deposited on the substrate 1 under the same conditions as in Examples 2 to 4.
Its magnetic properties were measured. Saturation magnetic flux density Bs, coercive force H
e and effective magnetic permeability μ are shown in FIGS. 13 and 14. Moreover, the B-8 curve was approximately the same as that in FIG. FIG. 15 summarizes Examples 1 to 5, and is a diagram comparing the lowest values of coercive force Hc among magnetic thin films created by changing the thickness of the transition metal thin film layer 2 in each example. According to the figure, Fe shows the best value, but N
A remarkable coercive force suppressing effect by the underlayer is seen in all of i, Co, Cr, and permalloy. These results show that the magnetic properties can be greatly improved by simply providing the transition metal thin film layer 2 with a thickness of only 17 nm to several tens of nm between the substrate 1 and the Sendust alloy 3. This is particularly noticeable in the coercive force Hc and the effective magnetic permeability μ.

【発明の効果】【Effect of the invention】

以上詳細に説明したように本発明の積層軟磁性薄膜は、
飽和磁束密度および実効透磁率が高く、抗磁力が低いと
いう優れた軟磁気特性を有している。その磁気特性は膜
厚が1〜2IIm以下と極めて薄い場合でも確保される
。従って、この積層軟磁性薄膜は高密度記録用磁気ヘッ
ドのコア材に最適である。
As explained in detail above, the laminated soft magnetic thin film of the present invention is
It has excellent soft magnetic properties such as high saturation magnetic flux density, high effective magnetic permeability, and low coercive force. The magnetic properties are ensured even when the film thickness is extremely thin, such as 1 to 2 II m or less. Therefore, this laminated soft magnetic thin film is most suitable for the core material of a magnetic head for high-density recording.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を適用する積層軟磁性薄膜の断面図、第
2図〜第15図は本発明の積層軟磁性薄膜の実施例の磁
気特性を示す図、第16図は従来の磁性薄膜の磁気特性
を示す図である。 1・・・基板      2−・・遷移金属薄膜層3・
・・センダスト系合金薄膜層
FIG. 1 is a cross-sectional view of a laminated soft magnetic thin film to which the present invention is applied, FIGS. 2 to 15 are diagrams showing magnetic properties of examples of the laminated soft magnetic thin film of the present invention, and FIG. 16 is a conventional magnetic thin film. FIG. 1... Substrate 2-... Transition metal thin film layer 3.
...Sendust alloy thin film layer

Claims (10)

