JPH08279116A - Film of gigantic magnetoresistive material and method for adjustive magnetization of magnetoresistive material film - Google Patents

Film of gigantic magnetoresistive material and method for adjustive magnetization of magnetoresistive material film

Info

Publication number
JPH08279116A
JPH08279116A JP7076863A JP7686395A JPH08279116A JP H08279116 A JPH08279116 A JP H08279116A JP 7076863 A JP7076863 A JP 7076863A JP 7686395 A JP7686395 A JP 7686395A JP H08279116 A JPH08279116 A JP H08279116A
Authority
JP
Japan
Prior art keywords
material film
film
magnetic
magnetic material
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7076863A
Other languages
Japanese (ja)
Other versions
JP3242279B2 (en
Inventor
Fumito Koike
文人 小池
Masahiro Uchiyama
雅裕 内山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP07686395A priority Critical patent/JP3242279B2/en
Publication of JPH08279116A publication Critical patent/JPH08279116A/en
Application granted granted Critical
Publication of JP3242279B2 publication Critical patent/JP3242279B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3268Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn
    • H01F10/3281Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn only by use of asymmetry of the magnetic film pair itself, i.e. so-called pseudospin valve [PSV] structure, e.g. NiFe/Cu/Co

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Power Engineering (AREA)
  • Magnetic Heads (AREA)
  • Thin Magnetic Films (AREA)
  • Hall/Mr Elements (AREA)

Abstract

PURPOSE: To decrease the leaking magnetic fields of a hard magnetic material film by freshly disposing a ferromagnetic layer between the hard magnetic material film and a nonmagnetic film. CONSTITUTION: This megalomagnetic reluctance material film is formed by successively laminating the hard magnetic material film 21, the newly formed ferromagnetic material film 22, the nonmagnetic film 23 and a soft magnetic material film 24 on a substrate 20 consisting of a nonmagnetic material. The nonmagnetic film 23 is formed of Cr, Au, Ag, Cu, etc., to a thickness of, for example, 20 to 40 angstrom to allow the respective independent behavior of the magnetizations of the respective magnetic material films around the film. The magnetizations of the soft magnetic material film 24 and the magnetization of the hard magnetic material film 21 behave respectively independently according to external magnetic fields and the directions of the relative magnetization change easily between a parallel state and antiparallel state, by which the gigantic magnetoresistance effect is obtd. The leaking magnetic fields are decreased by providing the gigantic magnetoresistance material film with the third ferromagnetic material film 22.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、磁気ヘッド、位置セン
サ、回転センサ等に用いられる磁気抵抗効果素子用の巨
大磁気抵抗材料膜および磁気抵抗材料膜の磁化の調整方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a giant magnetoresistive material film for a magnetoresistive effect element used in a magnetic head, a position sensor, a rotation sensor, etc., and a method for adjusting the magnetization of the magnetoresistive material film.

【0002】[0002]

【従来の技術】従来、この種の用途に用いられている磁
気抵抗(MR)効果材料として、Ni-Fe合金薄膜
(パーマロイ薄膜)が知られているが、パーマロイ薄膜
の抵抗変化率は2〜3%が一般的である。従って、今
後、磁気記録における線記録密度およびトラック密度の
向上あるいは磁気センサにおける高分解能化に対応する
ためには、より抵抗変化率(MR比)の大きい磁気抵抗
効果材料が望まれている。
2. Description of the Related Art Conventionally, a Ni--Fe alloy thin film (permalloy thin film) has been known as a magnetoresistive (MR) effect material used for this kind of application, and the resistance change rate of the permalloy thin film is 2 to 2. 3% is typical. Therefore, in the future, a magnetoresistive effect material having a larger resistance change ratio (MR ratio) is desired in order to cope with the improvement of the linear recording density and the track density in the magnetic recording or the higher resolution of the magnetic sensor.

【0003】ところで近年、巨大磁気抵抗効果と呼ばれ
る現象が、Fe/Cr交互積層膜、あるいは、Co/C
u交互積層膜などの多層薄膜で発見されている。これら
の多層薄膜においては、FeやCoなどからなる各強磁
性金属層の磁化がCrやCuなどからなる非磁性金属層
を介して磁気的な相互作用を起こし、積層された上下の
強磁性金属層の磁化が、外部磁場のないときは反平行状
態を保つように結合している。即ち、これらの構造にお
いては、非磁性金属層を介して交互に積層された強磁性
金属層が、一層毎に磁化の向きを反対方向に向けて積層
されている。そして、これらの構造においては、適当な
外部磁界が印加されると、各強磁性金属層の磁化の向き
が同じ方向に揃うように変化する。
By the way, in recent years, a phenomenon called a giant magnetoresistive effect is caused by an alternating laminated film of Fe / Cr or Co / C.
It has been found in multilayer thin films such as u alternating laminated films. In these multilayer thin films, the magnetization of each ferromagnetic metal layer made of Fe, Co, etc. causes a magnetic interaction through the nonmagnetic metal layer made of Cr, Cu, etc. The magnetizations of the layers are coupled so that they remain antiparallel in the absence of an external magnetic field. That is, in these structures, the ferromagnetic metal layers that are alternately stacked with the non-magnetic metal layer in between are layered so that the magnetization directions are opposite to each other. Then, in these structures, when an appropriate external magnetic field is applied, the magnetization directions of the ferromagnetic metal layers change so as to be aligned in the same direction.

【0004】前記の構造において、各強磁性金属層の磁
化が反平行状態の場合と平行状態の場合では、Fe強磁
性金属層とCr非磁性金属層の界面、あるいは、Co強
磁性金属層とCu非磁性金属層の界面における伝導電子
の散乱のされ方が、伝導電子のスピンに依存して異なる
といわれている。従ってこの機構に基づくと、各強磁性
金属層の磁化の向きが反平行状態の時は電気抵抗が高
く、平行状態の時は電気抵抗が低くなり、抵抗変化率と
して従来のパーマロイ薄膜を上回る、いわゆる、巨大磁
気抵抗効果を発生する。このように、これらの多層薄膜
は、従来のNi-Feの単層薄膜とは根本的に異なるM
R発生機構を有している。
In the above structure, when the magnetizations of the respective ferromagnetic metal layers are in the antiparallel state and the parallel state, the interface between the Fe ferromagnetic metal layer and the Cr nonmagnetic metal layer or the Co ferromagnetic metal layer is used. It is said that the scattering of conduction electrons at the interface of the Cu nonmagnetic metal layer differs depending on the spin of the conduction electrons. Therefore, based on this mechanism, the electric resistance is high when the magnetization directions of the ferromagnetic metal layers are in the antiparallel state, and the electric resistance is low when the magnetization directions are in the parallel state, and the resistance change rate exceeds that of the conventional permalloy thin film. The so-called giant magnetoresistive effect is generated. Thus, these multi-layer thin films are fundamentally different from conventional Ni-Fe single-layer thin films by M
It has an R generation mechanism.

【0005】しかしながら、これらの多層膜において
は、各強磁性金属層の磁化の向きを反平行とするように
作用する強磁性金属層間の磁気的相互作用が強すぎるた
めに、各強磁性金属層の磁化の向きを平行に揃えるため
には、非常に大きな外部磁界を作用させなくてはならな
い問題がある。従って、強い磁界をかけないと大きな抵
抗変化が起こらないことになり、磁気ヘッドなどのよう
に磁気記録媒体からの微小な磁界を検出する装置に適用
した場合に満足な高い感度が得られないという問題があ
った。
However, in these multilayer films, the magnetic interaction between the ferromagnetic metal layers that act so as to make the magnetization directions of the ferromagnetic metal layers antiparallel to each other is too strong. There is a problem in that a very large external magnetic field must be applied in order to make the magnetization directions of the two parallel. Therefore, a large change in resistance does not occur unless a strong magnetic field is applied, and satisfactory high sensitivity cannot be obtained when applied to a device that detects a minute magnetic field from a magnetic recording medium such as a magnetic head. There was a problem.

【0006】この問題を解決するためには、強磁性金属
層間に働く磁気的な相互作用を過度に強くしないよう
に、CrやCuなどからなる非磁性金属層の厚さを調整
し、各強磁性金属層の磁化の向きの相対的な方向を磁気
的相互作用とは別の方法により制御することが有効と思
われる。従来、このような磁化の相対的な方向制御技術
として、FeMnなどの反強磁性層を設けることによ
り、一方の強磁性金属層の磁化の向きを固定し、この強
磁性金属層の磁化の向きが外部磁界に対して動き難いよ
うに構成し、他方の強磁性金属層の磁化の向きを自由に
動けるように構成することにより、微小な磁界による動
作を可能にした技術が提案されている。
In order to solve this problem, the thickness of the non-magnetic metal layer made of Cr, Cu or the like is adjusted so that the magnetic interaction acting between the ferromagnetic metal layers is not excessively strengthened. It seems effective to control the relative direction of the magnetization of the magnetic metal layer by a method other than the magnetic interaction. Conventionally, as a technique for controlling the relative direction of such magnetization, by providing an antiferromagnetic layer such as FeMn, the direction of magnetization of one ferromagnetic metal layer is fixed, and the direction of magnetization of this ferromagnetic metal layer is fixed. A technique has been proposed which enables operation by a minute magnetic field by making the magnetic field hard to move with respect to an external magnetic field and by freely moving the magnetization direction of the other ferromagnetic metal layer.

【0007】図15は、特開平6ー60336号公報に
開示されているこの種の技術を応用した構造の磁気抵抗
センサの一例を示すものである。図15に示す磁気抵抗
センサAは、非磁性の基板1に、第1の磁性層2と非磁
性スペーサ3と第2の磁性層4と反強磁性層5を積層し
て構成されるものであり、第2の磁性層4の磁化の向き
Bが反強磁性層5による磁気的交換結合により固定され
るとともに、第1の磁性層2の磁化の向きCが、印加磁
界がない時に第2の磁性層4の磁化の向きBに対して直
角に向けられている。ただし、この第1の磁性層2の磁
化の向きCは固定されないので外部磁界により回転でき
るようになっている。
FIG. 15 shows an example of a magnetoresistive sensor having a structure to which this kind of technology disclosed in Japanese Patent Laid-Open No. 6-60336 is applied. A magnetoresistive sensor A shown in FIG. 15 is configured by laminating a first magnetic layer 2, a nonmagnetic spacer 3, a second magnetic layer 4 and an antiferromagnetic layer 5 on a nonmagnetic substrate 1. And the magnetization direction B of the second magnetic layer 4 is fixed by magnetic exchange coupling by the antiferromagnetic layer 5, and the magnetization direction C of the first magnetic layer 2 is the second when there is no applied magnetic field. Is oriented at a right angle to the direction B of magnetization of the magnetic layer 4. However, since the magnetization direction C of the first magnetic layer 2 is not fixed, it can be rotated by an external magnetic field.

