JP2696120B2 - Magnetic multilayer film - Google Patents

Magnetic multilayer film

Info

Publication number
JP2696120B2
JP2696120B2 JP63130328A JP13032888A JP2696120B2 JP 2696120 B2 JP2696120 B2 JP 2696120B2 JP 63130328 A JP63130328 A JP 63130328A JP 13032888 A JP13032888 A JP 13032888A JP 2696120 B2 JP2696120 B2 JP 2696120B2
Authority
JP
Japan
Prior art keywords
magnetic
layer
film
multilayer film
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63130328A
Other languages
Japanese (ja)
Other versions
JPH01300504A (en
Inventor
正勝 千田
靖浩 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP63130328A priority Critical patent/JP2696120B2/en
Publication of JPH01300504A publication Critical patent/JPH01300504A/en
Application granted granted Critical
Publication of JP2696120B2 publication Critical patent/JP2696120B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Magnetic Heads (AREA)
  • Power Engineering (AREA)
  • Thin Magnetic Films (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、磁気記録装置用磁気ヘッドの磁極に適した
磁性多層膜に関するものである。
Description: TECHNICAL FIELD The present invention relates to a magnetic multilayer film suitable for a magnetic pole of a magnetic head for a magnetic recording device.

[従来の技術] 磁気記録装置の線記録密度を高くするためには、ヘッ
ド用磁性膜としては、高保磁力媒体を充分磁化できる
よう、飽和磁束密度が高いこと,良好な再生効率を得
るために、保磁力が低くかつ透磁率が高いこと,応力
に伴う磁気特性の変化を抑制するため、磁歪定数が零付
近であること,が、必要とされる。
[Prior Art] In order to increase the linear recording density of a magnetic recording apparatus, a magnetic film for a head is required to have a high saturation magnetic flux density so as to sufficiently magnetize a high coercive force medium and to obtain good reproduction efficiency. It is required that the coercive force is low and the magnetic permeability is high, and that the magnetostriction constant is close to zero in order to suppress a change in magnetic characteristics due to stress.

従来、ヘッド用磁性膜としては、NiFe合金が使用され
ており、また近年、NiFe合金に代わる高飽和磁束密度磁
性膜として、CoZrに僅かのReを含む合金(あるいは、Co
Zrに僅かのNbを含む合金),FeとNiとの多層膜(J.Appl.
Phys.,63,1136(1988)),FeとCoとの多層膜(Appl.Phy
s.Lett.,672(1988)),僅かに、Cを含むFeとNiFeと
の多層膜(IEEE Trams.Magn.,MAG-23,2746(1988))が
開発されている。これらの磁性膜では、FeあるいはCoを
主成分とするため、高い飽和磁束密度を可能とするが、
磁歪を零付近とするためには、異種元素の添加、および
逆符号の磁歪をもつ磁性層との積層化といった複雑な操
作が必要であった。また、これらの磁性膜では、アモル
ファス化、あるいは、他の磁性膜との積層化により、保
磁力の低下を実現しているため、材料および膜構造の点
から非常に複雑であるという欠点があった。
Conventionally, a NiFe alloy has been used as a magnetic film for a head, and in recent years, an alloy containing a small amount of Re in CoZr (or Co
An alloy containing a small amount of Nb in Zr), a multilayer film of Fe and Ni (J. Appl.
Phys., 63, 1136 (1988)), multilayer film of Fe and Co (Appl. Phy
s. Lett., 672 (1988)), and a multilayer film of Fe containing slightly C and NiFe (IEEE Trams. Magn., MAG-23, 2746 (1988)) has been developed. Since these magnetic films contain Fe or Co as a main component, a high saturation magnetic flux density is possible.
In order to reduce the magnetostriction to near zero, complicated operations such as addition of a different element and lamination with a magnetic layer having the opposite sign of magnetostriction were required. In addition, these magnetic films have a drawback that they are extremely complicated in terms of materials and film structures because the coercive force is reduced by being made amorphous or laminated with other magnetic films. Was.

