JPH05175572A - Magnetoresistance effect element, and magnetic head and recording/reproducing device using same - Google Patents

Magnetoresistance effect element, and magnetic head and recording/reproducing device using same

Info

Publication number
JPH05175572A
JPH05175572A JP3338640A JP33864091A JPH05175572A JP H05175572 A JPH05175572 A JP H05175572A JP 3338640 A JP3338640 A JP 3338640A JP 33864091 A JP33864091 A JP 33864091A JP H05175572 A JPH05175572 A JP H05175572A
Authority
JP
Japan
Prior art keywords
magnetic
layer
magnetoresistive effect
multilayer film
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3338640A
Other languages
Japanese (ja)
Inventor
Ryoichi Nakatani
亮一 中谷
Moichi Otomo
茂一 大友
Ken Sugita
愃 杉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3338640A priority Critical patent/JPH05175572A/en
Publication of JPH05175572A publication Critical patent/JPH05175572A/en
Pending legal-status Critical Current

Links

Landscapes

  • Recording Or Reproducing By Magnetic Means (AREA)
  • Hall/Mr Elements (AREA)
  • Magnetic Heads (AREA)

Abstract

PURPOSE:To eliminate Barkhausen noise by applying a bias magnetic field in an easy-to-magnetize direction of magnetic layer by using a magnetic resistance effect film of multilayer construction in which magnetic layer and nonmagnetic layer are piled up. CONSTITUTION:A magnetro-resistance effect element 10 has a multilayer film 7 in which magnetic layer and nonmagnetic layer are piled up and is applied with a bias magnetic field in a easy-to-magnetize-direction of the magnetic layer constituting the multilayer film 7. This system can be applied for the multilayer film which contains at least one magnetic layer whose coersive force or anisotropic magnetic field differs from that of other magnetic layers, the multi-layer film where the magnetization of respective magnetic layers is in an anti-parallel direction due to the mutual exchange function among the magnetic layers when there is no external magnetic field, or the element 10 of multilayer film construction in which at least one of magnetic layers has an easy-to-magnetize direction different from that of other magnetic layers. A permanent magnet layer 8 or anti-ferromagnetic layer, etc., is used to apply the bias magnetic field. Thus, Barihousen noise can effectively be eliminated, resulting in enhancing high recording/reproducing performance.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、磁性層と非磁性層とを
積層して構成した多層膜からなる高い磁気抵抗効果を有
する磁気抵抗効果素子において、特にバルクハウゼンノ
イズを抑止するの好適な構造の磁気抵抗効果素子と、そ
れを用いた磁気ヘッドおよび磁気記録再生装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is suitable for suppressing Barkhausen noise particularly in a magnetoresistive effect element having a high magnetoresistive effect, which is composed of a multilayer film formed by laminating a magnetic layer and a nonmagnetic layer. The present invention relates to a magnetoresistive effect element having a structure, a magnetic head using the same, and a magnetic recording / reproducing apparatus.

【0002】[0002]

【従来の技術】磁気記録の高密度化に伴い、再生用磁気
ヘッドに用いられる磁気抵抗効果材料として、高い磁気
抵抗効果を示す材料が求められている。現在、多く使用
されているパ−マロイの磁気抵抗変化率は約3%であ
り、新材料としてはこれを上回る磁気抵抗変化率を有す
ることが要望されている。最近、Baibichらによ
る、フィジカル・レビュ−・レタ−ズ(Pysical
Review Letters)、第61巻、第21
号、第2472〜2475頁に記載の「(001)Fe
/(001)Cr磁性超格子の巨大磁気抵抗効果」(G
iant Magnetoresistance of
(001)Fe/(001)Cr Magnetic
Superlattices)のように、多層構造を
持つ磁性膜(Fe/Cr多層膜)において、約50%の
磁気抵抗変化率(4.2Kにおいて)が観測されてい
る。また、新庄らによる、ジャ−ナル・オブ・ザ・フィ
ジカル・ソサイエティー・オブ・ジャパン(Journ
al of ThePhysical Society
of Japan)、第59巻、第9号、第3061
〜3064頁に記載の「磁界誘導した巨大フェリ磁性多
層膜の大きい磁気抵抗効果(LargeMagneto
resistance of Field−Induc
ed Giant Ferrimagnetic Mu
ltilayers)」のように、多層構造を持つ磁性
膜(Co/Cu/Ni−Fe/Co多層膜)において、
9.9%の磁気抵抗変化率が観測されている。
2. Description of the Related Art As the magnetic recording density has increased, a material exhibiting a high magnetoresistive effect has been required as a magnetoresistive effect material used for a reproducing magnetic head. At present, permalloy, which is widely used, has a magnetoresistance change rate of about 3%, and a new material is required to have a magnetoresistance change rate higher than this. Recently, a physical review letter (Physical) by Baibich et al.
Review Letters), Volume 61, Volume 21
No. 2472-2475, "(001) Fe"
/ (001) Cr magnetic superlattice giant magnetoresistance effect "(G
iant Magnitudes of of
(001) Fe / (001) Cr Magnetic
In a magnetic film (Fe / Cr multilayer film) having a multilayer structure like Superlattices, a magnetoresistance change rate (at 4.2 K) of about 50% is observed. Also, Shinjo et al., Journal of the Physical Society of Japan (Journ
al of ThePhysical Society
of Japan), Volume 59, No. 9, 3061
~ 3064 "Magnetic resistance effect of large ferrimagnetic multi-layer film induced by magnetic field (LargeMagneto)
resistance of Field-Induc
ed Giant Ferrimagnetic Mu
In a magnetic film (Co / Cu / Ni-Fe / Co multilayer film) having a multilayer structure, as shown in FIG.
A magnetoresistance change rate of 9.9% is observed.

【0003】[0003]

【発明が解決しようとする課題】上述した多層膜構造を
有する磁気抵抗効果膜を用いても、従来材料であるパー
マロイなどのNi−Fe系合金を磁気抵抗効果膜とした
磁気抵抗効果素子における場合と同様に、バルクハウゼ
ンノイズが発生するという問題があった。
Even when the magnetoresistive effect film having the above-mentioned multilayer film structure is used, in the case of the magnetoresistive effect element in which the Ni--Fe alloy such as permalloy which is the conventional material is used as the magnetoresistive effect film. Similarly, there was a problem that Barkhausen noise was generated.

【0004】本発明の目的は、上記従来技術における問
題点を解消するものであって、多層膜構造の磁気抵抗効
果素子において、効果的にバルクハウゼンノイズの発生
を抑止できる構造の磁気抵抗効果素子およびそれを用い
た高性能の磁気ヘッドならびに高い記録密度を有する高
性能の磁気記録再生装置を提供することにある。
An object of the present invention is to solve the above-mentioned problems in the prior art. In a magnetoresistive effect element having a multilayer film structure, a magnetoresistive effect element having a structure capable of effectively suppressing the generation of Barkhausen noise. Another object of the present invention is to provide a high-performance magnetic head using the same and a high-performance magnetic recording / reproducing apparatus having a high recording density.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、本発明者等は、種々の材料および膜厚を有する磁性
層、非磁性層を積層した多層構造の磁性膜を用いた磁気
抵抗効果素子について、鋭意研究を重ねた結果、磁性層
の磁化容易方向にバイアス磁界を印加することにより、
バルクハウゼンノイズを効果的に抑止することができる
ことを見出し、本発明を完成するに至った。すなわち、
磁性層と非磁性層とを積層した多層構造の磁気抵抗効果
膜を用いた磁気抵抗効果素子において、上記磁性層の磁
化容易方向にバイアス磁界を印加することにより、バル
クハウゼンノイズを抑止することができる。この方式
は、保磁力が他の磁性層と異なる磁性層を少なくとも一
層含む多層膜、異方性磁界が他の磁性層と異なる磁性層
を少なくとも一層含む多層膜、外部磁界のない時に磁性
層間の交換相互作用により各磁性層の磁化の向きが反平
行に向いている多層膜、または磁性層の少なくとも1層
が他の磁性層と異なる磁化容易方向を持つ多層膜などか
らなる磁気抵抗効果素子に適用することができる。そし
て、上記のバイアス磁界を印加する方法としては、永久
磁石層を利用する方法または反強磁性層を利用する方法
等が挙げられる。
In order to achieve the above object, the inventors of the present invention have proposed a magnetoresistive device using a magnetic film having a multi-layer structure in which magnetic layers having various materials and film thicknesses and non-magnetic layers are laminated. As a result of intensive research on the effect element, by applying a bias magnetic field in the direction of easy magnetization of the magnetic layer,
They have found that Barkhausen noise can be effectively suppressed, and have completed the present invention. That is,
In a magnetoresistive effect element using a magnetoresistive effect film having a multilayer structure in which a magnetic layer and a nonmagnetic layer are laminated, Barkhausen noise can be suppressed by applying a bias magnetic field in the easy magnetization direction of the magnetic layer. it can. This method uses a multilayer film including at least one magnetic layer having a coercive force different from other magnetic layers, a multilayer film including at least one magnetic layer having an anisotropic magnetic field different from other magnetic layers, and a magnetic layer between the magnetic layers when there is no external magnetic field. A magnetoresistive element including a multilayer film in which the magnetization directions of the magnetic layers are antiparallel due to exchange interaction, or a multilayer film in which at least one of the magnetic layers has an easy magnetization direction different from other magnetic layers. Can be applied. As a method of applying the bias magnetic field, a method of using a permanent magnet layer or a method of using an antiferromagnetic layer can be mentioned.