【0008】図15に示す構造に対して印加磁界hを付
加すると、印加磁界hの方向に応じて第1の磁性層2の
磁化の向きCが点線矢印の如く回転するので、第1の磁
性層2と第2の磁性層4との間で磁化に角度差が生じる
ことになるために、抵抗変化が起こり、これにより磁場
検出ができるようになる。
When an applied magnetic field h is applied to the structure shown in FIG. 15, the magnetization direction C of the first magnetic layer 2 rotates according to the direction of the applied magnetic field h as indicated by a dotted arrow, so that the first magnetic layer An angle difference occurs in the magnetization between the layer 2 and the second magnetic layer 4, which causes a resistance change, which allows magnetic field detection.

【0009】次に、一方の磁性層の磁化の向きを固定
し、他方の磁性層の磁化の向きを自由とした構成の磁気
抵抗センサの他の例として、図16に示すように、基板
6上にNiOの反強磁性層7と、Ni-Feの磁性層8
と、Cuの非磁性金属層9と、Ni-Feの磁性層10
と、Cuの非磁性金属層11と、Ni-Feの磁性層1
2と、FeMnの反強磁性層13を順次積層した構造の
磁気抵抗センサBが知られている。この例の構造におい
ては、反強磁性層7、13によりそれらに隣接する強磁
性金属層8、12の磁化がそれぞれ固定され、強磁性金
属層8、12の間に非磁性金属層9、11を介して挟ま
れた強磁性金属層10の磁化が外部磁界に応じて回転可
能に構成されている。
Next, as another example of the magnetoresistive sensor in which the magnetization direction of one magnetic layer is fixed and the magnetization direction of the other magnetic layer is free, as shown in FIG. An antiferromagnetic layer 7 made of NiO and a magnetic layer 8 made of Ni-Fe
A Cu non-magnetic metal layer 9 and a Ni-Fe magnetic layer 10.
And Cu non-magnetic metal layer 11 and Ni-Fe magnetic layer 1
A magnetoresistive sensor B having a structure in which 2 and an antiferromagnetic layer 13 of FeMn are sequentially stacked is known. In the structure of this example, the magnetizations of the ferromagnetic metal layers 8 and 12 adjacent thereto are fixed by the antiferromagnetic layers 7 and 13, respectively, and the nonmagnetic metal layers 9 and 11 are interposed between the ferromagnetic metal layers 8 and 12. The magnetization of the ferromagnetic metal layer 10 that is sandwiched between is configured to be rotatable according to an external magnetic field.

【0010】図15あるいは図16に示す構造の磁気抵
抗センサであると、微小な印加磁界の変化に対して磁気
抵抗センサAと磁気抵抗センサBの電気抵抗が直線的に
感度良く変化する。また、第1の磁性層2としてNi-
Feなどの軟磁性材料を用いると、その軟磁気特性を利
用でき、ヒステリシスが少ないなどの利点を有する。
In the magnetoresistive sensor having the structure shown in FIG. 15 or 16, the electric resistances of the magnetoresistive sensor A and the magnetoresistive sensor B linearly change with high sensitivity in response to a minute change in the applied magnetic field. Further, as the first magnetic layer 2, Ni-
When a soft magnetic material such as Fe is used, its soft magnetic characteristics can be utilized, and there are advantages such as less hysteresis.

【0011】[0011]

【発明が解決しようとする課題】しかしながら、図15
あるいは図16に示す構造の磁気抵抗センサはFeMn
の反強磁性層5で隣接する第2の磁性層4の磁化を固定
するか、上下のFeMnとNiOの反強磁性層7、13
でそれらの間の強磁性金属層8、12の磁化を固定し、
それらの間の磁性層10の磁化を自由にする構造である
ので、巨大磁気抵抗効果に寄与するNi-Fe(磁性
層)/Cu(非磁性金属層)の界面の数を多くできない
制約があり、MR比の大きさに制約を生じる問題があっ
た。また、反強磁性層5、7の構成材料として用いられ
るFeMnは、耐食性および耐環境性の面から見て不利
な問題がある。
However, as shown in FIG.
Alternatively, the magnetoresistive sensor having the structure shown in FIG.
The magnetization of the adjacent second magnetic layer 4 is fixed by the antiferromagnetic layer 5 of the above, or the upper and lower antiferromagnetic layers 7 and 13 of FeMn and NiO.
To fix the magnetization of the ferromagnetic metal layers 8 and 12 between them,
Since the structure is such that the magnetization of the magnetic layer 10 between them is free, there is a restriction that the number of Ni-Fe (magnetic layer) / Cu (nonmagnetic metal layer) interfaces that contribute to the giant magnetoresistive effect cannot be increased. However, there is a problem that the size of the MR ratio is restricted. Further, FeMn used as a constituent material of the antiferromagnetic layers 5 and 7 has a disadvantage in terms of corrosion resistance and environment resistance.

【0012】次に、図15と図16に示す構造の磁気抵
抗センサの変形的な構造例として、図17に示すよう
に、ガラス基板15上に、Cuの非磁性層16とCoの
硬質磁性材料層17とCuの非磁性層18とNi-Fe
の軟質磁性材料膜19を複数回繰り返し積層した構造が
知られている。図17に示す構造の磁気抵抗センサは、
硬質磁性材料膜17と軟質磁性材料膜19の保磁力差を
利用し、非磁性層18の厚さを所定の厚さに調整するこ
とで、両磁性層17、19の磁化の向きを平行にあるい
は反平行にすることができ、これにより巨大磁気抵抗効
果を得ることができる。そしてこの構造の磁気抵抗セン
サは、積層数を自由に変更できるので、図15と図16
に示す構造の磁気抵抗センサよりも大きなMR比を得る
ことができる特徴がある。
Next, as a modified structural example of the magnetoresistive sensor having the structure shown in FIGS. 15 and 16, as shown in FIG. 17, a non-magnetic layer 16 of Cu and a hard magnetic layer of Co are formed on a glass substrate 15. Material layer 17, non-magnetic layer 18 of Cu and Ni-Fe
A structure is known in which the soft magnetic material film 19 is repeatedly laminated a plurality of times. The magnetoresistive sensor having the structure shown in FIG.
By using the difference in coercive force between the hard magnetic material film 17 and the soft magnetic material film 19 to adjust the thickness of the non-magnetic layer 18 to a predetermined thickness, the magnetization directions of both magnetic layers 17 and 19 are made parallel. Alternatively, they can be antiparallel to each other, so that a giant magnetoresistive effect can be obtained. In the magnetoresistive sensor having this structure, the number of layers can be freely changed.
There is a feature that a larger MR ratio can be obtained than the magnetoresistive sensor having the structure shown in FIG.

【0013】ところが、図17に示す構造の磁気抵抗セ
ンサは、硬質磁性材料膜17の保磁力が大きい場合はM
R比は大きく出るが、一方で漏れ磁束が多くなり、この
影響によって軟質磁性材料膜19の保磁力も大きくな
り、その結果としてMRセンサとしての感度(単位磁界
あたりの抵抗変化率)が劣化してしまう問題があった。
そこでこの問題を解決するために本発明者らが研究を重
ねた結果、硬質磁性材料膜17の高い保磁力が軟質磁性
材料膜に影響するのは、硬質磁性材料膜19からの漏洩
磁界により軟質磁性材料膜19の異方性分散が大きくな
るためであるとの結論に至った。また、硬質磁性材料膜
17と軟質磁性材料膜19との間で静磁気的な結合が生
じ、軟質磁性材料膜19の磁化反転が硬質磁性材料膜1
7により抑制されるためであるとの結論に至った。
However, in the magnetoresistive sensor having the structure shown in FIG. 17, when the hard magnetic material film 17 has a large coercive force, M
The R ratio is large, but on the other hand, the leakage magnetic flux is large, and the coercive force of the soft magnetic material film 19 is also large due to this influence. There was a problem that caused it.
Therefore, as a result of repeated studies by the present inventors in order to solve this problem, the high coercive force of the hard magnetic material film 17 affects the soft magnetic material film due to the leakage magnetic field from the hard magnetic material film 19 It is concluded that this is because the anisotropic dispersion of the magnetic material film 19 becomes large. Further, magnetostatic coupling occurs between the hard magnetic material film 17 and the soft magnetic material film 19, and the magnetization reversal of the soft magnetic material film 19 is caused by the hard magnetic material film 1.
It was concluded that this is because it was suppressed by 7.

【0014】本発明は前記事情に鑑みてなされたもので
あり、図15あるいは図16に示す従来構造ではできな
かった磁性層の多層膜構造を実現できる積層構造にする
ことにより、高いMR比を得ることができると同時に、
図17に示す従来構造では避けられなかった硬質磁性材
料層の漏洩磁界の問題を解消してMRセンサとしての感
度低下を防止した巨大磁気抵抗材料膜および磁気抵抗材
料膜の磁化の調整方法を提供することを目的とする。
The present invention has been made in view of the above circumstances, and a high MR ratio can be obtained by using a laminated structure capable of realizing a multilayer film structure of magnetic layers which could not be achieved by the conventional structure shown in FIG. 15 or 16. At the same time you can get
PROBLEM TO BE SOLVED: To provide a giant magnetoresistive material film and a method for adjusting the magnetization of the magnetoresistive material film by solving the problem of the stray magnetic field of the hard magnetic material layer which cannot be avoided in the conventional structure shown in FIG. The purpose is to do.