一方、トラック密度を高くするためには、ヘッドの狭
トラック化が必要であるが、磁極先端部に発生する環流
磁区のため、狭トラック化すると再生効率が急減する。
これを解決する方法として、磁性層を非磁性層を介して
積層させ、磁性層間の静磁結合により、磁区制御を行
い、再生効率の急減を抑制する方法が有効である。また
この方法を用いると、磁性層が非磁性層により分離され
るため、高周波領域での渦電流損失を抑制することも可
能である。従って、上述した合金層あるいは複合層から
なる磁性膜を用いて、さらに高トラック密度化をはかる
ためには、磁性膜を非磁性膜を介して積層させた多層構
造による必要があるため、従来のヘッド用磁性膜は、さ
らに構造上、複雑なものとなっていた。
On the other hand, in order to increase the track density, it is necessary to reduce the track width of the head. However, due to the convection magnetic domain generated at the tip of the magnetic pole, when the track width is reduced, the reproduction efficiency is sharply reduced.
As a method of solving this, a method is effective in which a magnetic layer is laminated via a non-magnetic layer, a magnetic domain is controlled by magnetostatic coupling between the magnetic layers, and a rapid decrease in reproduction efficiency is suppressed. In addition, when this method is used, the magnetic layer is separated by the non-magnetic layer, so that eddy current loss in a high frequency region can be suppressed. Therefore, in order to further increase the track density by using the magnetic film composed of the alloy layer or the composite layer described above, it is necessary to adopt a multilayer structure in which the magnetic films are stacked via a non-magnetic film. The magnetic film for the head is further complicated in structure.

[発明が解決しようとする課題] 上述したように、従来の磁気ヘッド用磁性膜では、磁
性膜を磁歪零付近および低保磁力にするため、異種元素
の添加、異種磁性膜との積層化、アモルファス化など、
材料および構造の面で複雑な操作が行われていた。ま
た、高トラック密度化をはかるためには、上記の磁性膜
をさらに非磁性膜を介して積層する必要があるため、従
来の磁気ヘッド用磁性膜は、材料上、および構造上、非
常に複雑な膜であった。
[Problems to be Solved by the Invention] As described above, in the conventional magnetic film for a magnetic head, in order to make the magnetic film near zero magnetostriction and low coercive force, addition of a different element, lamination with the different magnetic film, Amorphization, etc.
Complex operations were performed in terms of materials and structure. Further, in order to increase the track density, it is necessary to further laminate the above-mentioned magnetic film via a non-magnetic film, so that the conventional magnetic film for a magnetic head is extremely complicated in material and structure. Film.

本発明の目的は、従来開発された、薄膜磁気ヘッド用
磁性膜において問題であった構造上、材料上の複雑さを
解決した簡単な構造、材料からなる高線記録密度および
高トラック密度磁気ヘッド用磁性膜を提供することにあ
る。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a magnetic head for a thin film magnetic head, which has been conventionally developed and has a simple structure that solves the structural and material complexity, a high linear recording density and a high track density magnetic head made of a material. To provide a magnetic film for use.

[課題を解決するための手段] このような目的を達成するために、本発明による磁性
多層膜は、基板上に実質的に単一元素からなる磁性膜層
と、非磁性膜層とが交互にそれぞれ複数層積層されてな
る磁性多層膜において、前記磁性膜層が負の磁歪を有す
るFe層であり、該Fe層と非磁性膜層との境界に、Feと前
記非磁性膜層の構成元素との合金からなる正磁歪をもつ
層が形成されていることを特徴とする。
[Means for Solving the Problems] In order to achieve such an object, a magnetic multilayer film according to the present invention has a structure in which a magnetic film layer substantially composed of a single element and a non-magnetic film layer are alternately formed on a substrate. In the magnetic multilayer film formed by laminating a plurality of layers, the magnetic film layer is a Fe layer having a negative magnetostriction, and at the boundary between the Fe layer and the non-magnetic film layer, the structure of Fe and the non-magnetic film layer A layer having a positive magnetostriction made of an alloy with an element is formed.