【0006】また、バルクハウゼンノイズを抑止した磁
気抵抗効果素子は、磁界を検出する磁界センサ、記録情
報の再生を行う磁気ヘッドなどとして好適に用いること
ができる。さらに、磁気抵抗効果素子からなる再生用磁
気ヘッドと情報の記録または消去を行う誘導型の磁気ヘ
ッド等を組み合わせて、磁気記録、消去もしくは再生を
行う磁気記録再生装置に搭載することにより、バルクハ
ウゼンノイズを抑止した高性能の磁気記録再生装置を実
現することができる。そして、本発明の磁気抵抗効果素
子を用いた磁気ヘッドは、狭トラック幅の記録再生にお
いて高い性能を発揮するため、これを磁気記録装置に適
用することにより高い記録密度を有する高性能の磁気デ
ィスク装置等を実現することができる
Further, the magnetoresistive effect element suppressing Barkhausen noise can be suitably used as a magnetic field sensor for detecting a magnetic field, a magnetic head for reproducing recorded information, and the like. Further, by combining a reproducing magnetic head composed of a magnetoresistive effect element with an inductive magnetic head for recording or erasing information, and mounting the magnetic recording, erasing or reproducing device on a magnetic recording and reproducing device, Barkhausen It is possible to realize a high-performance magnetic recording / reproducing device that suppresses noise. Since the magnetic head using the magnetoresistive effect element of the present invention exhibits high performance in recording / reproducing with a narrow track width, by applying this to a magnetic recording device, a high-performance magnetic disk having a high recording density can be obtained. A device can be realized

【0007】。[0007].

【作用】本発明の磁性層と非磁性層を積層した多層膜を
用いた磁気抵抗効果素子において、上記多層膜を構成す
る磁性層の磁化容易方向にバイアス磁界を印加すること
により、バルクハウゼンノイズを効果的に抑止すること
ができる。この方式は、保磁力が他の磁性層と異なる磁
性層を少なくとも一層含む多層膜、異方性磁界が他の磁
性層と異なる磁性層を少なくとも一層含む多層膜、外部
磁界のない時に磁性層間の交換相互作用により各磁性層
の磁化の向きが反平行に向いている多層膜、または磁性
層の少なくとも1層が他の磁性層と異なる磁化容易方向
を持つ多層膜構造の磁気抵抗効果素子に適用することが
できる。上記バイアス磁界を印加する方法としては、永
久磁石層を利用する方法または反強磁性層を利用する方
法等がある。また、バルクハウゼンノイズを抑止した磁
気抵抗効果素子は、磁界センサ、再生用磁気ヘッド等と
して狭トラック幅の記録再生において高性能を発揮する
ことができるので、記録または消去用の誘導型磁気ヘッ
ドとを組み合わせることにより、バルクハウゼンノイズ
の生じない高い記録密度を有する高性能の磁気記録再生
装置を実現することが可能となる。
In the magnetoresistive effect element using the multilayer film in which the magnetic layer and the non-magnetic layer are laminated according to the present invention, Barkhausen noise is generated by applying a bias magnetic field in the easy magnetization direction of the magnetic layer forming the multilayer film. Can be effectively suppressed. This method uses a multilayer film including at least one magnetic layer having a coercive force different from other magnetic layers, a multilayer film including at least one magnetic layer having an anisotropic magnetic field different from other magnetic layers, and a magnetic layer between the magnetic layers when there is no external magnetic field. Applied to a multilayer film in which the magnetization directions of the magnetic layers are antiparallel due to exchange interaction, or a magnetoresistive element having a multilayer film structure in which at least one of the magnetic layers has an easy magnetization direction different from other magnetic layers. can do. As a method of applying the bias magnetic field, there is a method of using a permanent magnet layer or a method of using an antiferromagnetic layer. Further, since the magnetoresistive effect element suppressing Barkhausen noise can exert high performance in recording / reproducing with a narrow track width as a magnetic field sensor, a reproducing magnetic head, etc., it can be used as an inductive magnetic head for recording or erasing. By combining the above, it becomes possible to realize a high-performance magnetic recording / reproducing apparatus having a high recording density without causing Barkhausen noise.

【0008】[0008]

【実施例】以下に本発明の一実施例を挙げ、図面を用い
てさらに詳細に説明する。 [実施例1]多層膜の作製には真空蒸着法を用いた。到
達真空度は、1/108Pa、膜形成速度は、0.2〜
0.6nm/sとした。膜形成時には、膜面と平行に2
0kA/m(250エルステッド)の磁界を印加した。
基板には、コ−ニング社製7059ガラスを用いた。形
成した多層膜の断面構造を図2に示す。図において、磁
性層1と磁性層2は保磁力が異なる。本実施例では、ま
ず、従来例として、新庄らによる、ジャ−ナル・オブ・
ザ・フィジカル・ソサイエティ−・オブ・ジャパン(J
ournal of The Physical So
ciety of Japan)、第59巻、第9号、
第3061〜3064頁に記載の「磁界誘導した巨大フ
ェリ磁性多層膜の大きい磁気抵抗効果(Large M
agnetoresistance of Field
−Induced GiantFerrimagnet
ic Multilayers)」のなかで論じられて
いるのと同様の多層膜であるCo(3nm)/Cu(5
nm)/Ni−Fe(3nm)/Cu(5nm)を10
周期積層した。すなわち、磁性層1としてCo、磁性層
2としてNi−Fe系合金、非磁性層3としてCuを用
いた。この多層膜を用いて、図3に示す従来型の磁気抵
抗効果素子を作製した。図に示すごとく、磁気抵抗効果
素子6は、多層膜4の端部に電極5を設けた構造とし
た。この従来の磁気抵抗効果素子6に、磁界を印加し磁
気抵抗効果を測定した。その結果を図4に示す。なお、
磁界の印加方向は多層膜4の電流の流れる方向に対し直
角とした。図4に示すごとく、従来の磁気抵抗効果素子
6では磁性層中の磁壁移動に起因するバルクハウゼンノ
イズが観測された。次に、図2に示す多層膜を用いて、
図1に示す本発明の磁気抵抗効果素子10を作製した。
図に示すごとく、磁気抵抗効果素子10は、多層膜7の
端部に永久磁石層8を積層し、さらに電極9を積層した
構造である。本実施例では、永久磁石層8として、Co
−20at(原子)%Pt合金を用いた。また、多層膜
7の長手方向に800kA/m[10kOe(キロ・エ
ルステッド)]の磁界を印加し、上記永久磁石層8を着
磁させた。この磁気抵抗効果素子10に、永久磁石の保
磁力よりも低い磁界を印加し磁気抵抗効果を測定した。
その結果を図5に示す。なお、磁界の印加方向は、多層
膜7の電流の流れる方向に対し直角とした。図5に示す
ように、本発明の磁気抵抗効果素子10は磁性層中の磁
壁移動に起因するバルクハウゼンノイズは全く生じなか
った。これは、永久磁石層8から発生する磁界が多層膜
7の長手方向(多層膜の磁化容易方向)に常に印加さ
れ、多層膜7に磁壁が発生し難くなったためであると考
えられる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below in more detail with reference to the drawings. [Example 1] A vacuum deposition method was used for manufacturing the multilayer film. The ultimate vacuum is 1/10 8 Pa, and the film formation rate is 0.2 to
It was set to 0.6 nm / s. When forming a film, 2 parallel to the film surface
A magnetic field of 0 kA / m (250 Oersted) was applied.
As the substrate, 7059 glass manufactured by Corning Inc. was used. The cross-sectional structure of the formed multilayer film is shown in FIG. In the figure, the magnetic layers 1 and 2 have different coercive forces. In this embodiment, first, as a conventional example, the journal of
The Physical Society of Japan (J
individual of the Physical So
ciency of Japan), Vol. 59, No. 9,
3061-3064, "Magnetic reluctance effect of giant ferrimagnetic multilayer film induced by magnetic field (Large M
Aggregatorism of Field
-Induced Giant Ferrimagnet
ic Multilayers), a similar multilayer film as discussed in Co (3 nm) / Cu (5
nm) / Ni-Fe (3 nm) / Cu (5 nm)
Periodically laminated. That is, Co was used as the magnetic layer 1, Ni—Fe based alloy was used as the magnetic layer 2, and Cu was used as the non-magnetic layer 3. Using this multilayer film, a conventional magnetoresistive element shown in FIG. 3 was produced. As shown in the figure, the magnetoresistive effect element 6 has a structure in which an electrode 5 is provided at the end of the multilayer film 4. A magnetic field was applied to the conventional magnetoresistive effect element 6 to measure the magnetoresistive effect. The result is shown in FIG. In addition,
The application direction of the magnetic field was perpendicular to the current flow direction of the multilayer film 4. As shown in FIG. 4, Barkhausen noise due to domain wall motion in the magnetic layer was observed in the conventional magnetoresistive effect element 6. Next, using the multilayer film shown in FIG.
A magnetoresistive effect element 10 of the present invention shown in FIG. 1 was produced.
As shown in the figure, the magnetoresistive effect element 10 has a structure in which a permanent magnet layer 8 is laminated on the end portion of the multilayer film 7 and an electrode 9 is further laminated. In this embodiment, as the permanent magnet layer 8, Co
A -20 at (atom)% Pt alloy was used. A magnetic field of 800 kA / m [10 kOe (kilo-Oersted)] was applied in the longitudinal direction of the multilayer film 7 to magnetize the permanent magnet layer 8. A magnetic field lower than the coercive force of the permanent magnet was applied to the magnetoresistive element 10 to measure the magnetoresistive effect.
The result is shown in FIG. The magnetic field application direction was perpendicular to the current flow direction of the multilayer film 7. As shown in FIG. 5, in the magnetoresistive effect element 10 of the present invention, Barkhausen noise due to the domain wall motion in the magnetic layer did not occur at all. It is considered that this is because the magnetic field generated from the permanent magnet layer 8 is always applied in the longitudinal direction of the multilayer film 7 (the direction of easy magnetization of the multilayer film), and the magnetic domain wall is less likely to be generated in the multilayer film 7.