【0015】[0015]

【課題を解決するための手段】請求項1記載の発明は前
記課題を解決するために、磁性材料膜と非磁性材料膜を
複数積層した巨大磁気抵抗材料膜であって非磁性膜を介
してその両側に設けられる磁性材料膜のうち、一方の磁
性材料膜を硬質磁性材料膜から構成し、他方の磁性材料
膜を軟質磁性材料膜から構成するとともに、前記非磁性
膜と硬質磁性材料膜との間に高飽和磁束密度を有する第
3の強磁性材料膜を設けてなるものである。
In order to solve the above-mentioned problems, the invention according to claim 1 is a giant magnetoresistive material film in which a plurality of magnetic material films and non-magnetic material films are laminated, with a non-magnetic film interposed therebetween. Of the magnetic material films provided on both sides thereof, one magnetic material film is composed of a hard magnetic material film and the other magnetic material film is composed of a soft magnetic material film, and the non-magnetic film and the hard magnetic material film are formed. A third ferromagnetic material film having a high saturation magnetic flux density is provided between the two.

【0016】請求項2記載の発明は前記課題を解決する
ために、基板上に、硬質磁性材料膜と第3の強磁性材料
膜と非磁性膜と軟質磁性材料膜とを積層したユニット積
層膜を、複数、非磁性膜あるいは非磁性膜と軟質磁性材
料膜を介して繰り返し積層してなるものである。
In order to solve the above-mentioned problems, the invention of claim 2 is a unit laminated film in which a hard magnetic material film, a third ferromagnetic material film, a non-magnetic film and a soft magnetic material film are laminated on a substrate. Is repeatedly laminated with a plurality of non-magnetic films or non-magnetic films and a soft magnetic material film interposed therebetween.

【0017】請求項3記載の発明においては、前記発明
における第3の強磁性材料膜としてCo、Co-Fe合
金、Co-Fe-Ni合金、Ni-Fe合金のうちから選
択されるいずれかからなるものを用いることが好まし
く、請求項4記載の発明においては、硬質磁性材料膜の
構成材料として、Co-Pt合金、Co-Cr合金のいず
れかを主成分とし、微量の添加元素を含む合金を用いる
ことが好ましく、請求項5記載の発明においては、軟質
磁性材料膜の構成材料として、Ni-Fe合金、Ni-F
e-Co合金、Co系アモルファス合金のいずれかから
なるものを用いることが好ましい。更に請求項6記載の
発明においては、前記の発明の硬質磁性材料膜の厚さに
対し、第3の強磁性材料膜の厚さを比率で0.5〜2の
範囲とすることが好ましい。
In a third aspect of the invention, the third ferromagnetic material film in the invention is selected from Co, Co-Fe alloy, Co-Fe-Ni alloy and Ni-Fe alloy. In the invention according to claim 4, as the constituent material of the hard magnetic material film, an alloy containing a Co--Pt alloy or a Co--Cr alloy as a main component and a trace amount of an additional element is used. In the invention according to claim 5, as a constituent material of the soft magnetic material film, a Ni-Fe alloy or a Ni-F alloy is used.
It is preferable to use an e-Co alloy or a Co-based amorphous alloy. Further, in the invention according to claim 6, it is preferable that the thickness of the third ferromagnetic material film is in the range of 0.5 to 2 with respect to the thickness of the hard magnetic material film of the above invention.

【0018】次に請求項7記載の発明は、請求項1〜6
のいずれかに記載の軟質磁性材料膜と非磁性膜との間
に、第4の強磁性材料膜を介在させたものである。更に
請求項8記載の発明は、請求項1〜7のいずれかに記載
の第3の強磁性材料膜と硬質磁性材料膜との間に、厚さ
30オングストローム以下の非磁性薄膜を介在させたも
のである。
Next, the invention according to claim 7 is defined by claims 1 to 6.
The fourth ferromagnetic material film is interposed between the soft magnetic material film and the non-magnetic film described in any one of the above. Further, in the invention according to claim 8, a nonmagnetic thin film having a thickness of 30 Å or less is interposed between the third ferromagnetic material film according to any one of claims 1 to 7 and the hard magnetic material film. It is a thing.

【0019】また、前記第4の強磁性材料膜を有するも
の、あるいは、厚さ30オングストローム以下の非磁性
膜を有するものを、非磁性膜または非磁性膜と第3の強
磁性材料膜を介して繰り返し積層してなる構成とするこ
ともできる。
Further, a material having the fourth ferromagnetic material film or a material having a non-magnetic film having a thickness of 30 angstroms or less is formed through the non-magnetic film or the non-magnetic film and the third ferromagnetic material film. It is also possible to adopt a structure in which the layers are repeatedly laminated.

【0020】次に本発明方法は、磁性材料膜と非磁性膜
を複数積層し、非磁性膜を介してその両側に設けられる
磁性材料膜のうち、一方の磁性材料膜を硬質磁性材料膜
から構成し、他方の磁性材料膜を軟質磁性材料膜から構
成するとともに非磁性膜の厚さを調整して硬質磁性材料
膜と軟質磁性材料膜の磁化の向きを相対的に自由にする
一方、前記非磁性膜と硬質磁性材料膜との間に高飽和磁
束密度の第3の強磁性材料膜を設けて硬質磁性材料膜か
らの漏洩磁界を遮り、積層膜全体の保磁力を低くするも
のである。
Next, in the method of the present invention, a plurality of magnetic material films and non-magnetic films are laminated, and one of the magnetic material films provided on both sides of the non-magnetic film via the hard magnetic material film And the other magnetic material film is composed of a soft magnetic material film and the thickness of the non-magnetic film is adjusted to make the directions of magnetization of the hard magnetic material film and the soft magnetic material film relatively free, A third ferromagnetic material film having a high saturation magnetic flux density is provided between the non-magnetic film and the hard magnetic material film to block the leakage magnetic field from the hard magnetic material film and lower the coercive force of the entire laminated film. .

【0021】[0021]

【作用】本発明においては、硬質磁性材料膜と非磁性膜
との間に第3の強磁性層が設けられているので、硬質磁
性材料膜からの漏洩磁界が低減される。よって第3の強
磁性材料膜と非磁性膜を介して設けられた軟質磁性材料
膜は、漏洩磁界の影響を受け難くなる。よって軟質磁性
材料膜の磁化反転が硬質磁性材料膜により抑制されるこ
とがなくなり、軟質磁性材料膜の磁化反転が容易になさ
れるようになる。
In the present invention, since the third ferromagnetic layer is provided between the hard magnetic material film and the nonmagnetic film, the leakage magnetic field from the hard magnetic material film is reduced. Therefore, the soft magnetic material film provided via the third ferromagnetic material film and the nonmagnetic film is less likely to be affected by the leakage magnetic field. Therefore, the magnetization reversal of the soft magnetic material film is not suppressed by the hard magnetic material film, and the magnetization reversal of the soft magnetic material film is facilitated.

【0022】前記の構造において、より好ましいMR特
性を発揮させるためには、第3の強磁性材料膜として、
Co、Co-Fe合金、Co-Fe-Ni合金、Ni-Fe
合金のうちから選択されるいずれかからなるものを用い
ることが好ましい。また、同様な理由から、硬質磁性材
料膜の構成材料として、Co-Pt合金、Co-Cr合金
のいずれかを主成分とし、微量の添加元素を含む合金を
用いることが好ましい。更に同様な理由から、軟質磁性
材料膜の構成材料として、Ni-Fe合金、Ni-Fe-
Co合金、Co系アモルファス合金のいずれかからなる
ものを用いることが好ましい。
In order to exert more preferable MR characteristics in the above structure, the third ferromagnetic material film is
Co, Co-Fe alloy, Co-Fe-Ni alloy, Ni-Fe
It is preferable to use one selected from alloys. For the same reason, it is preferable to use, as a constituent material of the hard magnetic material film, an alloy containing either a Co—Pt alloy or a Co—Cr alloy as a main component and a trace amount of an additional element. For the same reason, as a constituent material of the soft magnetic material film, Ni-Fe alloy, Ni-Fe-
It is preferable to use an alloy made of either a Co alloy or a Co-based amorphous alloy.

【0023】次に、硬質磁性材料膜に接触させて第3の
強磁性材料膜を設けると、第3の強磁性層も硬質磁性材
料膜からの影響により硬質磁性材料膜としての性質を若
干帯びてくるおそれがあるので、この問題を解決するた
めに、硬質磁性材料膜と第3の強磁性材料膜との間に3
0オングストローム以下の厚さの非磁性薄膜を更に設け
ることで、硬質磁性材料膜の影響を抑える。ここで非磁
性薄膜を厚さ30オングストローム以下とするのは、硬
質磁性材料膜と第3の強磁性材料膜との間に、両者の磁
化を平行に揃えようとする静磁気、あるいは間接交換相
互作用を生じさせるためである。
Next, when the third ferromagnetic material film is provided in contact with the hard magnetic material film, the third ferromagnetic layer also has a property as a hard magnetic material film due to the influence of the hard magnetic material film. Therefore, in order to solve this problem, in order to solve this problem, it is necessary to add a layer between the hard magnetic material film and the third ferromagnetic material film.
The influence of the hard magnetic material film is suppressed by further providing a nonmagnetic thin film having a thickness of 0 angstrom or less. Here, the nonmagnetic thin film having a thickness of 30 angstroms or less means that between the hard magnetic material film and the third ferromagnetic material film, the magnetostatic or the indirect exchange mutual magnetism for trying to align the magnetizations of the two in parallel. This is because it causes an action.

【0024】以下に本発明について更に詳細に説明す
る。図1は本発明に係る巨大磁気抵抗材料膜の第1の構
造例を示すもので、この例の巨大磁気抵抗効材料膜D
は、非磁性体の基板20上に、硬質磁性材料膜21と第
3の強磁性材料膜22と非磁性膜23と軟質磁性材料膜
24とが順次積層された構造にされている。
The present invention will be described in more detail below. FIG. 1 shows a first structural example of a giant magnetoresistive material film according to the present invention. The giant magnetoresistive material film D of this example is shown.
Has a structure in which a hard magnetic material film 21, a third ferromagnetic material film 22, a nonmagnetic film 23, and a soft magnetic material film 24 are sequentially laminated on a nonmagnetic substrate 20.