さらに、本発明による磁性多層膜は、基板上に実質的
に単一元素からなる磁性膜層と、非磁性膜層とが交互に
それぞれ複数層積層されてなる磁性多層膜において、前
記磁性膜層が厚さが5〜10nmで(110)を主配向とし(2
00)を副配向とするFe層であり、前記非磁性膜層がFeと
合金化しない材料からなる非磁性膜層であることを特徴
とする。
Further, the magnetic multilayer film according to the present invention is a magnetic multilayer film in which a magnetic film layer substantially composed of a single element and a non-magnetic film layer are alternately laminated on a substrate in a plurality of layers. Has a thickness of 5 to 10 nm and (110) as the main orientation (2
Wherein the nonmagnetic film layer is a nonmagnetic film layer made of a material that does not alloy with Fe.

[作用] 本発明の磁性多層膜は、磁気ヘッド用磁性膜として必
要な磁気特性を全て有し、その構成は、磁性層には実質
的に単一元素からなる磁性層のみを使用するため、従来
の磁気ヘッド用磁性膜と比較すると、材料面および構造
面で簡単である。従って、高線記録密度および高トラッ
ク密度用薄膜磁気ヘッドに応用した場合、従来の磁性膜
のヘッドに比べ、歩留りよく、高性能ヘッドの製造が実
現できる。
[Operation] The magnetic multilayer film of the present invention has all the magnetic properties required for a magnetic film for a magnetic head, and its configuration is such that only a magnetic layer substantially consisting of a single element is used for the magnetic layer. Compared with a conventional magnetic film for a magnetic head, it is simple in terms of material and structure. Therefore, when applied to a thin-film magnetic head for high linear recording density and high track density, a high-performance head can be manufactured with higher yield compared to a conventional magnetic film head.

[実施例] 以下に図面を参照して本発明の実施例を説明する。Embodiment An embodiment of the present invention will be described below with reference to the drawings.

第1図に、本発明の磁性多層膜の基本構成例を示す。
1.はFe層、2.は非磁性層、3.はAl-Ti-C系セラミック
ス、Zn−フェライトなどからなる基板である。この構造
は、基板上に例えばスパッタ法によってFe層と非磁性層
を交互に形成することによって得られる。
FIG. 1 shows a basic configuration example of a magnetic multilayer film of the present invention.
1 is a Fe layer, 2. is a nonmagnetic layer, and 3. is a substrate made of Al-Ti-C ceramics, Zn-ferrite, or the like. This structure is obtained by alternately forming Fe layers and nonmagnetic layers on a substrate by, for example, a sputtering method.

第2図はFeおよびFe/SiO2膜のX線回折プロファイル
である。図(A)は厚さ1μmのFe膜、図(B)〜
(D)はそれぞれ厚さ100nm、10nmおよび5nmのFe膜と厚
さ5nmのSiO2膜を堆積したFe/SiO2膜の回折プロファイル
を示す。積層の場合の層数はFe層、SiO2層とも100層で
ある。Fe膜は(110)面に強く配向しているが、Fe/SiO2
膜では、Fe層膜厚の減少に伴い、(110)強度が小さく
なり、回折線の幅も拡がっているのがわかる。
FIG. 2 is an X-ray diffraction profile of the Fe and Fe / SiO 2 films. FIG. (A) is a Fe film having a thickness of 1 μm, and FIGS.
(D) shows the diffraction profiles of the Fe / SiO 2 film on which a 100 nm, 10 nm and 5 nm thick Fe film and a 5 nm thick SiO 2 film are deposited, respectively. The number of layers in the case of lamination is 100 for both the Fe layer and the SiO 2 layer. The Fe film is strongly oriented to the (110) plane, but Fe / SiO 2
It can be seen that in the film, as the Fe layer thickness decreases, the (110) intensity decreases, and the width of the diffraction line also increases.

第3図は、Fe/SiO2多層膜における(200)ピークと
(110)ピークの強度比とFe層膜厚の関係を示す図であ
る。Fe層の厚さの減少に伴い、(200)強度は増加す
る。(200)面の磁歪定数は正であることから、Fe層の
厚さの変化に伴い、膜全体の磁歪定数も変化することが
期待される。
FIG. 3 is a diagram showing the relationship between the intensity ratio of the (200) peak and the (110) peak in the Fe / SiO 2 multilayer film and the Fe layer thickness. As the thickness of the Fe layer decreases, the (200) strength increases. Since the magnetostriction constant of the (200) plane is positive, it is expected that the magnetostriction constant of the entire film changes with the change in the thickness of the Fe layer.