【特許請求の範囲】[Claims] 1.遷移金属薄膜層上に主成分がFe、AlおよびSi
であるセンダスト系合金の薄膜層が積層されていること
を特徴とする積層軟磁性薄膜。
1. The main components are Fe, Al and Si on the transition metal thin film layer.
A laminated soft magnetic thin film characterized by laminating thin film layers of a sendust alloy.
2.遷移金属薄膜層上に主成分がFe、AlおよびSi
であるセンダスト系合金の薄膜層が積層され、飽和磁束
密度が10000ガウス以上、抗磁力が0.5エルステ
ッド以下で、周波数1MHzにおける実効透磁率が10
00以上であることを特徴とする積層軟磁性薄膜。
2. The main components are Fe, Al and Si on the transition metal thin film layer.
Thin film layers of Sendust alloy are laminated, and the saturation magnetic flux density is 10,000 Gauss or more, the coercive force is 0.5 Oe or less, and the effective magnetic permeability at a frequency of 1 MHz is 10.
00 or more.
3.前記センダスト系合金薄膜層の膜厚と遷移金属薄膜
層の膜厚との比率が1:0.001〜0.1であること
を特徴とする特許請求の範囲第1項または第2項記載の
積層軟磁性薄膜。
3. Claim 1 or 2, wherein the ratio of the thickness of the sendust alloy thin film layer to the thickness of the transition metal thin film layer is 1:0.001 to 0.1. Laminated soft magnetic thin film.
4.前記遷移金属は純度97%以上のFeであることを
特徴とする特許請求の範囲第1項または第2項記載の積
層軟磁性薄膜。
4. 3. The laminated soft magnetic thin film according to claim 1, wherein the transition metal is Fe with a purity of 97% or more.
5.前記遷移金属は純度97%以上のNiであることを
特徴とする特許請求の範囲第1項または第2項記載の積
層軟磁性薄膜。
5. 3. The laminated soft magnetic thin film according to claim 1, wherein the transition metal is Ni with a purity of 97% or more.
6.前記遷移金属は純度97%以上のCoであることを
特徴とする特許請求の範囲第1項または第2項記載の積
層軟磁性薄膜。
6. 3. The laminated soft magnetic thin film according to claim 1, wherein the transition metal is Co with a purity of 97% or more.
7.前記遷移金属は純度97%以上のCrであることを
特徴とする特許請求の範囲第1項または第2項記載の積
層軟磁性薄膜。
7. 3. The laminated soft magnetic thin film according to claim 1, wherein the transition metal is Cr with a purity of 97% or more.
8.前記遷移金属は、Niが75〜85重量%、Feが
15〜25重量%および8重量%以下のMoからなるパ
ーマロイ系合金であることを特徴とする特許請求の範囲
第1項または第2項記載の積層軟磁性薄膜。
8. Claim 1 or 2, wherein the transition metal is a permalloy alloy consisting of 75 to 85% by weight of Ni, 15 to 25% by weight of Fe, and 8% by weight or less of Mo. The laminated soft magnetic thin film described above.
9.前記センダスト系合金の主成分Fe、AlおよびS
iは、それぞれAlが2〜8重量%、Siが6〜12重
量%、残量がFeであることを特徴とする特許請求の範
囲第1項または第2項記載の積層軟磁性薄膜。
9. The main components of the sendust alloy are Fe, Al and S.
3. The laminated soft magnetic thin film according to claim 1, wherein i is 2 to 8% by weight of Al, 6 to 12% by weight of Si, and the remaining amount is Fe.
10.主成分がFe、AlおよびSiである前記センダ
スト系合金にCr、Nb、Ni、Ru、Co、Ti、C
u、Ga、Ge、Pdから選ばれる少なくとも1の成分
が5%以下含まれていることを特徴とする特許請求の範
囲第1項または第2項記載の積層軟磁性薄膜。
10. The sendust alloy whose main components are Fe, Al and Si include Cr, Nb, Ni, Ru, Co, Ti, and C.
3. The laminated soft magnetic thin film according to claim 1 or 2, wherein the laminated soft magnetic thin film contains 5% or less of at least one component selected from U, Ga, Ge, and Pd.
JP20892190A 1990-02-16 1990-08-06 Laminated layer soft magnetic thin film Pending JPH03263307A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP3365490 1990-02-16
JP2-33654 1990-02-16

Publications (1)

Publication Number Publication Date
JPH03263307A true JPH03263307A (en) 1991-11-22

Family

ID=12392438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20892190A Pending JPH03263307A (en) 1990-02-16 1990-08-06 Laminated layer soft magnetic thin film

Country Status (1)

Country Link
JP (1) JPH03263307A (en)

Similar Documents

Publication Publication Date Title
JPH0744110B2 (en) High saturation magnetic flux density soft magnetic film and magnetic head
US5439754A (en) Ferromagnetic film, method of manufacturing the same, and magnetic head
EP0234879B1 (en) Ferromagnetic thin film and magnetic head using it
US4707417A (en) Magnetic composite film
JPH06318516A (en) Soft magnetic multilayer film and magnetic head using same
JP2780588B2 (en) Stacked magnetic head core
JP2508489B2 (en) Soft magnetic thin film
JPS60132305A (en) Iron-nitrogen laminated magnetic film and magnetic head using the same
JP3127075B2 (en) Soft magnetic alloy film, magnetic head, and method of adjusting thermal expansion coefficient of soft magnetic alloy film
JP2925257B2 (en) Ferromagnetic film, method of manufacturing the same, and magnetic head
JP2775770B2 (en) Method for manufacturing soft magnetic thin film
JPH03263307A (en) Laminated layer soft magnetic thin film
JPH0827908B2 (en) Magnetic head
Katori et al. Soft magnetic properties for Fe-Al-Nb-NO films
JP3232592B2 (en) Magnetic head
JP2523854B2 (en) Magnetic head
JP3194578B2 (en) Multilayer ferromagnetic material
JP2979557B2 (en) Soft magnetic film
JP2696120B2 (en) Magnetic multilayer film
JPH0389502A (en) Magnetic multilayer film
JP3452594B2 (en) Manufacturing method of magnetic head
JP2551008B2 (en) Soft magnetic thin film
JP2995784B2 (en) Magnetic head
JPH0555036A (en) Soft magnetic thin film and its manufacture, soft magnetic multilayer film and its manufacture as well as magnetic head
JPH04359501A (en) Multilayer ferromagnetic substance