【0025】前記基板20は、ガラス、Si、Al
23、TiC、SiC、Al23とTiCとの燒結体、
Znフェライトなどに代表される非磁性材料から構成さ
れる。なお、基板20の上面には、基板上面の凹凸やう
ねりを除去する目的であるいはその上に積層される膜の
結晶整合性を良好にするなどの目的で被覆層やバッファ
層を適宜設けても良い。
The substrate 20 is made of glass, Si, Al.
2 O 3 , TiC, SiC, a sintered body of Al 2 O 3 and TiC,
It is composed of a non-magnetic material such as Zn ferrite. A coating layer or a buffer layer may be appropriately provided on the upper surface of the substrate 20 for the purpose of removing irregularities or waviness on the upper surface of the substrate or for improving the crystal matching of a film stacked thereover. good.

【0026】前記硬質磁性材料膜21は、Co-Pt合
金、Co-Cr合金のいずれかを主成分とし、微量の添
加元素を含む合金からなり、数10オングストローム程
度の厚さに形成されている。前記第3の強磁性材料膜2
2は、Co、Co-Fe合金、Co-Fe-Ni合金、N
i-Fe合金のうちから選択されるいずれかからなり、
前記硬質磁性材料膜21の厚さの0.5〜2倍の範囲の
厚さ、具体的には10〜200オングストロームの厚さ
に形成されている。
The hard magnetic material film 21 is made of an alloy containing a Co--Pt alloy or a Co--Cr alloy as a main component and a slight amount of an additive element, and is formed to a thickness of about several tens of angstroms. . The third ferromagnetic material film 2
2 is Co, Co-Fe alloy, Co-Fe-Ni alloy, N
consisting of one selected from i-Fe alloys,
The thickness of the hard magnetic material film 21 is in the range of 0.5 to 2 times, specifically 10 to 200 angstroms.

【0027】前記非磁性膜23は、Cr、Au、Ag、
Cuなどに代表される非磁性体からなり、20〜40オ
ングストロームの厚さに形成されている。ここで非磁性
膜23の厚さが20オングストロームより薄いと、硬質
磁性材料膜21と軟質磁性材料膜24との間で磁気的結
合が起こりやすくなる。また、非磁性材料膜23が40
オングストロームより厚いと磁気抵抗効果を生じる要因
である非磁性材料膜と磁性材料膜の界面を通過する伝導
電子の効率が低下し、即ち、電流の分流効果により磁気
抵抗効果が低減されてしまうので好ましくない。
The non-magnetic film 23 is made of Cr, Au, Ag,
It is made of a non-magnetic material such as Cu and has a thickness of 20 to 40 angstroms. Here, if the thickness of the non-magnetic film 23 is less than 20 angstrom, magnetic coupling is likely to occur between the hard magnetic material film 21 and the soft magnetic material film 24. In addition, the non-magnetic material film 23 is 40
If the thickness is thicker than angstrom, the efficiency of conduction electrons passing through the interface between the non-magnetic material film and the magnetic material film, which is a factor that causes the magnetoresistive effect, decreases, that is, the magnetoresistive effect is reduced by the current shunting effect, which is preferable. Absent.

【0028】前記軟質磁性材料膜24は、Ni-Fe合
金、Ni-Fe-Co合金、Co系アモルファス合金のい
ずれかからなり、数10オングストローム程度の厚さに
形成されている。ここで用いられるCo系アモルファス
合金としてより具体的には、Co-(Zr,Hf)-(N
b,Ta)系などに代表される軟磁気特性に優れたもの
である。
The soft magnetic material film 24 is made of any one of a Ni--Fe alloy, a Ni--Fe--Co alloy, and a Co-based amorphous alloy, and is formed to a thickness of about several tens of angstroms. More specifically, the Co-based amorphous alloy used here is Co- (Zr, Hf)-(N
(b, Ta) system and the like, which are excellent in soft magnetic characteristics.

【0029】図1に示す構造の巨大磁気抵抗材料膜Dに
あっては、非磁性膜23を前述の厚さに形成することで
その周囲の各磁性材料膜の磁化が各々独立して挙動でき
るようにされている。従って、軟質磁性材料膜24の磁
化と硬質磁性材料膜21の磁化が外部磁界に応じて各々
独立に挙動し、相互の磁化の向きが平行状態と反平行状
態との間で容易に変化するので、巨大磁気抵抗効果によ
り大きな抵抗変化率(MR比)が得られる。そして更に
前記の構造においては、硬質磁性材料膜21の上に第3
の強磁性材料膜22を設けているので、硬質磁性材料膜
21からの漏洩磁界を遮ることができ、これにより巨大
磁気抵抗材料膜Dの全体における漏洩磁界を少なくする
ことができる。従って、軟質磁性材料膜24の磁化が小
さな外部磁界に応じて硬質磁性材料膜21の磁化とは各
々独立に挙動し、微小磁界でも相互の磁化の向きが平行
状態と反平行状態との間で容易に変化する。
In the giant magnetoresistive material film D having the structure shown in FIG. 1, by forming the nonmagnetic film 23 to the above-mentioned thickness, the magnetization of each magnetic material film around it can behave independently. Is being done. Therefore, the magnetization of the soft magnetic material film 24 and the magnetization of the hard magnetic material film 21 behave independently depending on the external magnetic field, and the mutual magnetization directions easily change between the parallel state and the antiparallel state. A large resistance change rate (MR ratio) can be obtained by the giant magnetoresistive effect. Further, in the above structure, a third magnetic layer is formed on the hard magnetic material film 21.
Since the ferromagnetic material film 22 is provided, the leakage magnetic field from the hard magnetic material film 21 can be shielded, and thus the leakage magnetic field in the entire giant magnetoresistive material film D can be reduced. Therefore, the magnetization of the soft magnetic material film 24 behaves independently of the magnetization of the hard magnetic material film 21 in response to a small external magnetic field, and even in a small magnetic field, the mutual magnetization directions are between the parallel state and the antiparallel state. Change easily.

【0030】図2は本発明に係る巨大磁気抵抗材料膜の
第2の構造例を示すもので、この例の巨大磁気抵抗効材
料膜Eは、非磁性体の基板20上に、硬質磁性材料膜2
1と第3の強磁性材料膜22と非磁性膜23と第4の強
磁性材料膜25と軟質磁性材料膜24とが順次積層され
た構造にされている。この例の構造において、非磁性体
の基板20と硬質磁性材料膜21と第3の強磁性材料膜
22と非磁性膜23と軟質磁性材料膜24は、先の例で
用いられいているものと同等のものである。この例で
は、第4の強磁性材料膜25を設けた点に特徴を有する
が、この第4の強磁性材料膜25は、前記第3の強磁性
材料膜22よりも薄く形成されており、この第4の強磁
性材料膜25を設けることで抵抗変化率が先の構造のも
のより良好になる。即ち、軟質磁性材料には保磁力の小
さなNiFe合金を使用し、非磁性材料膜と界面にの
み、抵抗変化率の大きな(ただし、保磁力はやや大き
い)Coを用いることで、軟磁気特性(ソフト性)と大
きな抵抗変化率の両面で優れた特性を得ることができ
る。
FIG. 2 shows a second structural example of the giant magnetoresistive material film according to the present invention. The giant magnetoresistive material film E of this example is a hard magnetic material on a nonmagnetic substrate 20. Membrane 2
The first, third ferromagnetic material film 22, non-magnetic film 23, fourth ferromagnetic material film 25, and soft magnetic material film 24 are sequentially laminated. In the structure of this example, the non-magnetic substrate 20, the hard magnetic material film 21, the third ferromagnetic material film 22, the non-magnetic film 23, and the soft magnetic material film 24 are those used in the previous example. Is equivalent. This example is characterized in that the fourth ferromagnetic material film 25 is provided, but the fourth ferromagnetic material film 25 is formed thinner than the third ferromagnetic material film 22. By providing the fourth ferromagnetic material film 25, the rate of resistance change becomes better than that of the previous structure. That is, a NiFe alloy having a small coercive force is used as the soft magnetic material, and Co having a large resistance change rate (however, the coercive force is slightly large) is used only at the interface with the non-magnetic material film to obtain a soft magnetic property ( It is possible to obtain excellent characteristics in terms of both softness) and a large rate of change in resistance.

【0031】図3は本発明に係る巨大磁気抵抗材料膜の
第3の構造例を示すもので、この例の巨大磁気抵抗効材
料膜Fは、非磁性体の基板20上に、硬質磁性材料膜2
1と第3の強磁性材料膜22と非磁性膜23と軟質磁性
材料膜24とからなる積層ユニットU1が形成され、こ
の積層ユニットU1が、複数、非磁性膜26と第3の強
磁性材料膜22を介して繰り返し積層されてなる構造に
されている。
FIG. 3 shows a third structural example of the giant magnetoresistive material film according to the present invention. The giant magnetoresistive material film F of this example is a hard magnetic material on a nonmagnetic substrate 20. Membrane 2
1 and laminate unit U 1 consisting of the third ferromagnetic material layer 22 and the nonmagnetic layer 23 and the soft magnetic material film 24. is formed, the laminate unit U 1 has a plurality, and the non-magnetic layer 26 a third strong The magnetic material film 22 is repeatedly laminated to form a structure.

【0032】図3に示す構造においても先に説明した構
造と同等の巨大磁気抵抗効果を得ることができる。その
上、この図3に示す構造であると、巨大磁気抵抗効果を
示す積層ユニットU1が複数積層されているので、先の
例の構造よりも大きな磁気抵抗効果を得ることができ
る。
Even in the structure shown in FIG. 3, a giant magnetoresistive effect equivalent to that of the structure described above can be obtained. Moreover, in the structure shown in FIG. 3, since a plurality of laminated units U 1 exhibiting a giant magnetoresistive effect are laminated, a larger magnetoresistive effect can be obtained than in the structure of the previous example.

【0033】なお、この例の構造において、積層ユニッ
トU1を非磁性膜26と第3の強磁性膜22を介して積
層するのは、上の積層ユニットU1の最下層に位置する
硬質磁性材料膜21が、その下の積層ユニットU1の最
上層の軟質磁性材料膜24に磁気的な悪影響を与えない
ようにするためである。従って積層ユニットU1の境界
部分に設ける非磁性層26の厚さは、20〜40オング
ストローム、第3の強磁性層22の厚さは前記硬質磁性
材料膜21の厚さの0.5〜2倍の範囲とすることが好
ましい。
In the structure of this example, the laminated unit U 1 is laminated with the non-magnetic film 26 and the third ferromagnetic film 22 on the hard magnetic layer located at the lowermost layer of the upper laminated unit U 1. This is to prevent the material film 21 from exerting a magnetic adverse effect on the soft magnetic material film 24 of the uppermost layer of the laminated unit U 1 therebelow. Therefore, the thickness of the nonmagnetic layer 26 provided at the boundary of the laminated unit U 1 is 20 to 40 Å, and the thickness of the third ferromagnetic layer 22 is 0.5 to 2 that of the hard magnetic material film 21. The range is preferably doubled.