第4図は、Fe/SiO2膜中のFe層の結晶粒径とFe層の厚
さの関係を示す図である。結晶粒径は、X線回折の半値
幅から見積った。Fe層の膜厚の減少に伴い、結晶粒径は
小さくなる。
FIG. 4 is a diagram showing the relationship between the crystal grain size of the Fe layer in the Fe / SiO 2 film and the thickness of the Fe layer. The crystal grain size was estimated from the half width of X-ray diffraction. As the thickness of the Fe layer decreases, the crystal grain size decreases.

第5図は、第1図の構成で、非磁性層がC,Si,SiO2,C
u,Al2O3,Tiの場合の磁歪定数とFe層の膜層との関係を示
す図である。非磁性層の膜厚は、Cuは1nm、SiO2-IIは2.
5nm、それ以外はいずれも5nmである。層数はいずれも10
0層ずつである。Fe膜の磁歪は−2〜−4×10-6である
が、これらの磁性多層膜では、Fe膜膜厚の減少に伴い、
磁歪は正方向に変化し、Fe/CではFe層の膜厚約50nm以
下、その他の多層膜ではFe層の膜厚約10nm以下で磁歪零
付近が実現している。これら磁歪定数の変化の原因とし
ては、第3図に見られるようなFe層の結晶配向の変化
(Fe/SiO2,Fe/Cu,Fe/Al2O3等、Fe膜とFe合金化しない非
磁性膜層との積層)、Fe層と非磁性層との境界に形成
される正磁歪の合金層との磁歪のバランス(Fe/C,Fe/S
i,Fe/Ti等、Feと合金化する非磁性膜層との積層)が考
えられる。
FIG. 5 shows the structure of FIG. 1 in which the nonmagnetic layer is C, Si, SiO 2 , C
FIG. 4 is a diagram showing the relationship between the magnetostriction constant and the Fe layer in the case of u, Al 2 O 3 , and Ti. Thickness of the nonmagnetic layer, Cu is 1 nm, SiO 2 -II is 2.
5 nm, 5 nm for all others. Number of layers is 10
0 layers each. The magnetostriction of the Fe film is −2 to −4 × 10 −6 , but in these magnetic multilayer films, as the Fe film thickness decreases,
Magnetostriction changes in the positive direction, and near zero magnetostriction is realized when the thickness of the Fe layer is about 50 nm or less for Fe / C and about 10 nm or less for other multilayer films. The cause of the change in the magnetostriction constant is the change in the crystal orientation of the Fe layer as shown in FIG. 3 (Fe / SiO 2 , Fe / Cu, Fe / Al 2 O 3, etc .; Magnetostriction balance (Fe / C, Fe / S) with the non-magnetic layer and the positive magnetostrictive alloy layer formed at the boundary between the Fe layer and the non-magnetic layer
i, Fe / Ti, etc., and a nonmagnetic film layer that is alloyed with Fe).

第6図および第7図は、保磁力とFe層の膜厚との関係
を示す図である。試料は、第5図と同様である。Fe膜の
保磁力は10エルステッド以上あるのに対し、これらの磁
性多層膜では、保磁力は低下しているのがわかる。保磁
力低下の原因としては、第4図に示した結晶粒の微細化
に伴う結晶磁気異方性の低下、および第5図に示した磁
歪定数の絶対値の低下が考えられる。
6 and 7 are diagrams showing the relationship between the coercive force and the thickness of the Fe layer. The sample is the same as in FIG. It can be seen that the coercive force of the Fe film is 10 Oe or more, whereas the coercive force of these magnetic multilayer films is reduced. Possible causes of the decrease in coercive force include a decrease in crystal magnetic anisotropy due to the refinement of crystal grains shown in FIG. 4 and a decrease in the absolute value of the magnetostriction constant shown in FIG.