【0009】以上述べたように、磁気抵抗効果を有する
多層膜の磁化容易方向にバイアス磁界を印加することに
より、多層膜を用いた磁気抵抗効果素子のバルクハウゼ
ンノイズを抑止することができる。また多層膜には、各
磁性層に均一にバイアス磁界を印加することが好ましい
ため、本実施例で示したように、永久磁石層を用いるこ
とが望ましい。また、本実施例では、Ni−Fe系合金
とCoを磁性層材料として用いたが、他の保磁力の異な
る2種の材料を用いても、バイアス磁界の印加によるバ
ルクハウゼンノイズ抑止効果は本実施例と同様に得られ
る。また、非磁性層材料についてCu以外の材料を用い
ても上記と同様の効果が得られる。なお、本実施例では
永久磁石層8として、Co−20at%Pt合金を用い
たが、他の永久磁石材料を用いてもバルクハウゼンノイ
ズ抑止の効果は得られる。また、本実施例では多層膜の
磁化容易方向にのみバイアス磁界を印加する場合につい
て述べたが、磁気ヘッドなどにおいて高感度化のために
磁界検出方向(本実施例の多層膜では、磁化困難方向)
にバイアス磁界を印加する場合が多い。しかし、この場
合においても、本実施例に示したごとく、多層膜の磁化
容易方向にバイアス磁界を印加することによりるバルク
ハウゼンノイズ抑止の効果は同様に得られる。また、本
実施例では多層膜が保磁力の異なる2種の磁性層を有す
る場合について述べたが、異方性磁界の異なる2種の磁
性層を有する場合においても、上記と同様の結果が得ら
れる。さらに、図5に示すように磁気抵抗効果がヒステ
リシスを示す場合には、上記多層膜からなる磁気抵抗効
果型ヘッドを磁気記録再生装置に用いる時に、上記多層
膜に高い磁界を印加し磁化状態をイニシャライズできる
機構を付加することが望ましい。
As described above, by applying the bias magnetic field in the direction of easy magnetization of the multilayer film having the magnetoresistive effect, Barkhausen noise of the magnetoresistive effect element using the multilayer film can be suppressed. Further, since it is preferable to apply a bias magnetic field uniformly to each magnetic layer in the multilayer film, it is desirable to use a permanent magnet layer as shown in this embodiment. Further, in the present embodiment, the Ni—Fe alloy and Co were used as the magnetic layer material, but even if two other materials having different coercive forces are used, the effect of suppressing the Barkhausen noise due to the application of the bias magnetic field is not essential. Obtained as in the example. Further, the same effect as above can be obtained by using a material other than Cu as the non-magnetic layer material. Although Co-20 at% Pt alloy is used as the permanent magnet layer 8 in this embodiment, the effect of suppressing Barkhausen noise can be obtained by using other permanent magnet materials. Further, in the present embodiment, the case where the bias magnetic field is applied only in the easy magnetization direction of the multilayer film has been described. However, in order to improve the sensitivity in the magnetic head or the like, the magnetic field detection direction (in the multilayer film of the present embodiment, the magnetization hard direction )
A bias magnetic field is often applied to. However, also in this case, as shown in the present embodiment, the effect of suppressing Barkhausen noise by applying a bias magnetic field in the direction of easy magnetization of the multilayer film is similarly obtained. Further, in this embodiment, the case where the multilayer film has two kinds of magnetic layers having different coercive forces was described, but the same result as above can be obtained even when the multilayer film has two kinds of magnetic layers having different anisotropic magnetic fields. Be done. Further, when the magnetoresistive effect exhibits hysteresis as shown in FIG. 5, when the magnetoresistive head of the above-mentioned multilayer film is used in a magnetic recording / reproducing apparatus, a high magnetic field is applied to the above-mentioned multilayer film to change the magnetization state. It is desirable to add a mechanism that can be initialized.

【0010】[実施例2]多層膜の作製には、高周波ス
パッタリング法を用いた。 到達真空度は1/1
5Pa、膜形成速度は約0.02nm/sである。膜
形成時には、膜面と平行に20kA/m(250Oe)
の磁界を印加した。基板には、コ−ニング社製7059
ガラスを用いた。本実施例における多層膜の断面構成を
図6に示す。図において、磁性層11として膜厚1.5
nmのNi−20at%Fe合金、 非磁性層12と
して膜厚2.1nmのCuを用いた。上記磁性層11と
非磁性層12は、10周期積層した。また、基板14の
上のバッファ層13として膜厚5nmのFe層を用い
た。この多層膜は、Baibichらによる、フィジカ
ル・レビュ−・レタ−ズ(Pysical Revie
wLetters)、第61巻、第21号、第2472
〜2475頁に記載の「(001)Fe/(001)C
r磁性超格子の巨大磁気抵抗効果」(Giant Ma
gnetoresistance of (001)F
e/(001)CrMagnetic Superla
ttices)におけるFe/Cr多層膜と同様に、外
部磁界のない時には磁性層間の交換相互作用により各磁
性層の磁化の向きはほぼ反平行に向いている。上記多層
膜を用いて実施例1と同様にして、図3に示す従来構造
の磁気抵抗効果素子を作製したところ、図7に示すごと
く磁気抵抗効果曲線にバルクハウゼンノイズが生じた。
これに対し、上記多層膜を用い同様にして図1に示す構
造の本発明の磁気抵抗効果素子を作製したところ、図8
に示すごとくバルクハウゼンノイズは観測されなかっ
た。これは、永久磁石層から発生する磁界が多層膜の長
手方向(多層膜の磁化容易方向)に常に印加され、多層
膜に磁壁が発生し難くなったためであると考えられる。
[Example 2] A high-frequency sputtering method was used for manufacturing a multilayer film. Ultimate vacuum is 1/1
0 5 Pa, the film forming rate is about 0.02 nm / s. 20 kA / m (250 Oe) parallel to the film surface during film formation
Was applied. The board is made of Corning 7059.
Glass was used. The cross-sectional structure of the multilayer film in this example is shown in FIG. In the figure, the thickness of the magnetic layer 11 is 1.5.
nm Ni-20 at% Fe alloy, and Cu having a film thickness of 2.1 nm was used as the nonmagnetic layer 12. The magnetic layer 11 and the nonmagnetic layer 12 were laminated for 10 cycles. Further, a Fe layer having a film thickness of 5 nm was used as the buffer layer 13 on the substrate 14. This multi-layer film is a physical review letter (Physical Review) by Baibich et al.
wLetters), Volume 61, No. 21, No. 2472.
To "(001) Fe / (001) C" on page 2475.
Giant Magnetoresistance Effect of r Magnetic Superlattice "(Giant Ma
gnetrestance of (001) F
e / (001) CrMagnetic Superla
In the same manner as the Fe / Cr multi-layered film in the above, the magnetization directions of the respective magnetic layers are substantially antiparallel due to the exchange interaction between the magnetic layers in the absence of an external magnetic field. When the magnetoresistive effect element having the conventional structure shown in FIG. 3 was manufactured using the above-mentioned multilayer film in the same manner as in Example 1, Barkhausen noise was generated in the magnetoresistive effect curve as shown in FIG.
On the other hand, when the magnetoresistive effect element of the present invention having the structure shown in FIG.
Barkhausen noise was not observed as shown in. It is considered that this is because the magnetic field generated from the permanent magnet layer is always applied in the longitudinal direction of the multilayer film (the direction of easy magnetization of the multilayer film), and the domain wall is less likely to be generated in the multilayer film.