【0034】図4は本発明に係る巨大磁気抵抗材料膜の
第4の構造例を示すもので、この例の巨大磁気抵抗効材
料膜Gは、非磁性体の基板20上に、硬質磁性材料膜2
1と非磁性膜29と第3の強磁性材料膜22と非磁性膜
23と軟質磁性材料膜24とが順次積層された構造にさ
れている。
FIG. 4 shows a fourth structural example of the giant magnetoresistive material film according to the present invention. The giant magnetoresistive material film G of this example is a hard magnetic material on a nonmagnetic substrate 20. Membrane 2
1, the non-magnetic film 29, the third ferromagnetic material film 22, the non-magnetic film 23, and the soft magnetic material film 24 are sequentially laminated.

【0035】この例の構造において、非磁性体の基板2
0と硬質磁性材料膜21と第3の強磁性材料膜22と非
磁性膜23と軟質磁性材料膜24は、先の例で用いられ
いているものと同等のものである。この例では、非磁性
膜29を設けた点に特徴を有するが、この非磁性膜29
は、先の非磁性層23よりも薄く形成されており、その
厚さを5〜20オングストローム程度とすることが好ま
しい。
In the structure of this example, the non-magnetic substrate 2 is used.
0, the hard magnetic material film 21, the third ferromagnetic material film 22, the non-magnetic film 23, and the soft magnetic material film 24 are the same as those used in the previous example. This example is characterized in that the non-magnetic film 29 is provided, but this non-magnetic film 29 is provided.
Is formed thinner than the nonmagnetic layer 23, and its thickness is preferably about 5 to 20 angstroms.

【0036】この非磁性膜29を設けることで硬質磁性
材料膜21の影響が第3の強磁性材料膜22のみに与え
られ、より完全に軟質磁性材料膜24への影響をなくす
る効果がある。
By providing this non-magnetic film 29, the effect of the hard magnetic material film 21 is given only to the third ferromagnetic material film 22, and the effect on the soft magnetic material film 24 can be completely eliminated. .

【0037】図5は本発明に係る巨大磁気抵抗材料膜の
第5の構造例を示すもので、この例の構造は、図2に示
す構造の積層膜を積層ユニットU2としてこれを第4の
強磁性材料膜25と非磁性膜23と第3の強磁性材料膜
22を介して複数繰り返し積層した構造である。このよ
うに繰り返し積層構造とすることでMR比をより大きく
することができる効果がある。
[0037] Figure 5 shows a fifth structural example of the giant magnetoresistive material film according to the present invention, the structure of this example, this fourth laminated film of the structure shown in FIG. 2 as a laminate unit U 2 In this structure, the ferromagnetic material film 25, the nonmagnetic film 23, and the third ferromagnetic material film 22 are repeatedly laminated. The repeated lamination structure has the effect of increasing the MR ratio.

【0038】図6は本発明に係る巨大磁気抵抗材料膜の
第5の構造例を示すもので、この例の構造は、図4に示
す構造の積層膜を積層ユニットU3としてこれを非磁性
膜23と第3の強磁性材料膜22と非磁性膜29を介し
て複数繰り返し積層した構造である。このように繰り返
し積層構造とすることでMR比をより大きくすることが
できる効果がある。
[0038] Figure 6 shows a fifth structural example of the giant magnetoresistive material film according to the present invention, the structure of this example, the non-magnetic so a laminated film having the structure shown in FIG. 4 as a laminate unit U 3 This is a structure in which a plurality of layers are repeatedly stacked with the film 23, the third ferromagnetic material film 22, and the nonmagnetic film 29 interposed therebetween. The repeated lamination structure has the effect of increasing the MR ratio.

【0039】[0039]

【実施例】以下、図面を参照して本発明の実施例につい
て説明する。高周波マグネトロンスパッタ装置を用い
て、シリコンウエハ基板の(100)面上に、あるいは
ガラスからなる基板上に、厚さ50オングストロームの
Co-Pt膜(硬質磁性材料膜)と、厚さ25〜100
オングストロームのNi-Fe合金膜(第3の強磁性材
料膜)と、厚さ25オングストロームのCu膜(非磁性
膜)と、厚さ50オングストロームのNi-Fe合金膜
(軟質磁性材料膜)を順次積層し、図1に示すものと同
等の構造の第1の試料を得た。スパッタ条件は、Co-
Pt膜とNi-Fe合金膜については200W、Cu膜
については30Wであって、いずれも、Arガス圧力を
1mTorrとした。
Embodiments of the present invention will be described below with reference to the drawings. Using a high frequency magnetron sputtering device, a Co-Pt film (hard magnetic material film) having a thickness of 50 angstrom and a thickness of 25 to 100 is formed on a (100) surface of a silicon wafer substrate or a substrate made of glass.
An Angstrom Ni-Fe alloy film (third ferromagnetic material film), a 25 Angstrom Cu film (non-magnetic film), and a 50 Angstrom Ni-Fe alloy film (soft magnetic material film) are sequentially formed. By laminating, a first sample having a structure similar to that shown in FIG. 1 was obtained. The sputtering conditions are Co-
The Pt film and the Ni—Fe alloy film were 200 W, and the Cu film was 30 W, and the Ar gas pressure was 1 mTorr in both cases.

【0040】また、比較のために、前記第1の試料から
Ni-Fe合金膜を省略した構造の第2の試料を作成し
た。更に、前記第1の試料に用いたNi-Fe合金膜の
代わりに、厚さ50オングストロームのCo膜を積層し
た第3の試料と、前記第1の試料のNi-Fe合金膜と
Cu膜との間に厚さ5オングストロームのCo膜を付加
した第4の試料を作成した。
For comparison, a second sample having a structure in which the Ni—Fe alloy film was omitted from the first sample was prepared. Further, instead of the Ni—Fe alloy film used in the first sample, a third sample in which a Co film having a thickness of 50 angstrom is laminated, a Ni—Fe alloy film and a Cu film in the first sample A fourth sample in which a Co film having a thickness of 5 angstrom was added between the two was prepared.

【0041】次に、前記第1の試料の上に厚さ25オン
グストロームのCu層と厚さ50オングストロームのN
i-Fe合金膜を積層し、その上に更に前記第1の試料
の積層膜と同等の積層膜を前記Cu層とNi-Fe層を
介して2回繰り返し積層した構造の第5の試料と、3回
繰り返し積層した第6の試料を作成した。次に、前記第
1の試料のCo-Pt膜とNi-Fe膜との間に、厚さ1
0オングストロームのTa膜を付加した第7の試料と、
前記第3の試料のCo-Pt膜とCo膜との間に厚さ1
0オングストロームのTa膜を付加した第8の試料を作
成した。以上の試料を成膜後、5kOe以上の磁界によ
り着磁し、その後に各特性を測定して評価した。
Next, a Cu layer having a thickness of 25 Å and an N layer having a thickness of 50 Å were formed on the first sample.
A fifth sample having a structure in which an i-Fe alloy film is laminated, and a laminated film equivalent to the laminated film of the first sample is repeatedly laminated twice through the Cu layer and the Ni-Fe layer on the i-Fe alloy film. A sixth sample was prepared which was repeatedly laminated three times. Next, between the Co—Pt film and the Ni—Fe film of the first sample, the thickness 1
A seventh sample with a 0 angstrom Ta film added,
The thickness between the Co—Pt film and the Co film of the third sample is 1
An eighth sample was prepared with the addition of a 0 Å Ta film. After the above samples were formed into a film, they were magnetized with a magnetic field of 5 kOe or more, and thereafter, each characteristic was measured and evaluated.

【0042】図7に前記第1の試料の磁化曲線(MHカ
ーブ)を図8に同試料のMR曲線を示す。また、図9に
前記第2の試料の磁化曲線を示し、図10に前記第2の
試料のMR曲線を示す。更に、以下の表1に前記第1の
試料〜第8の試料のΔR/RとΔHと(ΔR/R)/Δ
Hの各々の特性の測定値を示す。なおここで、ΔHは、
巨大磁気抵抗材料膜において、図8に示すような磁気抵
抗効果曲線を測定した場合に、一方の曲線がほぼリニア
に立ち上がる部分の磁界の範囲を示す。
FIG. 7 shows the magnetization curve (MH curve) of the first sample, and FIG. 8 shows the MR curve of the same sample. 9 shows the magnetization curve of the second sample, and FIG. 10 shows the MR curve of the second sample. Further, Table 1 below shows ΔR / R, ΔH, and (ΔR / R) / Δ of the first to eighth samples.
The measured value of each characteristic of H is shown. Here, ΔH is
In the giant magnetoresistive material film, when the magnetoresistive effect curve as shown in FIG. 8 is measured, the range of the magnetic field of the part where one curve rises almost linearly is shown.

【0043】図7および図8に示す特性と、図9および
図10に示す特性の比較から明らかなように、第1の試
料は第2の試料に比べてCo-Pt合金膜(硬質磁性材
料膜)の漏洩磁界を抑えることができているために、図
8に示すΔHの値が図10に示すΔHの値よりも小さく
なっている。また、表1に示す数値を比較すると、第1
の試料のΔHは5 Oeであるのに対し、第2の試料の
ΔHは85 Oeを示し、大きな差異がある。従って第
1の試料における構造は、従来構造よりも遥かに小さな
磁界で磁気抵抗が変化するので、微小磁界を検出するた
めの磁気ヘッド用として好適である。また、図7に示す
ように磁化曲線中に段差が見られることから、第1の試
料は硬質磁性材料膜のCo-Pt合金膜と軟質磁性材料
膜のNi-Fe合金膜でそれぞれ磁化の向きが独立に挙
動していることが明らかになった。
As is clear from the comparison between the characteristics shown in FIGS. 7 and 8 and the characteristics shown in FIGS. 9 and 10, the first sample has a Co--Pt alloy film (hard magnetic material) as compared with the second sample. Since the leakage magnetic field of the film) can be suppressed, the value of ΔH shown in FIG. 8 is smaller than the value of ΔH shown in FIG. Also, comparing the values shown in Table 1,
The ΔH of the sample of 5 is 5 Oe, while the ΔH of the second sample is 85 Oe, which is a large difference. Therefore, the structure of the first sample changes the magnetic resistance with a magnetic field much smaller than that of the conventional structure, and is suitable for a magnetic head for detecting a minute magnetic field. Further, since a step is seen in the magnetization curve as shown in FIG. 7, in the first sample, the magnetization directions of the Co—Pt alloy film of the hard magnetic material film and the Ni—Fe alloy film of the soft magnetic material film are different. It was revealed that they behave independently.