第8図は、5MHzでの比透磁率とFe層の膜厚の関係を示
す図である。試料は、第5図と同様である。Fe膜の比透
磁率は100程度であるのに対し、これらの磁性多層膜で
は、比透磁率は数百から1000以上の大きな値を示し、そ
の変化は、第6図および第7図の保磁力の変化にほぼ対
応いている。
FIG. 8 is a diagram showing the relationship between the relative magnetic permeability at 5 MHz and the thickness of the Fe layer. The sample is the same as in FIG. While the relative magnetic permeability of the Fe film is about 100, the relative magnetic permeability of these magnetic multilayer films shows a large value of several hundred to more than 1000, and the change is shown in FIGS. 6 and 7. It almost corresponds to the change of magnetic force.

第9図は、飽和磁束密度とFe層の膜厚の関係を示す図
である。試料は第5図と同様である。ほとんどの磁性多
層膜において1から2テスラの高い飽和磁束密度が得ら
れている。
FIG. 9 is a diagram showing the relationship between the saturation magnetic flux density and the thickness of the Fe layer. The sample is the same as in FIG. In most magnetic multilayer films, a high saturation magnetic flux density of 1 to 2 Tesla is obtained.

第10図は、磁気ヘッド磁極部に見られる磁区構造であ
る。同図(A)は従来のNiFe合金、CoZr-Re(またはCoZ
r-Nb)膜等で観察される磁区構造、同図(B)および
(C)は本発明による磁性多層膜の磁区構造である。4
は180度磁壁であり、矢印は誘導磁場の方向を示す。本
発明の磁性多層膜では、磁性層が非磁性層を介して積層
されているため、図(B)のような180度磁壁が横に伸
びた磁区構造、あるいは図(C)のような単磁区構造と
なり、磁極部の有効磁路幅が広がるため、ヘッドの再生
効率向上効果が期待できる。
FIG. 10 shows a magnetic domain structure seen in the magnetic pole portion of the magnetic head. The same figure (A) shows the conventional NiFe alloy, CoZr-Re (or CoZr).
r-Nb) Magnetic domain structure observed in the film and the like, and FIGS. 4B and 4C show the magnetic domain structure of the magnetic multilayer film according to the present invention. 4
Is a 180-degree domain wall, and the arrow indicates the direction of the induced magnetic field. In the magnetic multilayer film of the present invention, since the magnetic layer is laminated via the non-magnetic layer, the magnetic domain structure in which the 180-degree domain wall extends horizontally as shown in FIG. Since the magnetic domain structure is formed and the effective magnetic path width of the magnetic pole portion is widened, an effect of improving the reproducing efficiency of the head can be expected.

多層膜の厚さ、層数はこの多層膜が適用されるヘッド
の寸法に応じて定めればよい。
The thickness and the number of layers of the multilayer film may be determined according to the dimensions of the head to which the multilayer film is applied.

なお、非磁性層として、上記に示したもの以外に、 Ag,Au,In,Mg,Pb(Feと合金化しないもの) Al,Cr,Mo,Ru,Rh,Ge,Mn,Nb,Pb,Re,Sb,Ta,V,W,Zr(Fe
と合金化するもの) を用いた磁性多層膜においても、上記と同様、磁歪零付
近、低保磁力、高透磁率、高飽和磁束密度を有し、かつ
磁区の制御が可能である。
As the non-magnetic layer, in addition to those described above, Ag, Au, In, Mg, Pb (which does not alloy with Fe) Al, Cr, Mo, Ru, Rh, Ge, Mn, Nb, Pb, Re, Sb, Ta, V, W, Zr (Fe
In the same manner as described above, the magnetic multilayer film using (which alloys with) has near zero magnetostriction, low coercive force, high magnetic permeability, high saturation magnetic flux density, and can control magnetic domains.