【0011】以上述べたように、磁気抵抗効果を有する
多層膜の磁化容易方向にバイアス磁界を印加することに
より、多層膜を用いた磁気抵抗効果素子のバルクハウゼ
ンノイズを抑止することができる。多層膜においては、
各磁性層に均一にバイアス磁界を印加することが好まし
いため、本実施例に示すように永久磁石層を用いること
が望ましい。また、本実施例ではNi−Fe系合金を磁
性層材料として用いたが、他の磁性材料を用いても、外
部磁界のない時に磁性層間の交換相互作用により各磁性
層の磁化の向きが反平行に向いている多層膜であれば、
バイアス磁界の印加によるバルクハウゼンノイズ抑止効
果は同様に得られる。また、非磁性層材料がCu以外の
材料であっても上記と同様の結果が得られる。なお、本
実施例では永久磁石層8として、Co−20at%Pt
合金を用いたが、他の永久磁石材料を用いてもバルクハ
ウゼンノイズ抑止の効果は同様に得られる。また、本実
施例では、多層膜の磁化容易方向にのみバイアス磁界を
印加する場合について述べたが、磁気ヘッドなどにおい
て高感度化のために磁界検出方向(本実施例の多層膜で
は、磁化困難方向)にバイアスを印加する場合が多い。
この場合においても、本発明のように磁化容易方向にバ
イアス磁界を印加することによりバルクハウゼンノイズ
抑止の効果は同様に得られる。さらに、図8に示すよう
に磁気抵抗効果がヒステリシスを示す場合には、上記多
層膜からなる磁気抵抗効果ヘッドを磁気記録再生装置に
搭載し記録情報の再生を行う時に、上記多層膜に高い磁
界を印加し磁化状態をイニシャライズできる機構を付加
することが望ましい。
As described above, by applying the bias magnetic field in the direction of easy magnetization of the multilayer film having the magnetoresistive effect, Barkhausen noise of the magnetoresistive effect element using the multilayer film can be suppressed. In a multilayer film,
Since it is preferable to apply a bias magnetic field uniformly to each magnetic layer, it is desirable to use a permanent magnet layer as shown in this embodiment. Further, in the present embodiment, the Ni—Fe alloy is used as the magnetic layer material, but even if other magnetic materials are used, the magnetization directions of the magnetic layers are opposite due to the exchange interaction between the magnetic layers in the absence of an external magnetic field. If the multilayer film is oriented parallel,
The effect of suppressing Barkhausen noise by applying a bias magnetic field is similarly obtained. Even when the non-magnetic layer material is a material other than Cu, the same result as above can be obtained. In this example, the permanent magnet layer 8 was made of Co-20 at% Pt.
Although an alloy is used, the effect of suppressing Barkhausen noise can be similarly obtained by using another permanent magnet material. Further, in the present embodiment, the case where the bias magnetic field is applied only in the easy magnetization direction of the multilayer film has been described. Bias is often applied in the direction).
Even in this case, the effect of suppressing Barkhausen noise can be similarly obtained by applying a bias magnetic field in the easy magnetization direction as in the present invention. Further, as shown in FIG. 8, when the magnetoresistive effect exhibits hysteresis, a high magnetic field is applied to the multi-layered film when the magneto-resistive head including the multi-layered film is mounted on the magnetic recording / reproducing apparatus to reproduce recorded information. It is desirable to add a mechanism capable of applying a magnetic field to initialize the magnetization state.

【0012】[実施例3]実施例2と同様の方法で多層
膜を形成した。多層膜の断面構成を図9に示す。本実施
例では、磁性層15として膜厚1.5nmのNi−20
at%Fe合金、非磁性層16として膜厚2.0nmの
Agを用いた。上記磁性層15と非磁性層16は、10
周期積層した。また、基板18の上のバッファ層17と
して膜厚5nmのFe層を設けた。また、磁性層15の
スパッタリング時に印加する磁界の方向を変化させるこ
とにより、磁性層15の磁化容易方向を1層毎に直交さ
せた。本実施例の多層膜では、図10に示すように強磁
性層のみを数えた場合、奇数層目と偶数層目とでは磁化
容易方向が直角をなす。したがって、磁界の印加方向の
角度θを45度とした時、例えば、図11のような磁化
過程を示す。ただし、印加磁界の大きさと磁化状態との
関係は強磁性層の保磁力および異方性磁界により異な
る。図11に示すごとく、印加する磁界により強磁性層
の磁化の向きのなす角度が変化することによって磁気抵
抗効果が生じる。電気抵抗が最大となる磁界は、520
A/m(6.5Oe)と低く、また、最大の磁気抵抗変
化率は8.0%と高かった。上記多層膜を用いて、図3
に示す従来の磁気抵抗効果素子を作製したところ磁気抵
抗効果曲線にバルクハウゼンノイズが生じた。これに対
し、上記多層膜を用いて図1に示す構造の本発明の磁気
抵抗効果素子を作製したところ、バルクハウゼンノイズ
は観測されなかった。これは、永久磁石層から発生する
磁界が多層膜の長手方向に常に印加され、多層膜に磁壁
が発生し難くなったためであると考えられる。
[Example 3] A multilayer film was formed in the same manner as in Example 2. The cross-sectional structure of the multilayer film is shown in FIG. In this embodiment, the magnetic layer 15 is made of Ni-20 having a thickness of 1.5 nm.
At% Fe alloy and Ag having a thickness of 2.0 nm were used as the non-magnetic layer 16. The magnetic layer 15 and the non-magnetic layer 16 have 10
Periodically laminated. Further, an Fe layer having a film thickness of 5 nm was provided as the buffer layer 17 on the substrate 18. Further, by changing the direction of the magnetic field applied at the time of sputtering the magnetic layer 15, the easy magnetization directions of the magnetic layers 15 were made orthogonal to each other. In the multilayer film of this embodiment, when only the ferromagnetic layers are counted as shown in FIG. 10, the easy magnetization directions are perpendicular to the odd-numbered layers and the even-numbered layers. Therefore, when the angle θ of the magnetic field application direction is 45 degrees, for example, a magnetization process as shown in FIG. 11 is shown. However, the relationship between the magnitude of the applied magnetic field and the magnetization state differs depending on the coercive force and anisotropic magnetic field of the ferromagnetic layer. As shown in FIG. 11, the applied magnetic field changes the angle formed by the magnetization directions of the ferromagnetic layers, which causes the magnetoresistive effect. The maximum magnetic field is 520
It was as low as A / m (6.5 Oe), and the maximum magnetoresistance change rate was as high as 8.0%. Using the above multilayer film, FIG.
When the conventional magnetoresistive effect element shown in FIG. 2 was manufactured, Barkhausen noise was generated in the magnetoresistive effect curve. On the other hand, when the magnetoresistive effect element of the present invention having the structure shown in FIG. 1 was manufactured using the above-mentioned multilayer film, Barkhausen noise was not observed. It is considered that this is because the magnetic field generated from the permanent magnet layer is always applied in the longitudinal direction of the multilayer film, and the domain wall is less likely to be generated in the multilayer film.

【0013】以上述べたように、磁気抵抗効果を有する
多層膜全体の形状における磁化容易方向、すなわち磁界
検出方向と直角の方向にバイアス磁界を印加することに
より、多層膜を用いた磁気抵抗効果素子のバルクハウゼ
ンノイズを抑止することができる。多層膜では、各磁性
層に均一にバイアス磁界を印加することが好ましいた
め、本実施例のように永久磁石層を用いることが望まし
い。また、本実施例ではNi−Fe系合金を磁性層材料
として用いたが、他の磁性材料を用いても、各磁性層の
磁化容易方向が1層毎に直交している多層膜であれば、
バイアス磁界印加によるバルクハウゼンノイズの抑止効
果は同様に得られる。また、非磁性層材料としてAg以
外の材料を用いても上記と同様の結果を得ることができ
る。なお、本実施例では永久磁石層8として、Co−2
0at%Pt合金を用いたが、他の永久磁石材料を用い
てもバルクハウゼンノイズ抑止効果は同様に得られる。
また、本実施例では、多層膜の磁界検出方向と直角の方
向にのみバイアス磁化を印加する場合について述べた
が、磁気ヘッドなどにおいては高感度化のために磁界検
出方向にバイアスを印加する場合が多い。この場合にお
いても、本発明のように磁界検出方向と直角の方向にバ
イアス磁界を印加することにってバルクハウゼンノイズ
抑止の効果は同様に得られる。さらに、磁気抵抗効果が
ヒステリシスを示す場合には、上記多層膜からなる磁気
抵抗効果型ヘッドを磁気記録再生装置に搭載し記録情報
の再生を行う時に、上記多層膜に高い磁界を印加し磁化
状態をイニシャライズできる機構を付加することが望ま
しい。本実施例では多層膜形成に高周波スパッタリング
法を用いたが、他の薄膜形成法を用いても同様の結果が
得られる。また、本実施例では非磁性層の上下の磁性層
の磁化容易方向が直角をなす場合について述べたが、必
ずしも直角である必要はなく、45度以上であれば本実
施例と同様の磁気抵抗効果が得られる。
As described above, by applying a bias magnetic field in the direction of easy magnetization in the shape of the entire multilayer film having the magnetoresistive effect, that is, in the direction perpendicular to the magnetic field detection direction, the magnetoresistive effect element using the multilayer film is obtained. Barkhausen noise can be suppressed. In a multilayer film, it is preferable to apply a bias magnetic field uniformly to each magnetic layer, and therefore it is desirable to use a permanent magnet layer as in this embodiment. In this embodiment, the Ni—Fe alloy is used as the magnetic layer material, but other magnetic materials may be used as long as the easy magnetization directions of the respective magnetic layers are orthogonal to each other. ,
The effect of suppressing Barkhausen noise by applying a bias magnetic field is similarly obtained. Further, the same result as above can be obtained by using a material other than Ag as the non-magnetic layer material. In this example, the permanent magnet layer 8 was made of Co-2.
Although the 0 at% Pt alloy was used, the Barkhausen noise suppressing effect can be similarly obtained by using other permanent magnet materials.
Further, in the present embodiment, the case where the bias magnetization is applied only in the direction perpendicular to the magnetic field detection direction of the multilayer film has been described, but in the case of applying a bias in the magnetic field detection direction in order to increase the sensitivity in a magnetic head or the like. There are many. Also in this case, the effect of suppressing Barkhausen noise can be similarly obtained by applying the bias magnetic field in the direction perpendicular to the magnetic field detection direction as in the present invention. Further, when the magnetoresistive effect exhibits hysteresis, a high magnetic field is applied to the multilayer film to reproduce the recorded information when the magnetoresistive head made of the multilayer film is mounted on the magnetic recording / reproducing apparatus to reproduce the magnetization state. It is desirable to add a mechanism that can be initialized. In this embodiment, the high frequency sputtering method was used for forming the multilayer film, but the same result can be obtained by using another thin film forming method. Further, although the case where the easy magnetization directions of the magnetic layers above and below the non-magnetic layer form a right angle in the present embodiment, it is not always necessary to form a right angle, and if it is 45 degrees or more, a magnetic resistance similar to that of the present embodiment is obtained. The effect is obtained.

【0014】[実施例4]磁界検出方向と直角の方向に
バイアス磁界を印加する層として、反強磁性層を用いた
磁気抵抗効果素子を作製した。図12に本実施例で作製
した磁気抵抗効果素子27の構成を示す。磁気抵抗効果
素子27は、多層膜24上に反強磁性層25を積層し、
それらの端部に電極26を形成した構造とた。なお、反
強磁性層材料としては、Fe−50at%Mn合金を用
いた。多層膜として実施例1で述べた、保磁力の異なる
2種の磁性層を有する多層膜、異方性磁界の異なる2種
の磁性層を有する多層膜、および実施例2で述べた、外
部磁界のない時に磁性層間の交換相互作用により各磁性
層の磁化の向きが反平行に向いている多層膜、および実
施例3で述べた、各磁性層の磁化容易方向が1層毎に直
交している多層膜のいずれを用いた場合においても、反
強磁性層からのバイアス磁界によるバルクハウゼンノイ
ズ抑制の効果を確認することができた。しかし、反強磁
性層を用いた場合に、各磁性層に均一にバイアスが印加
されないことからバルクハウゼンノイズを完全に抑制す
ることはできなかった。また、本実施例では、反強磁性
層材料としてFe−50at%Mn合金を用いたが、室
温で反強磁性を示す材料であれば他の材料を用いても同
様の効果が得られる。
Example 4 A magnetoresistive effect element using an antiferromagnetic layer as a layer for applying a bias magnetic field in a direction perpendicular to the magnetic field detection direction was manufactured. FIG. 12 shows the configuration of the magnetoresistive effect element 27 manufactured in this example. In the magnetoresistive effect element 27, the antiferromagnetic layer 25 is laminated on the multilayer film 24,
The structure is such that the electrodes 26 are formed at their ends. An Fe-50at% Mn alloy was used as the antiferromagnetic layer material. As the multilayer film, the multilayer film having the two types of magnetic layers having different coercive forces described in Example 1, the multilayer film having the two types of magnetic layers having different anisotropic magnetic fields, and the external magnetic field described in Example 2 When there is no magnetic field, the magnetization directions of the magnetic layers are antiparallel due to the exchange interaction between the magnetic layers, and the easy magnetization directions of the magnetic layers described in the third embodiment are orthogonal to each other. It was possible to confirm the effect of suppressing Barkhausen noise by the bias magnetic field from the antiferromagnetic layer in any of the multilayer films. However, when an antiferromagnetic layer is used, the Barkhausen noise cannot be completely suppressed because a bias is not uniformly applied to each magnetic layer. Further, in the present embodiment, the Fe-50at% Mn alloy was used as the antiferromagnetic layer material, but the same effect can be obtained by using other materials as long as the material exhibits antiferromagnetism at room temperature.

【0015】[実施例5]実施例2と同様の方法で多層
膜を形成した。図9における磁性層15として膜厚1.
5nmのNi−20at%Fe合金、非磁性層16とし
て膜厚2.0nmのAgを用いた。上記磁性層15と非
磁性層16は、10周期積層した。また、基板18の上
のバッファ層17として、膜厚5nmのFe層を用い
た。また、磁性層のスパッタリング時に印加する磁界の
方向を変化させることにより、磁性層15の磁化容易方
向を1層毎に直交させた。上記多層膜を用いた磁気抵抗
効果素子として、ヨ−ク型の磁気抵抗効果素子を形成し
た。磁気抵抗効果素子の作製工程を以下に述べる。図1
4(a)に示すように、Al23・TiCを主成分とす
る焼結体からなる非磁性基板28の上に、磁気シ−ルド
層29を形成した。磁気シ−ルド層29にはスパッタリ
ング法で形成した膜厚1μmのNi−Fe系合金(パ−
マロイ)を用いた。また、磁気シ−ルド層29の上に、
スパッタリング法で膜厚0.2μmのAl23からなる
絶縁層30を形成した。さらに、図14(b)に示すよ
うに、2枚のNi−Znフェライト板31、ガラス32
からなる、ギャップ33を有するヨ−ク板34を用意
し、ヨ−ク板34の厚さをトラック幅まで研磨した。図
14(c)のように、ヨ−ク板34の上に、多層膜3
5、永久磁石層36、および膜厚30nmのTi膜から
なるシャント膜37をスパッタリング法で形成し、Cr
/Cu/Crという多層構造を有するリ−ド線38を形
成した。なお、シャント膜37としては、Nbを用いる
と磁気ヘッド形成プロセスにおける耐熱性が向上するの
で、さらに好ましい。このようにして得られた磁気抵抗
効果素子39を、図14(d)のように、絶縁層30の
上に重ねた。そして、さらに、図14(e)のように、
Al23からなる絶縁層40を形成し、平坦化を行った
後に膜厚1μmのNi−Fe系合金からなる磁気シ−ル
ド層41を形成し、磁気抵抗効果素子42を得た。上記
磁気抵抗効果素子42は、トラック幅方向43にもシ−
ルド層を設けた。このため、本発明の磁気抵抗効果素子
を用いた磁気ヘッドは、隣のトラックからの信号磁界の
影響を受け難くなる。また、本実施例のようなヨ−ク型
の磁気抵抗効果素子では、比較的多層膜の形状を自由に
構成することができる。本実施例のごとく、磁性層の磁
化容易方向を1層毎に直交させた多層膜は、形状磁気異
方性の影響を小さくする観点から正方形であることが好
ましい。この点から、ヨ−ク型の磁気抵抗効果素子は磁
性層の磁化容易方向を1層毎に直交させた多層膜に適し
ていると言える。ところで、本実施例では磁気抵抗効果
膜に対するバイアス方式として、シャントバイアス方式
を示したが、その他、永久磁石方式、ソフトバイアス方
式などの他のバイアス方式を用いることもできる。ま
た、上記の磁気抵抗効果素子と記録用の誘導型磁気ヘッ
ドを組み合わせることにより、高性能の複合型磁気ヘッ
ドを構成することができる。さらに、上記本発明の磁気
ヘッドは狭トラック幅の記録・再生において高い性能を
発揮するため、本発明の磁気ヘッドを磁気ディスク装置
に用いることにより、高い記録密度を有する高性能の磁
気ディスク装置を実現することが可能となる。
[Embodiment 5] A multilayer film was formed in the same manner as in Embodiment 2. As the magnetic layer 15 in FIG.
A Ni-20 at% Fe alloy having a thickness of 5 nm and Ag having a thickness of 2.0 nm were used as the nonmagnetic layer 16. The magnetic layer 15 and the non-magnetic layer 16 were laminated for 10 cycles. Further, as the buffer layer 17 on the substrate 18, a Fe layer having a film thickness of 5 nm was used. Further, by changing the direction of the magnetic field applied during the sputtering of the magnetic layers, the easy magnetization directions of the magnetic layers 15 were made orthogonal to each other. A yoke type magnetoresistive effect element was formed as the magnetoresistive effect element using the multilayer film. The manufacturing process of the magnetoresistive effect element will be described below. Figure 1
As shown in FIG. 4A, a magnetic shield layer 29 was formed on a non-magnetic substrate 28 made of a sintered body containing Al 2 O 3 .TiC as a main component. The magnetic shield layer 29 is formed by a sputtering method and has a film thickness of 1 μm.
Malloy) was used. Also, on the magnetic shield layer 29,
The insulating layer 30 made of Al 2 O 3 having a film thickness of 0.2 μm was formed by the sputtering method. Further, as shown in FIG. 14 (b), two Ni—Zn ferrite plates 31 and a glass 32 are provided.
A yoke plate 34 having a gap 33 was prepared, and the thickness of the yoke plate 34 was ground to the track width. As shown in FIG. 14C, the multilayer film 3 is formed on the yoke plate 34.
5, a permanent magnet layer 36, and a shunt film 37 made of a Ti film having a film thickness of 30 nm are formed by a sputtering method, and Cr is formed.
A lead wire 38 having a multilayer structure of / Cu / Cr was formed. It is more preferable to use Nb as the shunt film 37 because the heat resistance in the magnetic head forming process is improved. The magnetoresistive effect element 39 thus obtained was stacked on the insulating layer 30 as shown in FIG. Then, as shown in FIG. 14 (e),
After forming an insulating layer 40 made of Al 2 O 3 and flattening it, a magnetic shield layer 41 made of a Ni—Fe based alloy having a film thickness of 1 μm was formed to obtain a magnetoresistive effect element 42. The magnetoresistive effect element 42 is shielded in the track width direction 43 as well.
The rudder layer is provided. Therefore, the magnetic head using the magnetoresistive effect element of the present invention is less likely to be affected by the signal magnetic field from the adjacent track. Further, in the yoke type magnetoresistive effect element as in the present embodiment, the shape of the multilayer film can be freely configured. The multilayer film in which the easy magnetization directions of the magnetic layers are orthogonal to each other as in this embodiment is preferably a square from the viewpoint of reducing the influence of the shape magnetic anisotropy. From this point, it can be said that the yoke type magnetoresistive effect element is suitable for a multilayer film in which the easy magnetization directions of the magnetic layers are orthogonal to each other. By the way, although the shunt bias method is shown as the bias method for the magnetoresistive film in this embodiment, other bias methods such as a permanent magnet method and a soft bias method can also be used. Further, by combining the magnetoresistive effect element and the inductive magnetic head for recording, a high-performance composite magnetic head can be constructed. Further, since the magnetic head of the present invention exhibits high performance in recording / reproducing with a narrow track width, by using the magnetic head of the present invention in a magnetic disk device, a high-performance magnetic disk device having a high recording density can be obtained. It can be realized.

【0016】[実施例6]実施例3で述べた磁気抵抗効
果素子を用い、磁気ヘッドを作製した。磁気ヘッドの構
造を以下に示す。図14は、記録再生分離型ヘッドの一
部分を切断した場合の斜視図である。多層膜を用いた磁
気抵抗効果膜44を、シ−ルド層45、46で挾んだ部
分が再生ヘッドとして働き、コイル47を挾む2つの記
録磁極48、49の部分が記録ヘッドとして働く。磁気
抵抗効果膜44は、実施例3に記載の多層膜からなる。
また、磁界検出方向と直角の方向のバイアス磁界印加の
ため、多層膜の端部に永久磁石層52を積層した。ま
た、磁界検出方向のバイアス磁界印加のため、多層膜上
にNbからなるシャント膜51を形成した。また、電極
53には、Cr/Cu/Crという多層構造の電極材料
を用いた。以下にこのヘッドの作製方法について説明す
る。Al23・TiCを主成分とする焼結体を、スライ
ダ用の基体50とした。シ−ルド層45、46、記録磁
極48、49には、 スパッタリング法で形成したNi
−Fe合金を用いた。各磁性膜の膜厚は、以下のように
した。上下のシ−ルド層45、46は1.0μm、記録
磁極48、49は3.0μm、多層膜全体の膜厚は40
nmとした。各膜層間のギャップ材としては、スパッタ
リング法で形成したAl23を用いた。ギャップ層の膜
厚は、シ−ルド層と磁気抵抗効果素子間で0.2μm、
記録磁極間では0.4μmとした。さらに再生ヘッドと
記録ヘッドの間隔は約4μmとし、このギャップもAl
23で形成した。コイル47には膜厚3μmのCuを使
用した。以上述べた構造の磁気ヘッドで記録再生を行っ
たところ、高い再生出力を得た。これは、本発明の磁気
ヘッドとして高い磁気抵抗効果を示す多層膜を用い、適
切なバイアス磁界を印加したためであると考えられる。
上記実施例では、バイアス法としてシャントバイアス法
を用いた場合を示したが、電流バイアス法、永久磁石
法、ソフトバイアス法、相互バイアス法など別のバイア
ス法を使用しても同様の効果が得られる。
[Sixth Embodiment] A magnetic head was manufactured using the magnetoresistive element described in the third embodiment. The structure of the magnetic head is shown below. FIG. 14 is a perspective view when a part of the recording / reproducing separated type head is cut. In the magnetoresistive film 44 using a multilayer film, the portion sandwiched by the shield layers 45 and 46 serves as a reproducing head, and the two recording magnetic poles 48 and 49 sandwiching the coil 47 serve as a recording head. The magnetoresistive film 44 is composed of the multilayer film described in the third embodiment.
Further, a permanent magnet layer 52 was laminated on the end portion of the multilayer film in order to apply a bias magnetic field in a direction perpendicular to the magnetic field detection direction. Further, a shunt film 51 made of Nb was formed on the multilayer film in order to apply a bias magnetic field in the magnetic field detection direction. Further, for the electrode 53, an electrode material having a multilayer structure of Cr / Cu / Cr was used. The method of manufacturing this head will be described below. A sintered body containing Al 2 O 3 .TiC as the main component was used as the base body 50 for the slider. The shield layers 45 and 46 and the recording magnetic poles 48 and 49 are formed by sputtering Ni.
-Fe alloy was used. The thickness of each magnetic film was as follows. The upper and lower shield layers 45 and 46 are 1.0 μm, the recording magnetic poles 48 and 49 are 3.0 μm, and the total thickness of the multilayer film is 40 μm.
nm. As the gap material between the film layers, Al 2 O 3 formed by the sputtering method was used. The film thickness of the gap layer is 0.2 μm between the shield layer and the magnetoresistive effect element,
The distance between the recording magnetic poles was 0.4 μm. Further, the distance between the reproducing head and the recording head is set to about 4 μm, and this gap is also made of Al.
It was formed of 2 O 3 . Cu having a film thickness of 3 μm was used for the coil 47. When recording / reproducing was performed with the magnetic head having the structure described above, a high reproducing output was obtained. It is considered that this is because the magnetic head of the present invention uses a multilayer film having a high magnetoresistive effect and applies an appropriate bias magnetic field.
Although the shunt bias method is used as the bias method in the above embodiment, the same effect can be obtained by using another bias method such as the current bias method, the permanent magnet method, the soft bias method, and the mutual bias method. Be done.

【0017】ところで、磁気ヘッドが記録および再生能
力を同時に有している場合、基板に近い部分に記録用の
素子を形成すると、記録用素子の上部ではコイル、磁極
などの形成のために大きな段差が生じる。この上に、多
層磁気抵抗効果膜を形成すると、段差の影響で多層構造
が乱れるので好ましくない。これに対し、図14のよう
に、基板に近い部分に再生用の磁気抵抗効果素子を形成
すると、比較的段差の少ない部分に磁気抵抗効果素子が
形成されるため、多層構造の乱れが生じ難くなる。これ
は、パ−マロイ単層膜を用いた磁気抵抗効果素子とは本
質的に異なる現象である。以上の観点から、磁気ヘッド
が記録および再生能力を同時に有している場合、基板に
近い部分に再生用の磁気抵抗効果素子を形成させること
が望ましい。同じ観点から、記録用の素子と再生用の磁
気抵抗効果素子とを同じ基板上の他の場所に形成させる
ことにより、段差の少ない部分に磁気抵抗効果素子を構
成することができる。また、実施例1、2に記載の磁気
抵抗効果素子を用いても、高感度で再生できる磁気ヘッ
ドを得ることができる。さらに、本発明の磁気抵抗効果
素子は、磁気ヘッド以外の磁界検出器にも用いることが
できる。そして、上記磁気ヘッドを磁気記録再生装置に
用いることにより、高い記録密度を有する高性能の磁気
記録再生装置を実現することができる。
By the way, when the magnetic head has recording and reproducing capabilities at the same time, when a recording element is formed in a portion close to the substrate, a large step is formed above the recording element due to formation of a coil, a magnetic pole and the like. Occurs. It is not preferable to form a multi-layered magnetoresistive film on this, because the multi-layered structure is disturbed by the effect of the step. On the other hand, as shown in FIG. 14, when the magnetoresistive effect element for reproduction is formed in the portion close to the substrate, the magnetoresistive effect element is formed in the portion having a relatively small step, so that the disorder of the multilayer structure hardly occurs. Become. This is a phenomenon that is essentially different from the magnetoresistive effect element using the permalloy single layer film. From the above viewpoints, when the magnetic head has recording and reproducing capabilities at the same time, it is desirable to form a reproducing magnetoresistive effect element in a portion near the substrate. From the same point of view, by forming the recording element and the reproducing magnetoresistive effect element at another place on the same substrate, the magnetoresistive effect element can be formed in a portion having a small step. Further, by using the magnetoresistive effect element described in Examples 1 and 2, it is possible to obtain a magnetic head capable of reproducing with high sensitivity. Further, the magnetoresistive effect element of the present invention can be used in a magnetic field detector other than the magnetic head. By using the above magnetic head in a magnetic recording / reproducing apparatus, a high-performance magnetic recording / reproducing apparatus having a high recording density can be realized.

【0018】[0018]

【発明の効果】上述のように、非磁性層を積層した多層
膜を用いた磁気抵抗効果素子において、上記磁性層の磁
化容易方向にバイアス磁界を印加することにより、バル
クハウゼンノイズを抑止することができる。この方法
は、保磁力が他の磁性層と異なる磁性層を少なくとも一
層含む多層膜、異方性磁界が他の磁性層と異なる磁性層
を少なくとも一層含む多層膜、外部磁界のない時に磁性
層間の交換相互作用により各磁性層の磁化の向きが反平
行に向いている多層膜、または磁性層の少なくとも1層
が他の磁性層と異なる磁化容易方向を持つ多層膜からな
る磁気抵抗効果素子に適用できる。上記バイアス磁界を
印加する方法としては、永久磁石層を利用する方法、反
強磁性層を利用する方法がある。また、バルクハウゼン
ノイズを抑止した磁気抵抗効果素子は、狭トラック幅の
磁気記録再生において高い性能を発揮する磁界センサま
たは磁気ヘッドとして好適に用いられる。また、磁気記
録、消去用の誘導型磁気ヘッドと組み合わせて用いるこ
とにより、高い記録密度で高性能の磁気記録再生装置を
実現することができる。
INDUSTRIAL APPLICABILITY As described above, in a magnetoresistive effect element using a multilayer film in which non-magnetic layers are laminated, Barkhausen noise is suppressed by applying a bias magnetic field in the direction of easy magnetization of the magnetic layer. You can This method includes a multi-layer film including at least one magnetic layer having a coercive force different from other magnetic layers, a multi-layer film including at least one magnetic layer having an anisotropic magnetic field different from other magnetic layers, and a magnetic layer between the magnetic layers in the absence of an external magnetic field. Applied to a magnetoresistive element including a multilayer film in which the magnetization directions of the magnetic layers are antiparallel due to exchange interaction, or at least one of the magnetic layers has a different easy magnetization direction than other magnetic layers. it can. Methods of applying the bias magnetic field include a method of using a permanent magnet layer and a method of using an antiferromagnetic layer. Further, the magnetoresistive effect element in which Barkhausen noise is suppressed is suitably used as a magnetic field sensor or a magnetic head that exhibits high performance in magnetic recording / reproducing with a narrow track width. Further, by using it in combination with an induction type magnetic head for magnetic recording and erasing, it is possible to realize a high performance magnetic recording / reproducing apparatus with high recording density.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1で例示した磁気抵抗効果素子
の構造を示す斜視図。
FIG. 1 is a perspective view showing a structure of a magnetoresistive effect element exemplified in a first embodiment of the present invention.

【図2】図1に示す磁気抵抗効果素子の多層膜の断面構
成を示す模式図。
FIG. 2 is a schematic diagram showing a cross-sectional structure of a multilayer film of the magnetoresistive effect element shown in FIG.

【図3】従来の磁気抵抗効果素子の構造を示す斜視図。FIG. 3 is a perspective view showing a structure of a conventional magnetoresistive effect element.

【図4】従来の磁気抵抗効果素子の磁気抵抗効果を示す
グラフ。
FIG. 4 is a graph showing a magnetoresistive effect of a conventional magnetoresistive effect element.

【図5】本発明の実施例1で例示した磁気抵抗効果素子
の磁気抵抗効果を示すグラフ。
FIG. 5 is a graph showing the magnetoresistive effect of the magnetoresistive element illustrated in Example 1 of the present invention.

【図6】本発明の実施例2で例示した磁気抵抗効果素子
の多層膜の断面構成を示す模式図。
FIG. 6 is a schematic diagram showing a cross-sectional structure of a multilayer film of the magnetoresistive effect element exemplified in Example 2 of the present invention.

【図7】従来の磁気抵抗効果素子の磁気抵抗効果を示す
グラフ。
FIG. 7 is a graph showing a magnetoresistive effect of a conventional magnetoresistive effect element.

【図8】本発明の実施例2で例示した磁気抵抗効果素子
の磁気抵抗効果を示すグラフ。
FIG. 8 is a graph showing the magnetoresistive effect of the magnetoresistive effect element exemplified in Example 2 of the present invention.

【図9】本発明の実施例3で例示した磁気抵抗効果素子
の多層膜の断面構成を示す模式図。
FIG. 9 is a schematic diagram showing a cross-sectional structure of a multilayer film of the magnetoresistive effect element exemplified in Example 3 of the present invention.

【図10】図9に示す多層膜の磁化容易方向を示す平面
図。
10 is a plan view showing the easy magnetization direction of the multilayer film shown in FIG.

【図11】図9に示す多層膜の磁化過程を示す説明図。FIG. 11 is an explanatory diagram showing a magnetization process of the multilayer film shown in FIG. 9.

【図12】本発明の実施例4で例示した磁気抵抗効果素
子の構成を示す斜視図。
FIG. 12 is a perspective view showing the configuration of a magnetoresistive effect element exemplified in Example 4 of the present invention.

【図13】本発明の実施例5で例示した磁気抵抗効果素
子の作製プロセスを示す説明図。
FIG. 13 is an explanatory diagram showing a manufacturing process of the magnetoresistive effect element exemplified in Example 5 of the present invention.

【図14】本発明の実施例6で例示した磁気ヘッドの構
造を示す斜視図。
FIG. 14 is a perspective view showing the structure of the magnetic head exemplified in the sixth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…磁性層 2…磁性層 3…非磁性層 4…多層膜 5…電極 6…磁気抵抗効果素子 7…多層膜 8…永久磁石層 9…電極 10…磁気抵抗効果素子 11…磁性層 12…非磁性層 13…バッファ層 14…基板 15…磁性層 16…非磁性層 17…バッファ層 18…基板 19…奇数層目の磁性層の磁化容易方向 20…偶数層目の磁性層の磁化容易方向 21…磁界印加方向 22…奇数層目の磁性層の磁化の向き 23…偶数層目の磁性層の磁化の向き 24…多層膜 25…反強磁性層 26…電極 27…磁気抵抗効果素子 28…非磁性基板 29…磁気シ−ルド層 30…絶縁層 31…Ni−Znフェライト基板 32…ガラス 33…ギャップ 34…ヨ−ク板 35…多層膜 36…永久磁石層 37…シャント膜 38…リ−ド線 39…磁気抵抗効果素子 40…絶縁層 41…磁気シ−ルド層 42…磁気抵抗効果素子 43…トッラク幅方向 44…磁気抵抗効果膜 45…シ−ルド層 46…シールド層 47…コイル 48…記録磁極 49…記録磁区 50…基体 51…シャント膜 52…永久磁石層 53…電極 DESCRIPTION OF SYMBOLS 1 ... Magnetic layer 2 ... Magnetic layer 3 ... Nonmagnetic layer 4 ... Multilayer film 5 ... Electrode 6 ... Magnetoresistive effect element 7 ... Multilayer film 8 ... Permanent magnet layer 9 ... Electrode 10 ... Magnetoresistive effect element 11 ... Magnetic layer 12 ... Non-magnetic layer 13 ... Buffer layer 14 ... Substrate 15 ... Magnetic layer 16 ... Non-magnetic layer 17 ... Buffer layer 18 ... Substrate 19 ... Easy magnetization direction of odd-numbered magnetic layer 20 ... Easy magnetization direction of even-numbered magnetic layer 21 ... Magnetic field application direction 22 ... Magnetization direction of odd-numbered magnetic layer 23 ... Magnetization direction of even-numbered magnetic layer 24 ... Multilayer film 25 ... Antiferromagnetic layer 26 ... Electrode 27 ... Magnetoresistive element 28 ... Non-magnetic substrate 29 ... Magnetic shield layer 30 ... Insulating layer 31 ... Ni-Zn ferrite substrate 32 ... Glass 33 ... Gap 34 ... Yoke plate 35 ... Multilayer film 36 ... Permanent magnet layer 37 ... Shunt film 38 ... Re- Wire 39 ... Magnetoresistive effect Child 40 ... Insulating layer 41 ... Magnetic shield layer 42 ... Magnetoresistive effect element 43 ... Track width direction 44 ... Magnetoresistive effect film 45 ... Shield layer 46 ... Shield layer 47 ... Coil 48 ... Recording magnetic pole 49 ... Recording magnetic domain 50 ... Substrate 51 ... Shunt film 52 ... Permanent magnet layer 53 ... Electrode

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】磁性層と非磁性層とを積層した多層膜から
なる磁気抵抗効果膜を用いて構成した磁気抵抗効果素子
において、上記多層膜からなる磁気抵抗効果膜の磁化容
易方向もしくは磁界検出方向に対して直角の方向に、バ
イアス磁界を印加する手段を少なくとも設けたことを特
徴とする磁気抵抗効果素子。
1. A magnetoresistive effect element constituted by using a magnetoresistive effect film composed of a multilayer film in which a magnetic layer and a non-magnetic layer are laminated, and detecting a direction of easy magnetization or a magnetic field of the magnetoresistive effect film composed of the multilayer film. A magnetoresistive effect element comprising at least means for applying a bias magnetic field in a direction perpendicular to the direction.
【請求項2】請求項1記載の多層膜からなる磁気抵抗効
果膜において、保磁力が他の磁性層とは異なる磁性層を
少なくとも一層積層してなることを特徴とする磁気抵抗
効果素子。
2. The magnetoresistive effect film comprising the multilayer film according to claim 1, wherein at least one magnetic layer having a coercive force different from that of other magnetic layers is laminated.
【請求項3】請求項1記載の多層膜からなる磁気抵抗効
果膜において、異方性磁界が他の磁性層とは異なる磁性
層を少なくとも一層積層してなるとを特徴とする磁気抵
抗効果素子。
3. A magnetoresistive effect film comprising the multilayer film according to claim 1, wherein at least one magnetic layer having an anisotropic magnetic field different from that of other magnetic layers is laminated.
【請求項4】請求項1記載の多層膜からなる磁気抵抗効
果膜において、外部磁界のない時に多層膜を構成する磁
性層間の交換相互作用により、各磁性層の磁化の向きが
ほぼ反平行に向いてなることを特徴とする磁気抵抗効果
素子。
4. The magnetoresistive film comprising the multilayer film according to claim 1, wherein the magnetization directions of the magnetic layers are substantially antiparallel due to exchange interaction between the magnetic layers forming the multilayer film in the absence of an external magnetic field. A magnetoresistive effect element characterized by being oriented.
【請求項5】請求項1記載の多層膜からなる磁気抵抗効
果膜において、多層膜を構成する磁性層の少なくとも1
層が、他の磁性層とは異なる磁化容易方向を持つことを
特徴とする磁気抵抗効果素子。
5. The magnetoresistive film comprising the multilayer film according to claim 1, wherein at least one of the magnetic layers constituting the multilayer film is formed.
A magnetoresistive element, wherein the layer has an easy magnetization direction different from other magnetic layers.
【請求項6】請求項1から請求項5のいずれか1項記載
の多層膜からなる磁気抵抗効果膜において、バイアス磁
界の印加手段が永久磁石層によることを特徴とする磁気
抵抗効果素子。
6. A magnetoresistive effect element comprising a multilayered magnetoresistive effect film according to claim 1, wherein the bias magnetic field applying means is a permanent magnet layer.
【請求項7】請求項1から請求項5のいずれか1項記載
の多層膜からなる磁気抵抗効果膜において、バイアス磁
界の印加手段が反強磁性層によることを特徴とする磁気
抵抗効果素子。
7. A magnetoresistive effect element comprising a multilayered magnetoresistive effect film according to claim 1, wherein the bias magnetic field applying means is an antiferromagnetic layer.
【請求項8】請求項1から請求項7のいずれか1項記載
の磁気抵抗効果素子を用いて、磁界検出器を構成してな
ることを特徴とする磁界センサ。
8. A magnetic field sensor comprising a magnetic field detector using the magnetoresistive effect element according to any one of claims 1 to 7.
【請求項9】請求項1から請求項7のいずれか1項記載
の磁気抵抗効果素子を用いて、記録情報の再生を行う再
生用磁気ヘッドを構成してなることを特徴とする磁気ヘ
ッド。
9. A magnetic head comprising a magnetoresistive effect element according to claim 1 for constituting a reproducing magnetic head for reproducing recorded information.
【請求項10】請求項1から請求項7いずれか1項記載
の磁気抵抗効果素子を用いた再生用磁気ヘッドと、記録
もしくは消去を行う誘導型磁気ヘッドとを組み合わせ
て、磁気記録、消去もしくは再生を行う複合型磁気ヘッ
ドを構成してなることを特徴とする磁気ヘッド。
10. A magnetic recording, erasing or recording method using a combination of a reproducing magnetic head using the magnetoresistive element according to claim 1 and an induction type magnetic head for recording or erasing. A magnetic head comprising a composite magnetic head for reproducing.
【請求項11】請求項9または請求項10記載の磁気ヘ
ッドを磁気記録再生装置に搭載し、磁気記録、消去もし
くは再生を行う手段を少なくとも備えたことを特徴とす
る磁気記録再生装置。
11. A magnetic recording / reproducing apparatus comprising the magnetic head according to claim 9 or 10 mounted on a magnetic recording / reproducing apparatus, and at least means for performing magnetic recording, erasing or reproducing.
JP3338640A 1991-12-20 1991-12-20 Magnetoresistance effect element, and magnetic head and recording/reproducing device using same Pending JPH05175572A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3338640A JPH05175572A (en) 1991-12-20 1991-12-20 Magnetoresistance effect element, and magnetic head and recording/reproducing device using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3338640A JPH05175572A (en) 1991-12-20 1991-12-20 Magnetoresistance effect element, and magnetic head and recording/reproducing device using same

Publications (1)

Publication Number Publication Date
JPH05175572A true JPH05175572A (en) 1993-07-13

Family

ID=18320079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3338640A Pending JPH05175572A (en) 1991-12-20 1991-12-20 Magnetoresistance effect element, and magnetic head and recording/reproducing device using same

Country Status (1)

Country Link
JP (1) JPH05175572A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0888424A (en) * 1994-09-20 1996-04-02 Hiroyasu Fujimori Multi-layer film magnetoresistance effect element and its manufacture
JPH0897487A (en) * 1994-09-21 1996-04-12 Nec Corp Magnetoresistance effect device and its reproducing method
WO2000025371A1 (en) * 1998-10-26 2000-05-04 Mitsubishi Denki Kabushiki Kaisha Magnetoresistant device and a magnetic sensor comprising the same
US6714389B1 (en) * 2000-11-01 2004-03-30 Seagate Technology Llc Digital magnetoresistive sensor with bias

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0888424A (en) * 1994-09-20 1996-04-02 Hiroyasu Fujimori Multi-layer film magnetoresistance effect element and its manufacture
JPH0897487A (en) * 1994-09-21 1996-04-12 Nec Corp Magnetoresistance effect device and its reproducing method
WO2000025371A1 (en) * 1998-10-26 2000-05-04 Mitsubishi Denki Kabushiki Kaisha Magnetoresistant device and a magnetic sensor comprising the same
US6714389B1 (en) * 2000-11-01 2004-03-30 Seagate Technology Llc Digital magnetoresistive sensor with bias

Similar Documents

Publication Publication Date Title
JP3793669B2 (en) Giant magnetoresistive head, thin film magnetic head, and magnetic recording / reproducing apparatus
JP2000340858A (en) Magnetoresistive effect film and magnetoresistive effect head
JPH0766033A (en) Magnetoresistance element, and magnetic thin film memory and magnetoresistance sensor using the magnetoresistance element
JPH0969211A (en) Magnetoresistance effect film, magnetic head and magnetic recorder/reproducer
JPH05175572A (en) Magnetoresistance effect element, and magnetic head and recording/reproducing device using same
JP3190193B2 (en) How to use thin film magnetic head
JPH076329A (en) Magneto-resistance effect element and magnetic head using the same and magnetic recording and reproducing device
JPH06310329A (en) Multilayer magnetoresistance effect film and magnetic head
US5828528A (en) MR sensors with selected resistances for the sensing and biasing layers to enhance reading capabilities
JPH0774022A (en) Multilayer magnetoresistance-effect film and magnetic head
JP3260735B2 (en) Magnetoresistance effect element, magnetoresistance effect head, magnetic recording reproducing device and production of magnetoresistance effect head
JPH08279116A (en) Film of gigantic magnetoresistive material and method for adjustive magnetization of magnetoresistive material film
JPH04339309A (en) Magneto-resistance effect element using multilayred magneto-resistance effect film
JPH0661050A (en) Laminated magnetic film and magnetic head and magnetic recording/reproducing apparatus using the film
JP3044012B2 (en) Magnetoresistive element, magnetoresistive head, magnetic head, and magnetic recording / reproducing device
JPH08147631A (en) Magnetic recording and reproducing apparatus
JPH06260337A (en) Multilayer magnetoresistance effect film and magnetic head
JPH0661048A (en) Multilayer magnetoresistance effect film and magnetic head
JPH05258248A (en) Multilayer magnetoresistance effect film, magnetic head, and magnetic recording and reproducing device
JP3756732B2 (en) Magnetoresistive element
US6706156B1 (en) Method of making an improved MR sensor
JPH06295818A (en) Multilayer magnetoresistive effect film and magnetic head
JPH0766036A (en) Multilayer magnetoresistance effect film, and magnetoresistance effect element and magnetic head using same
JPH05291037A (en) Laminated magnetic film and magnetic head using the same as well as magnetic recorder/reproducer
JPH06215335A (en) Thin film magnetic head