【0044】[0044]

【表1】 [Table 1]

【0045】更に、表1に示す結果から明らかなよう
に、比較例の試料である第2の試料のΔHが85 Oe
であるのに対し、本発明に係る第1、第3〜第8の試料
のΔHがいずれも低く、優れた値を示している。従って
本発明に係るいずれの構造を用いても従来例の構造より
も低い磁界で抵抗変化を起こすので、微小磁界で動作が
可能な磁気ヘッド、位置センサ、回転センサ等に適用で
きることが明らかである。また、第3の例と第4の例の
如くCo層を設けることで、ΔHの値を大きくすること
なくΔR/Rの値を大きくすることができた。また、第
5の例と第6の例の如く繰り返し積層構造とすることで
ΔHを小さく維持しながらΔR/Rの値を向上できるこ
とが明らかになった。
Further, as is clear from the results shown in Table 1, the ΔH of the second sample, which is a comparative sample, is 85 Oe.
On the other hand, the ΔH values of the first and third to eighth samples according to the present invention are all low, showing excellent values. Therefore, since any structure according to the present invention causes a resistance change in a magnetic field lower than that of the structure of the conventional example, it is apparent that the structure can be applied to a magnetic head, a position sensor, a rotation sensor or the like that can operate in a minute magnetic field. . Further, by providing the Co layer as in the third and fourth examples, it was possible to increase the value of ΔR / R without increasing the value of ΔH. Further, it has been clarified that the value of ΔR / R can be improved while keeping ΔH small by adopting the repeated laminated structure as in the fifth example and the sixth example.

【0046】次に、前記第1の試料の構造において、第
3の強磁性材料膜として設けるNi-Fe合金膜の厚さ
とΔHの関係を調べた結果を図11に示す。図11に示
す結果から明らかなように、Ni-Fe合金からなる第
3の強磁性材料膜の厚さtが増加するほどΔHは減少す
る傾向を示すが、この厚さtの値が50オングストロー
ムまでは急激にΔHが減少し、それ以上の厚さではΔH
の減少は飽和傾向になる。
Next, in the structure of the first sample, the relationship between the thickness of the Ni—Fe alloy film provided as the third ferromagnetic material film and ΔH is examined, and the result is shown in FIG. As is clear from the results shown in FIG. 11, ΔH tends to decrease as the thickness t of the third ferromagnetic material film made of a Ni—Fe alloy increases, but the value of this thickness t is 50 angstroms. ΔH decreases sharply up to
The decrease will be saturated.

【0047】この実験結果から、第3の強磁性材料膜の
厚さを50オングストローム以上とすることが最も好ま
しいことがわかるが、前記表1に示す従来構造のΔHが
85Oeであることと、第3の強磁性材料膜の厚さが1
0〜50オングストロームの範囲におけるΔH量の減少
割合を考慮すると、第3の強磁性材料膜の厚さを、Co
-Ptの硬質磁性材料膜の厚さの0.5以上とすることが
好ましいと判断できる。
From this experimental result, it is found that it is most preferable to set the thickness of the third ferromagnetic material film to 50 angstroms or more. However, ΔH of the conventional structure shown in Table 1 is 85 Oe, and The thickness of the ferromagnetic material film of 3 is 1
Considering the decrease rate of the ΔH amount in the range of 0 to 50 Å, the thickness of the third ferromagnetic material film is set to Co
It can be judged that it is preferable to set the thickness of the hard magnetic material film of -Pt to 0.5 or more.

【0048】次に、先の場合と同様な条件においてNi
-Fe合金膜の厚さとΔMRの関係を図12に示す。こ
の図から大きなΔMRを得るためには第3の強磁性材料
膜が薄い方が有利であることが明らかである。従って図
11に示す結果も加味し、第3の強磁性材料膜は硬質磁
性材料膜の厚さの0.5〜2倍程度が好ましいことが明
らかになった。
Next, under the same conditions as in the above case, Ni
FIG. 12 shows the relationship between the thickness of the —Fe alloy film and ΔMR. From this figure, it is clear that it is advantageous that the third ferromagnetic material film is thin in order to obtain a large ΔMR. Therefore, taking the results shown in FIG. 11 into consideration, it became clear that the thickness of the third ferromagnetic material film is preferably about 0.5 to 2 times the thickness of the hard magnetic material film.

【0049】次に、先の場合と同様な条件においてNi
-Fe合金膜の膜厚とΔMR/ΔHの値の関係を図13
に示す。この図からNi-Fe合金膜の厚さが50オン
グストロームの近傍でΔMR/ΔHの値がピークを示す
ことがわかる。
Next, under the same conditions as in the above case, Ni
FIG. 13 shows the relationship between the film thickness of the -Fe alloy film and the value of ΔMR / ΔH.
Shown in From this figure, it can be seen that the value of ΔMR / ΔH shows a peak when the thickness of the Ni—Fe alloy film is in the vicinity of 50 Å.

【0050】次に図14は巨大磁気抵抗材料膜について
図7に示すような磁化曲線(MHカーブ)を得た際に、
第4象限における曲線の段部の左端の変極点部分の磁場
の強さをHCSと定義し、MHカーブと横軸との交点部分
の磁界の強さをHCHと定義した場合に、これらHCS
値、およびHCHの値のNi-Fe合金膜に対する膜厚依
存性を測定した結果を示す。この図からも明らかなよう
に、Ni-Fe合金膜の膜厚が大きくなるにつれて、H
CSの値、およびHCHの値のいずれも減少する傾向が明ら
かである。従って先に説明したように、第3の強磁性材
料膜の厚さを、Co-Ptの硬質磁性材料膜の厚さの0.
5〜2倍の範囲とすることが好ましいと判断できる。
Next, FIG. 14 shows the magnetization curve (MH curve) shown in FIG. 7 for the giant magnetoresistive material film.
If the magnetic field strength at the inflection point at the left end of the curve step in the fourth quadrant is defined as H CS, and the magnetic field strength at the intersection of the MH curve and the horizontal axis is defined as H CH , the value of H CS, and shows the results of measuring the film thickness dependence on Ni-Fe alloy film of the values of H CH. As is clear from this figure, as the thickness of the Ni-Fe alloy film increases, H
It is clear that both the CS and H CH values tend to decrease. Therefore, as described above, the thickness of the third ferromagnetic material film is equal to the thickness of the Co--Pt hard magnetic material film of 0.
It can be judged that the range is preferably 5 to 2 times.

【0051】[0051]

【発明の効果】以上説明したように本発明によれば、硬
質磁性材料膜と非磁性膜との間に第3の強磁性層を設け
ているので、硬質磁性材料膜の漏洩磁界を低減できる。
よって第3の強磁性材料膜と非磁性膜を介して設けられ
た軟質磁性材料膜は、漏洩磁界の影響を受け難くなるた
めに、軟質磁性材料膜の磁化反転が硬質磁性材料膜によ
り抑制され難くなり、軟質磁性材料膜の磁化反転が容易
になされるようになる。従って第3の強磁性材料膜を設
けていない従来構造よりも小さな磁界で抵抗変化を生じ
るようになる。このため本発明の構造は、微小磁界を検
出するための磁気ヘッド、磁気センサ、回転センサ用と
して有用な特徴がある。
As described above, according to the present invention, since the third ferromagnetic layer is provided between the hard magnetic material film and the non-magnetic film, the leakage magnetic field of the hard magnetic material film can be reduced. .
Therefore, the soft magnetic material film provided via the third ferromagnetic material film and the non-magnetic film is less susceptible to the influence of the leakage magnetic field, so that the magnetization reversal of the soft magnetic material film is suppressed by the hard magnetic material film. It becomes difficult, and the magnetization reversal of the soft magnetic material film is facilitated. Therefore, the resistance changes with a smaller magnetic field than the conventional structure in which the third ferromagnetic material film is not provided. Therefore, the structure of the present invention has a useful feature for a magnetic head, a magnetic sensor, and a rotation sensor for detecting a minute magnetic field.

【0052】前記の構造において、より好ましいMR特
性を発揮させるためには、第3の強磁性材料膜として、
Co、Co-Fe合金、Co-Fe-Ni合金、Ni-Fe
合金のうちから選択されるいずれかからなるものを用い
ることが好ましい。また、同様な理由から、硬質磁性材
料膜の構成材料として、Co-Pt合金、Co-Cr合金
のいずれかを主成分とし、微量の添加元素を含む合金を
用いることが好ましい。更に同様な理由から、軟質磁性
材料膜の構成材料として、Ni-Fe合金、Ni-Fe-
Co合金、Co系アモルファス合金のいずれかからなる
ものを用いることが好ましい。
In the above structure, in order to exert more preferable MR characteristics, the third ferromagnetic material film is
Co, Co-Fe alloy, Co-Fe-Ni alloy, Ni-Fe
It is preferable to use one selected from alloys. For the same reason, it is preferable to use, as a constituent material of the hard magnetic material film, an alloy containing either a Co—Pt alloy or a Co—Cr alloy as a main component and a trace amount of an additional element. For the same reason, as a constituent material of the soft magnetic material film, Ni-Fe alloy, Ni-Fe-
It is preferable to use an alloy made of either a Co alloy or a Co-based amorphous alloy.

【0053】また、硬質磁性材料膜の厚さに対し、第3
の強磁性材料膜の厚さを0.5〜2倍の厚さにすること
で低い磁界域でも感度良く抵抗が変化する優れた巨大磁
気抵抗材料膜を得ることができる。
The thickness of the hard magnetic material film is
By making the thickness of the ferromagnetic material film of 0.5 to 2 times, it is possible to obtain an excellent giant magnetoresistive material film whose resistance changes sensitively even in a low magnetic field region.