[発明の効果] 以上、説明したように、本発明による磁性多層膜は、
磁性層として実質的に単一元素からなる層のみを使用
し、これを非磁性層を介して積層させた多層構造からな
っている。その磁気特性は、高線記録密度、および高ト
ラック密度を目指した薄膜磁気ヘッド用磁性膜として要
求される。磁歪零付近、低保磁力、高透磁率、高飽和磁
束密度、および磁区制御性等の特性を全て充分に満足し
ている。そのため、従来開発されたヘッド用磁性膜と比
較すると、材料上、および、構造上、簡単であるから、
高性能薄膜磁気ヘッドを歩留りよく製造できるという利
点がある。
[Effects of the Invention] As described above, the magnetic multilayer film according to the present invention has a
The magnetic layer has a multilayer structure in which only a layer substantially consisting of a single element is used, and this layer is laminated via a nonmagnetic layer. The magnetic properties are required as a magnetic film for a thin-film magnetic head aiming at high linear recording density and high track density. Characteristics such as near zero magnetostriction, low coercive force, high magnetic permeability, high saturation magnetic flux density, and magnetic domain controllability are all sufficiently satisfied. Therefore, compared with the conventionally developed magnetic film for the head, it is simpler in material and structure,
There is an advantage that a high performance thin film magnetic head can be manufactured with high yield.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、本発明の磁性多層膜の実施例の構成図、 第2図はFeおよびFe/SiO2膜のX線回折図、 第3図は、Fe/SiO2膜における(200)と(110)の強度
比とFe層膜厚の関係を示す特性図、 第4図は、Fe/SiO2膜におけるFeの結晶粒径とFe層膜厚
の関係を示す特性図、 第5図は、磁歪定数とFe層の膜厚の関係を示す特性図、 第6図および第7図は、保磁力とFe層の膜厚の関係を示
す特性図、 第8図は、比透磁率とFe層の膜厚の関係を示す特性図、 第9図は、飽和磁束密度とFe層の膜厚の関係を示す特性
図、 第10図は、磁気ヘッド磁極部に見られる磁区構造を示す
図である。 1……Fe層、2……非磁性層、3……基板、4……180
度磁壁。
Figure 1 is a configuration diagram of an embodiment of a magnetic multilayer film of the present invention, Figure 2 is X-ray diffraction pattern of the Fe and Fe / SiO 2 film, the third figure in Fe / SiO 2 film (200) FIG. 4 is a characteristic diagram showing the relationship between the intensity ratio of (110) and the Fe layer thickness, FIG. 4 is a characteristic diagram showing the relationship between the Fe crystal grain size and the Fe layer thickness in the Fe / SiO 2 film, and FIG. 6 and 7 are characteristic diagrams showing the relationship between the coercive force and the film thickness of the Fe layer, and FIG. 8 is a characteristic diagram showing the relationship between the coercive force and the film thickness of the Fe layer. FIG. 9 is a characteristic diagram showing a relationship between the thickness of the Fe layer and a saturation magnetic flux density, and FIG. 10 is a diagram showing a magnetic domain structure seen in a magnetic head magnetic pole portion. is there. 1 ... Fe layer, 2 ... Nonmagnetic layer, 3 ... Substrate, 4 ... 180
Degree domain wall.

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】基板上に実質的に単一元素からなる磁性膜
層と、非磁性膜層とが交互にそれぞれ複数層積層されて
なる磁性多層膜において、前記磁性膜層が負の磁歪を有
するFe層であり、該Fe層と非磁性膜層との境界に、Feと
前記非磁性膜層の構成元素との合金からなる正磁歪をも
つ層が形成されていることを特徴とする磁性多層膜。
1. A magnetic multilayer film comprising a substrate and a magnetic film layer substantially composed of a single element and a plurality of non-magnetic film layers alternately laminated on a substrate, wherein the magnetic film layer has a negative magnetostriction. A magnetic layer, wherein a layer having a positive magnetostriction made of an alloy of Fe and a constituent element of the nonmagnetic film layer is formed at a boundary between the Fe layer and the nonmagnetic film layer. Multilayer film.
【請求項2】基板上に実質的に単一元素からなる磁性膜
層と、非磁性膜層とが交互にそれぞれ複数層積層されて
なる磁性多層膜において、前記磁性膜層が厚さが5〜10
nmで(110)を主配向とし(200)を副配向とするFe層で
あり、前記非磁性膜層がFeと合金化しない材料からなる
非磁性膜層であることを特徴とする磁性多層膜。
2. A magnetic multilayer film comprising a substrate and a magnetic film layer substantially composed of a single element and a non-magnetic film layer alternately laminated in a plurality of layers. ~Ten
a magnetic multi-layer film, characterized in that the non-magnetic film layer is a non-magnetic film layer made of a material that does not alloy with Fe, wherein the Fe layer has a main orientation of (110) and a sub-orientation of (200) in nm. .
【請求項3】前記非磁性膜層がSiO2,Al2O3およびCuの
うちの1種からなることを特徴とする請求項2に記載の
磁性多層膜。
3. The magnetic multilayer film according to claim 2 , wherein said non-magnetic film layer is made of one of SiO 2 , Al 2 O 3 and Cu.
【請求項4】前記非磁性膜層がSiO2であり、その1層の
厚さが2.5nm〜5nmであることを特徴とする請求項3に記
載の磁性多層膜。
4. The magnetic multilayer film according to claim 3, wherein said non-magnetic film layer is SiO 2 , and the thickness of one layer is 2.5 nm to 5 nm.
JP63130328A 1988-05-30 1988-05-30 Magnetic multilayer film Expired - Lifetime JP2696120B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63130328A JP2696120B2 (en) 1988-05-30 1988-05-30 Magnetic multilayer film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63130328A JP2696120B2 (en) 1988-05-30 1988-05-30 Magnetic multilayer film

Publications (2)

Publication Number Publication Date
JPH01300504A JPH01300504A (en) 1989-12-05
JP2696120B2 true JP2696120B2 (en) 1998-01-14

Family

ID=15031729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63130328A Expired - Lifetime JP2696120B2 (en) 1988-05-30 1988-05-30 Magnetic multilayer film

Country Status (1)

Country Link
JP (1) JP2696120B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0666189B2 (en) * 1986-08-29 1994-08-24 日本電気ホームエレクトロニクス株式会社 Multilayer magnetic film for magnetic head
JP2533860B2 (en) * 1986-09-24 1996-09-11 株式会社日立製作所 Magnetic superlattice film and magnetic head using the same
JP2568592B2 (en) * 1987-11-11 1997-01-08 株式会社日立製作所 Laminated magnetic thin film and magnetic head using the same
JPH01238106A (en) * 1988-03-18 1989-09-22 Nec Corp Corrosion-resistant ferromagnetic thin-film

Also Published As

Publication number Publication date
JPH01300504A (en) 1989-12-05

Similar Documents

Publication Publication Date Title
JP3088478B2 (en) Magnetoresistive element
US4814921A (en) Multilayered magnetic films and thin-film magnetic heads using the same as a pole
JP3731640B2 (en) Perpendicular magnetic recording medium and magnetic storage device
JP3207477B2 (en) Magnetoresistance effect element
US5126907A (en) Thin film magnetic head having at least one magnetic core member made at least partly of a material having a high saturation magnetic flux density
JPH08204253A (en) Magnetoresistive effect film
US5514469A (en) Magnetoresistance effect element
JP2780588B2 (en) Stacked magnetic head core
JP2696120B2 (en) Magnetic multilayer film
JPH0950612A (en) Magnetoresistive effect film, magnetoresistive effect element, magnetic head and magnetic recording and reproducing device
JPH10294217A (en) Spin valve type magnetoresistance effect film and magnetic head having the same
JPH0845035A (en) Thin film magnetic head
JP2925257B2 (en) Ferromagnetic film, method of manufacturing the same, and magnetic head
JPH06200364A (en) Magnetic multilayer film and magneto-resistance effect element
JPH0774022A (en) Multilayer magnetoresistance-effect film and magnetic head
JP2000348326A (en) Perpendicular magnetic recording medium and magnetic recording and reproducing device
JPH05175572A (en) Magnetoresistance effect element, and magnetic head and recording/reproducing device using same
JPH07182629A (en) Magnetic sensor
JPH0389502A (en) Magnetic multilayer film
JPH06260337A (en) Multilayer magnetoresistance effect film and magnetic head
JPH0935216A (en) Magnetoresistance effect film and magnetic recording head
JP2971212B2 (en) Method for manufacturing thin-film magnetic head
JPH0559484B2 (en)
JPH08167120A (en) Multilayered magnetoresistance effect film and magnetic head
JPH07118061B2 (en) Magnetoresistive head

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070919

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080919

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080919

Year of fee payment: 11