【0054】次に、本発明においては、硬質磁性材料膜
に接触させて第3の強磁性材料膜を設けるが、第3の強
磁性層も硬質磁性材料膜からの影響により硬質磁性材料
膜としての性質を帯びてくるおそれがあるので、硬質磁
性材料膜と第3の強磁性材料膜との間に30オングスト
ローム以下の厚さの非磁性薄膜を更に設ける構造とす
る。この構造により、第3の強磁性材料膜への硬質磁性
材料膜の磁気的影響を抑えることができる。ここで非磁
性薄膜を厚さ30オングストローム以下とすることで、
硬質磁性材料膜と第3の強磁性材料膜との間に、両者の
磁化を平行に揃えようとする静磁気あるいは交換結合相
互作用を生じさせることができる。
Next, in the present invention, the third ferromagnetic material film is provided in contact with the hard magnetic material film, but the third ferromagnetic layer is also formed as a hard magnetic material film due to the influence of the hard magnetic material film. Therefore, a nonmagnetic thin film having a thickness of 30 angstroms or less is further provided between the hard magnetic material film and the third ferromagnetic material film. With this structure, the magnetic influence of the hard magnetic material film on the third ferromagnetic material film can be suppressed. Here, by setting the thickness of the non-magnetic thin film to 30 angstroms or less,
Between the hard magnetic material film and the third ferromagnetic material film, it is possible to generate a magnetostatic or exchange coupling interaction that attempts to align the magnetizations of the two in parallel.

【0055】次に、本発明において、軟質磁性材料膜と
非磁性膜との間に、第4の強磁性材料膜を介在させる構
造とすることができ、第3の強磁性材料膜と硬質磁性材
料膜との間に、厚さ30オングストローム以下の非磁性
薄膜を介在させた構造にすることもできる。これらの構
造により、抵抗変化率を向上でき、また、硬質磁性材料
層の漏洩磁界の影響をより確実に除去できる。
Next, in the present invention, a structure in which the fourth ferromagnetic material film is interposed between the soft magnetic material film and the non-magnetic film can be adopted, and the third ferromagnetic material film and the hard magnetic film can be formed. A structure in which a non-magnetic thin film having a thickness of 30 Å or less is interposed between the material film and the material film can also be used. With these structures, the rate of resistance change can be improved, and the influence of the stray magnetic field of the hard magnetic material layer can be removed more reliably.

【0056】次に、前記の軟質磁性材料膜と非磁性膜と
第3の強磁性材料膜と硬質磁性材料膜を積層したものを
積層ユニットとして、あるいは、前記積層ユニットの軟
質磁性材料膜と非磁性膜との間に第4の強磁性材料膜を
設けた構造を積層ユニットとして、さらには、前記積層
ユニットの硬質磁性材料膜と第3の強磁性材料膜との間
に非磁性膜を設けた構造を積層ユニットとして、非磁性
層または非磁性層と第3の強磁性材料膜とを介して繰り
返し積層することで多層構造の巨大磁気抵抗材料膜を得
ることができる。そしてこのような多層構造の巨大磁気
抵抗材料膜は、巨大磁気抵抗を発生させる機構を奏する
部分が複数含まれているので、単層構造のものよりもよ
り大きな抵抗変化を得ることができ、微小磁界を検出す
る磁気ヘッド用、あるいは、微小磁界センサ用として優
れた巨大磁気抵抗材料膜を得ることができる。
Next, a laminate of the soft magnetic material film, the non-magnetic film, the third ferromagnetic material film and the hard magnetic material film is used as a laminated unit, or the soft magnetic material film of the laminated unit is not laminated with the soft magnetic material film. A structure in which a fourth ferromagnetic material film is provided between the magnetic film and the magnetic film is used as a laminated unit, and further, a non-magnetic film is provided between the hard magnetic material film and the third ferromagnetic material film of the laminated unit. A giant magnetoresistive material film having a multi-layered structure can be obtained by repeatedly stacking the above structure as a laminated unit through a nonmagnetic layer or a nonmagnetic layer and a third ferromagnetic material film. Since such a multi-layered giant magnetoresistive material film includes a plurality of portions that have a mechanism for generating a giant magnetoresistance, it is possible to obtain a larger resistance change than that of a single-layered structure. An excellent giant magnetoresistive material film can be obtained for a magnetic head for detecting a magnetic field or for a minute magnetic field sensor.

【0057】次に、本発明の方法は、非磁性膜を介して
その両側に設けられる磁性材料膜のうち、一方の磁性材
料膜を硬質磁性材料膜から構成し、他方の磁性材料膜を
軟質磁性材料膜から構成するとともに非磁性材料膜の厚
さを調整するので、硬質磁性材料膜の磁化の向きに対す
る軟質磁性材料膜の磁化の向きを相対的に自由にするこ
とができる。また、前記非磁性膜と硬質磁性材料膜との
間に高飽和磁束密度の第3の強磁性材料膜を設けること
で硬質磁性材料膜からの漏洩磁界を遮ることができ、積
層膜全体の保磁力を低くすることができ、低い磁界でも
大きな抵抗変化を生じさせることができる。
Next, according to the method of the present invention, of the magnetic material films provided on both sides of the non-magnetic film, one magnetic material film is composed of a hard magnetic material film and the other magnetic material film is made of a soft magnetic material film. Since the magnetic material film is used and the thickness of the non-magnetic material film is adjusted, the direction of magnetization of the soft magnetic material film can be made relatively free relative to the direction of magnetization of the hard magnetic material film. Further, by providing a third ferromagnetic material film having a high saturation magnetic flux density between the non-magnetic film and the hard magnetic material film, it is possible to block the leakage magnetic field from the hard magnetic material film, and to protect the entire laminated film. The magnetic force can be reduced, and a large resistance change can be generated even in a low magnetic field.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る巨大磁気抵抗材料膜の第1の構造
例を示す断面図である。
FIG. 1 is a cross-sectional view showing a first structural example of a giant magnetoresistive material film according to the present invention.

【図2】本発明に係る巨大磁気抵抗材料膜の第2の構造
例を示す断面図である。
FIG. 2 is a cross-sectional view showing a second structural example of the giant magnetoresistive material film according to the present invention.

【図3】本発明に係る巨大磁気抵抗材料膜の第3の構造
例を示す断面図である。
FIG. 3 is a cross-sectional view showing a third structural example of the giant magnetoresistive material film according to the present invention.

【図4】本発明に係る巨大磁気抵抗材料膜の第4の構造
例を示す断面図である。
FIG. 4 is a sectional view showing a fourth structural example of a giant magnetoresistive material film according to the present invention.

【図5】本発明に係る巨大磁気抵抗材料膜の第5の構造
例を示す断面図である。
FIG. 5 is a sectional view showing a fifth structural example of a giant magnetoresistive material film according to the present invention.

【図6】本発明に係る巨大磁気抵抗材料膜の第6の構造
例を示す断面図である。
FIG. 6 is a sectional view showing a sixth structural example of a giant magnetoresistive material film according to the present invention.

【図7】実施例で製造された第1の試料の磁化曲線を示
す図である。
FIG. 7 is a diagram showing a magnetization curve of a first sample manufactured in an example.

【図8】同第1の試料のMR曲線を示す図である。FIG. 8 is a diagram showing an MR curve of the first sample.

【図9】比較例として製造された第2の試料の磁化曲線
を示す図である。
FIG. 9 is a diagram showing a magnetization curve of a second sample manufactured as a comparative example.

【図10】同第2の試料のMR曲線を示す図である。FIG. 10 is a diagram showing an MR curve of the second sample.

【図11】第3の強磁性材料膜の膜厚とΔHの関係を示
す図である。
FIG. 11 is a diagram showing the relationship between the film thickness of a third ferromagnetic material film and ΔH.

【図12】第3の強磁性材料膜の膜厚とΔMRの関係を
示す図である。
FIG. 12 is a diagram showing the relationship between the film thickness of a third ferromagnetic material film and ΔMR.

【図13】第3の強磁性材料膜の膜厚とΔMR/ΔHの
関係を示す図である。
FIG. 13 is a diagram showing the relationship between the film thickness of a third ferromagnetic material film and ΔMR / ΔH.

【図14】第3の強磁性材料膜の膜厚とHCSとHCHの関
係を示す図である。
FIG. 14 is a diagram showing a relationship between a film thickness of a third ferromagnetic material film and H CS and H CH .

【図15】従来の磁気抵抗効果素子用多層膜の第1の例
を示す分解図である。
FIG. 15 is an exploded view showing a first example of a conventional multilayer film for a magnetoresistive effect element.

【図16】従来の磁気抵抗効果素子用多層膜の第2の例
を示す断面図である。
FIG. 16 is a sectional view showing a second example of a conventional multilayer film for a magnetoresistive effect element.

【図17】従来の磁気抵抗効果素子用多層膜の第3の例
を示す断面図である。
FIG. 17 is a sectional view showing a third example of a conventional multilayer film for a magnetoresistive effect element.

【符号の説明】[Explanation of symbols]

20 基板 21 硬質磁性材料膜 22 第3の強磁性材料膜 23 非磁性膜 24 軟質磁性材料膜 25 第4の強磁性材料膜 26 非磁性膜 29 非磁性層 U1、U2、U3 積層ユニット 20 substrate 21 hard magnetic material film 22 third ferromagnetic material film 23 non-magnetic film 24 soft magnetic material film 25 fourth ferromagnetic material film 26 non-magnetic film 29 non-magnetic layer U1, U2, U3 laminated unit

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 磁性材料膜と非磁性膜を複数積層した巨
大磁気抵抗材料膜であって非磁性膜を介してその両側に
設けられる磁性材料膜のうち、一方の磁性材料膜を硬質
磁性材料膜から構成し、他方の磁性材料膜を軟質磁性材
料膜から構成するとともに、前記非磁性膜と硬質磁性材
料膜との間に高飽和磁束密度を有する第3の強磁性材料
膜を設けてなることを特徴とする巨大磁気抵抗材料膜。
1. A giant magnetoresistive material film in which a plurality of magnetic material films and nonmagnetic films are laminated, and one of the magnetic material films provided on both sides of the nonmagnetic film is a hard magnetic material. A magnetic material film, the other magnetic material film is composed of a soft magnetic material film, and a third ferromagnetic material film having a high saturation magnetic flux density is provided between the non-magnetic film and the hard magnetic material film. A giant magnetoresistive material film characterized by the above.
【請求項2】 基板上に、硬質磁性材料膜と第3の強磁
性材料膜と非磁性膜と軟質磁性材料膜とが積層されたユ
ニット積層膜が、複数、非磁性膜あるいは非磁性膜と軟
質磁性材料膜を介して繰り返し積層されてなることを特
徴とする巨大磁気抵抗材料膜。
2. A unit laminated film in which a hard magnetic material film, a third ferromagnetic material film, a non-magnetic film and a soft magnetic material film are laminated on a substrate, a plurality of non-magnetic films or non-magnetic films. A giant magnetoresistive material film characterized by being repeatedly laminated through a soft magnetic material film.
【請求項3】 前記第3の強磁性材料膜として、Co、
Co-Fe合金、Co-Fe-Ni合金、Ni-Fe合金の
うちから選択されるいずれかからなるものを用いたこと
を特徴とする請求項1または2記載の巨大磁気抵抗材料
膜。
3. As the third ferromagnetic material film, Co,
The giant magnetoresistive material film according to claim 1 or 2, wherein an alloy selected from a Co-Fe alloy, a Co-Fe-Ni alloy, and a Ni-Fe alloy is used.
【請求項4】 前記の硬質磁性材料膜の構成材料とし
て、Co-Pt合金、Co-Cr合金のいずれかを主成分
とし、微量の添加元素を含む合金を用いたことを特徴と
する請求項1、2または3記載の巨大磁気抵抗材料膜。
4. An alloy containing, as a constituent material of the hard magnetic material film, a Co--Pt alloy or a Co--Cr alloy as a main component and a small amount of an additive element is used. The giant magnetoresistive material film described in 1, 2, or 3.
【請求項5】 前記の軟質磁性材料膜の構成材料とし
て、Ni-Fe合金、Ni-Fe-Co合金、Co系アモ
ルファス合金のいずれかからなるものを用いたことを特
徴とする請求項1、2、3または4記載の巨大磁気抵抗
材料膜。
5. The material of the soft magnetic material film is made of any one of a Ni—Fe alloy, a Ni—Fe—Co alloy and a Co-based amorphous alloy. The giant magnetoresistive material film described in 2, 3, or 4.
【請求項6】 硬質磁性材料膜の厚さに対し、第3の強
磁性材料膜の厚さを比率で0.5〜2の範囲としたこと
を特徴とする請求項1、2、3、4または5記載の巨大
磁気抵抗材料膜。
6. The ratio of the thickness of the third ferromagnetic material film to the thickness of the hard magnetic material film is set in the range of 0.5 to 2 as claimed in claim 1. The giant magnetoresistive material film according to 4 or 5.
【請求項7】 軟質磁性材料膜と非磁性膜との間に、第
4の強磁性材料膜を介在させたことを特徴とする請求項
1、2、3、4、5または6記載の巨大磁気抵抗材料
膜。
7. A giant film according to claim 1, wherein a fourth ferromagnetic material film is interposed between the soft magnetic material film and the non-magnetic film. Magnetoresistive material film.
【請求項8】 第3の強磁性材料膜と硬質磁性材料膜と
の間に、厚さ30オングストローム以下の非磁性薄膜が
介在されたことを特徴とする請求項1、2、3、4、
5、6または7記載の巨大磁気抵抗材料膜。
8. A non-magnetic thin film having a thickness of 30 angstroms or less is interposed between the third ferromagnetic material film and the hard magnetic material film.
The giant magnetoresistive material film according to 5, 6, or 7.
【請求項9】 請求項7または8に記載の巨大磁気抵抗
材料膜を、非磁性膜または非磁性膜と第3の強磁性材料
膜を介して繰り返し積層してなることを特徴とする巨大
磁気抵抗材料膜。
9. A giant magnetic material comprising the giant magnetoresistive material film according to claim 7 or 8 which is repeatedly laminated with a non-magnetic film or a non-magnetic film and a third ferromagnetic material film interposed therebetween. Resistive material film.
【請求項10】 磁性材料膜と非磁性膜を複数積層し、
非磁性膜を介してその両側に設けられる磁性材料膜のう
ち、一方の磁性膜を硬質磁性材料膜から構成し、他方の
磁性膜を軟質磁性材料膜から構成するとともに非磁性膜
の厚さを調節して硬質磁性材料膜と軟質磁性材料膜の磁
化の向きを相対的に自由にする一方、前記非磁性膜と硬
質磁性材料膜との間に高飽和磁束密度の第3の強磁性材
料膜を設けて硬質磁性材料膜からの漏洩磁界を遮り、積
層膜全体の保磁力を低くすることを特徴とする磁気抵抗
材料膜の磁化の調整方法。
10. A plurality of magnetic material films and non-magnetic films are laminated,
Among the magnetic material films provided on both sides of the non-magnetic film, one magnetic film is made of a hard magnetic material film, the other magnetic film is made of a soft magnetic material film, and the thickness of the non-magnetic film is The third ferromagnetic material film having a high saturation magnetic flux density is provided between the non-magnetic film and the hard magnetic material film while adjusting the magnetization directions of the hard magnetic material film and the soft magnetic material film relatively freely. Is provided to block the leakage magnetic field from the hard magnetic material film and reduce the coercive force of the entire laminated film to adjust the magnetization of the magnetoresistive material film.
JP07686395A 1995-03-31 1995-03-31 Giant magnetoresistive material film and method of adjusting magnetization of magnetoresistive material film Expired - Fee Related JP3242279B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07686395A JP3242279B2 (en) 1995-03-31 1995-03-31 Giant magnetoresistive material film and method of adjusting magnetization of magnetoresistive material film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07686395A JP3242279B2 (en) 1995-03-31 1995-03-31 Giant magnetoresistive material film and method of adjusting magnetization of magnetoresistive material film

Publications (2)

Publication Number Publication Date
JPH08279116A true JPH08279116A (en) 1996-10-22
JP3242279B2 JP3242279B2 (en) 2001-12-25

Family

ID=13617498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07686395A Expired - Fee Related JP3242279B2 (en) 1995-03-31 1995-03-31 Giant magnetoresistive material film and method of adjusting magnetization of magnetoresistive material film

Country Status (1)

Country Link
JP (1) JP3242279B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5828527A (en) * 1996-03-14 1998-10-27 Sony Corporation Thin-film magnetic head having magnetic resistance effect stabilizing layer
JP2004521513A (en) * 2001-06-09 2004-07-15 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Magnetoresistive laminated structure and gradiometer provided with the structure
US6893740B2 (en) 2002-04-24 2005-05-17 Alps Electric Co., Ltd. CPP type magnetoresistive sensor including pinned magnetic layer provided with hard magnetic region
JP2017216461A (en) * 2017-07-04 2017-12-07 株式会社東芝 Strain detection element, sensor, microphone, blood pressure sensor and touch panel

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5828527A (en) * 1996-03-14 1998-10-27 Sony Corporation Thin-film magnetic head having magnetic resistance effect stabilizing layer
JP2004521513A (en) * 2001-06-09 2004-07-15 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Magnetoresistive laminated structure and gradiometer provided with the structure
JP2011101026A (en) * 2001-06-09 2011-05-19 Robert Bosch Gmbh Magneto-resistive laminate structure, and gradiometer including the same
US6893740B2 (en) 2002-04-24 2005-05-17 Alps Electric Co., Ltd. CPP type magnetoresistive sensor including pinned magnetic layer provided with hard magnetic region
JP2017216461A (en) * 2017-07-04 2017-12-07 株式会社東芝 Strain detection element, sensor, microphone, blood pressure sensor and touch panel

Also Published As

Publication number Publication date
JP3242279B2 (en) 2001-12-25

Similar Documents

Publication Publication Date Title
US6340520B1 (en) Giant magnetoresistive material film, method of producing the same magnetic head using the same
JP3447468B2 (en) Magnetoresistive element, method of manufacturing the same, and magnetic head using the same
JP3291208B2 (en) Magnetoresistive sensor, method of manufacturing the same, and magnetic head equipped with the sensor
JP2654316B2 (en) Magnetoresistive sensor
JP2000340858A (en) Magnetoresistive effect film and magnetoresistive effect head
CN100435372C (en) Magnetic resistant element deposited with oxide magnetic layer and metal magnetic film
US20040196595A1 (en) Magnetoresistive sensor with magnetostatic coupling of magnetic regions
US6083632A (en) Magnetoresistive effect film and method of manufacture thereof
JP4237991B2 (en) Magnetic detection element
JP3276264B2 (en) Magnetoresistive multilayer film and method of manufacturing the same
JP2001217482A (en) Magnetic sensor and magnetic storage device using the same
JPH10188235A (en) Magneto-resistive film and its production
JP2000215421A (en) Spin valve thin film magnetic element, thin film magnetic head, and production of spin valve thin film magnetic element
CN100476953C (en) Magnetoresistive head and manufacturing method thereof
JP3242279B2 (en) Giant magnetoresistive material film and method of adjusting magnetization of magnetoresistive material film
JPH04280483A (en) Magnetic resistant effect material and manufacture thereof
KR100363462B1 (en) Spin valve type magnetoresistive effect element and manufacturing method thereof
JP3190193B2 (en) How to use thin film magnetic head
JP3575672B2 (en) Magnetoresistance effect film and magnetoresistance effect element
JPH0992904A (en) Giant magnetoresistance material film, its manufacture, and magnetic head using the same
JPH0936455A (en) Magnetoresistive effect element
JP3264600B2 (en) Multilayer film for magnetoresistive element and method for adjusting magnetization of magnetic layer
JP3260735B2 (en) Magnetoresistance effect element, magnetoresistance effect head, magnetic recording reproducing device and production of magnetoresistance effect head
JP3561026B2 (en) Magnetoresistive head
JPH05175572A (en) Magnetoresistance effect element, and magnetic head and recording/reproducing device using same

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20011002

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071019

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081019

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081019

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091019

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111019

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111019

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121019

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131019

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees