JPH06310329A - Multilayer magnetoresistance effect film and magnetic head - Google Patents

Multilayer magnetoresistance effect film and magnetic head

Info

Publication number
JPH06310329A
JPH06310329A JP5092744A JP9274493A JPH06310329A JP H06310329 A JPH06310329 A JP H06310329A JP 5092744 A JP5092744 A JP 5092744A JP 9274493 A JP9274493 A JP 9274493A JP H06310329 A JPH06310329 A JP H06310329A
Authority
JP
Japan
Prior art keywords
magnetic
layer
magnetoresistive effect
layers
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5092744A
Other languages
Japanese (ja)
Inventor
Ryoichi Nakatani
亮一 中谷
Katsumi Hoshino
勝美 星野
Yoshihiro Hamakawa
佳弘 濱川
Mikio Suzuki
幹夫 鈴木
Masaaki Futamoto
正昭 二本
Masahiro Kitada
正弘 北田
Hisano Tokida
久乃 常田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5092744A priority Critical patent/JPH06310329A/en
Publication of JPH06310329A publication Critical patent/JPH06310329A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3268Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Magnetic Heads (AREA)
  • Power Engineering (AREA)
  • Thin Magnetic Films (AREA)
  • Hall/Mr Elements (AREA)
  • Measuring Magnetic Variables (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

PURPOSE:To restrain the switching interaction between two layers of magnetic layers by a method wherein a buffer layer composed of a nonmagnetic metal provided with a dense hexagonal structure is formed between a multilayer film and a substrate. CONSTITUTION:In a multilayer magnetoresistance effect film, two or more layers of magnetic layers 13, 15 are divided by a nonmagnetic layer 14, and a multilayer film in which a switching bias magnetic field from an antiferromagnetic layer 16 is applied to at least one layer out of the magnetic layers and in which the switching bias magnetic field from the antiferromagnetic layer is not applied directly to at least one layer out of the magnetic layers is used. Then, a buffer layer 14 composed of a nonmagnetic metal provided with a dense hexagonal structure is formed between the multilayer film and a substrate 11. As the nonmagnetic metal provided with the dense hexagonal structure, Ti, Hf, Zn, Zr or an alloy whose main component is Ti, Hf, Zn or Zr is used. As the magnetic layers, an Ni-Fe-Co-based alloy is used. Thereby, it is possible to obtain the multilayer film whose magnetoresistance change rate is high at a low magnetic field, and a high-performance magnetoresistance effect element or the like can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は高い磁気抵抗効果を有す
る多層磁気抵抗効果膜膜およびこれを用いた磁気抵抗効
果素子、磁気ヘッド、磁気記録再生装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multilayer magnetoresistive film having a high magnetoresistive effect, a magnetoresistive element using the same, a magnetic head and a magnetic recording / reproducing apparatus.

【0002】[0002]

【従来の技術】磁気記録の高密度化に伴い、再生用磁気
ヘッドに用いる磁気抵抗効果材料として、高い磁気抵抗
効果を示す材料が求められている。現在、使用されてい
るパーマロイの磁気抵抗変化率は約3%であり、新材料
はこれを上回る磁気抵抗変化率を有することが必要であ
る。
2. Description of the Related Art As the magnetic recording density increases, a material having a high magnetoresistive effect is required as a magnetoresistive effect material used for a reproducing magnetic head. At present, the magnetoresistance change rate of permalloy used is about 3%, and it is necessary for the new material to have a magnetoresistance change rate higher than this.

【0003】最近、Baibichらによる、フィジカル・レ
ビュー・レターズ(Pysical ReviewLetters)、第61巻、
第21号、2472〜2475ページに記載の「(001)Fe/(001)Cr
磁性超格子の巨大磁気抵抗効果」(Giant Magnetoresis
tance of (001)Fe/(001)Cr Magnetic Superlattices)
のように、多層構造を持つ磁性膜(Fe/Cr多層膜)
において、約50%の磁気抵抗変化率(4.2Kにおい
て)が観測されている。しかし、上記Fe/Cr多層膜
に十分な磁気抵抗変化を生じさせるためには、800k
A/mもの高い磁界が必要であり、低い磁界で動作する
必要がある磁気抵抗効果素子、磁気ヘッドに用いること
ができないという問題がある。
Recently, Baibich et al., Physical Review Letters, Vol. 61,
No. 21, pp. 2472-2475, `` (001) Fe / (001) Cr
Giant Magnetoresis Effect of Magnetic Superlattice "
tance of (001) Fe / (001) Cr Magnetic Superlattices)
Magnetic film with a multilayer structure (Fe / Cr multilayer film)
, A magnetoresistance change rate of about 50% (at 4.2 K) is observed. However, in order to cause a sufficient magnetoresistance change in the Fe / Cr multilayer film, 800 k
A magnetic field as high as A / m is required, and there is a problem that it cannot be used for a magnetoresistive effect element or a magnetic head that needs to operate at a low magnetic field.

【0004】そこで、Dienyらによるフィジカル・レビ
ュー・B(Pysical Review B)、第43巻、第1号、1297〜1
300ページに記載の「軟磁性多層膜における巨大磁気抵
抗効果」(Giant Magnetoresistance in Soft Ferromagne
tic Multilayers)のように2層の磁性層を非磁性層で分
離し、一方の磁性層に反強磁性層からの交換バイアス磁
界を印加する方法が考案された。上記のような多層膜で
は、European Patent,0 490 608 A2に記載のように、多
層膜の組織、結晶粒径等を調整するために、基板上にT
a,Ru,CrVからなるバッファ層を形成している。
Therefore, Physical Review B by Dieny et al., Vol. 43, No. 1, 1297-1.
"Giant Magnetoresistance in Soft Ferromagne" on page 300
A method has been devised in which two magnetic layers are separated by a non-magnetic layer, and an exchange bias magnetic field from the antiferromagnetic layer is applied to one magnetic layer, such as tic multilayers. In the above-mentioned multilayer film, as described in European Patent, 0 490 608 A2, T layer is formed on the substrate in order to adjust the structure, crystal grain size, etc. of the multilayer film.
A buffer layer made of a, Ru and CrV is formed.

【0005】[0005]

【発明が解決しようとする課題】上記のような多層膜で
は、2層の磁性層を比較的薄い非磁性金属層で磁気的に
分離する必要がある。このためには、多層膜の結晶配向
性が非常に重要である。
In the multilayer film as described above, it is necessary to magnetically separate the two magnetic layers with a relatively thin nonmagnetic metal layer. For this purpose, the crystal orientation of the multilayer film is very important.

【0006】本発明の目的は、上述の多層膜を用いた磁
気抵抗効果素子の問題の解決方法を提供することにあ
る。
An object of the present invention is to provide a method for solving the problem of the magnetoresistive effect element using the above-mentioned multilayer film.

【0007】[0007]

【課題を解決するための手段】本発明者等は、種々の材
料および膜厚を有する磁性層、非磁性層を積層した多層
磁性膜を用いた磁気抵抗効果素子について鋭意研究を重
ねた結果、上記多層膜と基板との間に、稠密六方構造を
有する非磁性金属からなるバッファ層を形成することに
より、2層の磁性層間の交換相互作用を最小限に抑える
ことができることを見出し、本発明を完成するに至っ
た。
Means for Solving the Problems The inventors of the present invention have conducted extensive studies on a magnetoresistive effect element using a multilayer magnetic film in which magnetic layers having various materials and film thicknesses and non-magnetic layers are laminated. It was found that exchange interaction between two magnetic layers can be minimized by forming a buffer layer made of a nonmagnetic metal having a dense hexagonal structure between the multilayer film and the substrate. Has been completed.

【0008】すなわち、2層以上の磁性層を非磁性層で
分割し、少なくとも1層の磁性層に反強磁性層からの交
換バイアス磁界が印加されており、少なくとも1層の磁
性層に反強磁性層からの交換バイアス磁界は直接には印
加されていない多層膜を用いた多層磁気抵抗効果膜にお
いて、上記多層膜と基板との間に、稠密六方構造を有す
る非磁性金属からなるバッファ層を形成することによ
り、2層の磁性層間の交換相互作用を最小限に抑えるこ
とができ、低い磁界で高い磁気抵抗変化率を示す多層磁
気抵抗効果膜を得ることができる。上記稠密六方構造を
有する非磁性金属としてはTi,Hf,Zn,Zr、あ
るいはTi,Hf,Zn,Zrを主成分とする合金が好
ましい。上記稠密六方構造を有する非磁性金属をバッフ
ァ層として用いると、多層膜が強い(111)配向を示
し、このため、磁性層間の交換相互作用を最小限に抑え
ることができる。また、4層以上の磁性層を非磁性層で
分割し、少なくとも2層の磁性層に反強磁性層からの交
換バイアス磁界が印加されており、少なくとも2層の磁
性層に反強磁性層からの交換バイアス磁界は直接には印
加されていない多層膜を形成すると、さらに高い磁気抵
抗変化率が得られる。また、上記磁性層としては、Ni
−Fe−Co系合金が軟磁性を示し、かつNi−Fe−
Co系合金の使用により、高い磁気抵抗変化率が得られ
ることから好ましい。また、高い磁気抵抗変化率および
優れた軟磁性を得るためには、上記Ni−Fe−Co系
合金のCo濃度は10〜25at%であることが好まし
い。
That is, two or more magnetic layers are divided by non-magnetic layers, and the exchange bias magnetic field from the antiferromagnetic layer is applied to at least one magnetic layer, and at least one magnetic layer is antiferromagnetic. The exchange bias magnetic field from the magnetic layer is not directly applied. In a multilayer magnetoresistive film using a multilayer film, a buffer layer made of a nonmagnetic metal having a dense hexagonal structure is provided between the multilayer film and the substrate. By forming it, the exchange interaction between the two magnetic layers can be minimized, and a multilayer magnetoresistive effect film exhibiting a high magnetoresistance change rate in a low magnetic field can be obtained. As the non-magnetic metal having the dense hexagonal structure, Ti, Hf, Zn, Zr or an alloy containing Ti, Hf, Zn, Zr as a main component is preferable. When the nonmagnetic metal having the dense hexagonal structure is used as the buffer layer, the multilayer film exhibits a strong (111) orientation, and therefore exchange interaction between the magnetic layers can be minimized. Further, four or more magnetic layers are divided by non-magnetic layers, and the exchange bias magnetic field from the antiferromagnetic layer is applied to at least two magnetic layers, and at least two magnetic layers are separated from the antiferromagnetic layers. When the exchange bias magnetic field of (3) is not directly applied to form a multilayer film, a higher magnetoresistance change rate can be obtained. Further, as the magnetic layer, Ni is used.
-Fe-Co alloy shows soft magnetism and Ni-Fe-
Use of a Co-based alloy is preferable because a high magnetoresistance change rate can be obtained. Moreover, in order to obtain a high magnetoresistance change rate and excellent soft magnetism, the Co concentration of the Ni—Fe—Co alloy is preferably 10 to 25 at%.

【0009】また、上記多層磁気抵抗効果膜は、磁気抵
抗効果素子、磁界センサ、磁気ヘッドなどに好適であ
る。また、上記磁気ヘッドを用いることにより、高性能
磁気記録再生装置を得ることができる。
The multilayer magnetoresistive effect film is suitable for a magnetoresistive effect element, a magnetic field sensor, a magnetic head and the like. Further, by using the above magnetic head, a high performance magnetic recording / reproducing apparatus can be obtained.

【0010】第1の発明の特徴は、(1)2層以上の磁
性層を非磁性層で分割し、少なくとも1層の磁性層に反
強磁性層からの交換バイアス磁界が印加されており、少
なくとも1層の磁性層に反強磁性層からの交換バイアス
磁界は直接には印加されていない多層膜を用いた多層磁
気抵抗効果膜において、上記多層膜と基板との間に、稠
密六方構造を有する非磁性金属からなるバッファ層が形
成されている多層磁気抵抗効果膜にある。
The feature of the first invention is that (1) two or more magnetic layers are divided by nonmagnetic layers, and an exchange bias magnetic field from an antiferromagnetic layer is applied to at least one magnetic layer, An exchange bias magnetic field from the antiferromagnetic layer is not directly applied to at least one magnetic layer. In a multilayer magnetoresistive film using a multilayer film, a dense hexagonal structure is formed between the multilayer film and the substrate. A multilayer magnetoresistive effect film having a buffer layer made of a non-magnetic metal is formed.

【0011】(2)(1)において、上記稠密六方構造
を有する非磁性金属がTi,Hf,Zn,Zr、あるい
はTi,Hf,Zn,Zrを主成分とする合金からなる
ことをが好ましい。
(2) In (1), it is preferable that the nonmagnetic metal having the dense hexagonal structure is made of Ti, Hf, Zn, Zr or an alloy containing Ti, Hf, Zn, Zr as a main component.

【0012】(3)(1)において、上記稠密六方構造
を有する非磁性金属がTi,Hf,Zrであることが好
ましい。
(3) In (1), it is preferable that the nonmagnetic metal having the dense hexagonal structure is Ti, Hf, or Zr.

【0013】第2の発明の特徴は、(4)2層以上の磁
性層を非磁性層で分割し、少なくとも1層の磁性層に反
強磁性層からの交換バイアス磁界が印加されており、少
なくとも1層の磁性層に反強磁性層からの交換バイアス
磁界は直接には印加されていない多層膜を用いた多層磁
気抵抗効果膜において、上記多層膜と基板との間に、T
i,Hf,Zrから選ばれる少なくとも1種類の金属、
あるいは、Ti,Hf,Zrから選ばれる少なくとも1
種類の金属を主成分とする非磁性金属からなるバッファ
層が形成されており、上記バッファ層が非晶質状態であ
る多層磁気抵抗効果膜にある。
The feature of the second invention is that (4) two or more magnetic layers are divided by nonmagnetic layers, and the exchange bias magnetic field from the antiferromagnetic layer is applied to at least one magnetic layer. In a multilayer magnetoresistive effect film using a multilayer film in which the exchange bias magnetic field from the antiferromagnetic layer is not directly applied to at least one magnetic layer, a T film is provided between the multilayer film and the substrate.
At least one metal selected from i, Hf, and Zr,
Alternatively, at least 1 selected from Ti, Hf, and Zr
The multi-layered magnetoresistive effect film is formed by forming a buffer layer made of a non-magnetic metal whose main component is a kind of metal, and the buffer layer is in an amorphous state.

【0014】(5)(1)から(4)において、上記磁
性層が面心立方構造を有し、(111)配向しているこ
とが好ましい。
(5) In (1) to (4), it is preferable that the magnetic layer has a face-centered cubic structure and is (111) oriented.

【0015】第3の発明の特徴は、(6)4層以上の磁
性層を非磁性層で分割し、少なくとも2層の磁性層に反
強磁性層からの交換バイアス磁界が印加されており、少
なくとも2層の磁性層に反強磁性層からの交換バイアス
磁界は直接には印加されていない多層膜を用いた多層磁
気抵抗効果膜にある。
A feature of the third invention is that (6) four or more magnetic layers are divided by nonmagnetic layers, and an exchange bias magnetic field from an antiferromagnetic layer is applied to at least two magnetic layers, The exchange bias magnetic field from the antiferromagnetic layer is applied to at least two magnetic layers in the multilayer magnetoresistive effect film using the multilayer film which is not directly applied.

【0016】(7)(6)において、上記多層磁気抵抗
効果膜と基板との間に、稠密六方構造を有する非磁性金
属からなるバッファ層が形成されていることが好まし
い。
In (7) and (6), it is preferable that a buffer layer made of a nonmagnetic metal having a dense hexagonal structure is formed between the multilayer magnetoresistive effect film and the substrate.

【0017】(8)(7)において、上記稠密六方構造
を有する非磁性金属がTi,Hf,Zn,Zr、あるい
はTi,Hf,Zn,Zrを主成分とする合金からなる
ことが好ましい。
In (8) and (7), it is preferable that the nonmagnetic metal having the dense hexagonal structure is made of Ti, Hf, Zn, Zr or an alloy containing Ti, Hf, Zn, Zr as a main component.

【0018】(9)(8)において、上記稠密六方構造
を有する非磁性金属がTi,Hf,Zrであることが好
ましい。
(9) In (8), it is preferable that the nonmagnetic metal having the dense hexagonal structure is Ti, Hf, or Zr.

【0019】(10)(6)において、上記多層磁気抵
抗効果膜と基板との間に、Ti,Hf,Zrから選ばれ
る少なくとも1種類の金属、あるいは、Ti,Hf,Z
rから選ばれる少なくとも1種類の金属を主成分とする
非磁性金属からなるバッファ層が形成されており、上記
バッファ層が非晶質状態であることが好ましい。
(10) In (6), at least one kind of metal selected from Ti, Hf, and Zr or Ti, Hf, and Z is provided between the multilayer magnetoresistive film and the substrate.
It is preferable that a buffer layer made of a non-magnetic metal containing at least one metal selected from r as a main component is formed, and the buffer layer is in an amorphous state.

【0020】(11)(7)から(10)において、上
記磁性層が面心立方構造を有し、(111)配向してい
ることが好ましい。
(11) In (7) to (10), it is preferable that the magnetic layer has a face-centered cubic structure and is (111) oriented.

【0021】(12)(1)から(11)において、上
記磁性層の少なくとも一部がNi−Fe系合金ないしN
i−Fe−Co系合金であることが好ましい。
(12) In (1) to (11), at least a part of the magnetic layer is a Ni--Fe based alloy or N.
It is preferably an i-Fe-Co based alloy.

【0022】(13)(12)において、上記Ni−F
e−Co系合金のCo濃度が10〜25at%であるこ
とが好ましい。
(13) In (12), the above Ni-F is used.
The Co concentration of the e-Co alloy is preferably 10 to 25 at%.

【0023】(14)(1)から(11)において、少
なくとも一部の磁性層がCoあるいはCoを主成分とす
る合金であることが好ましい。
(14) In (1) to (11), at least a part of the magnetic layer is preferably Co or an alloy containing Co as a main component.

【0024】(15)(1)から(14)において、上
記非磁性層の少なくとも一部がCuであることが好まし
い。
(15) In (1) to (14), it is preferable that at least a part of the nonmagnetic layer is Cu.

【0025】第4の発明の特徴は、(16)2層以上の
磁性層を非磁性層で分割し、少なくとも1層の磁性層に
反強磁性層からの交換バイアス磁界が印加されており、
少なくとも1層の磁性層に反強磁性層からの交換バイア
ス磁界は直接には印加されていない多層膜を用いた多層
磁気抵抗効果膜において、上記多層膜と基板との間に、
稠密六方構造を有する非磁性金属からなるバッファ層が
形成されている多層磁気抵抗効果膜を少なくとも一部に
用いた磁気抵抗効果素子にある。
A feature of the fourth invention is that (16) two or more magnetic layers are divided by nonmagnetic layers, and an exchange bias magnetic field from an antiferromagnetic layer is applied to at least one magnetic layer,
In a multilayer magnetoresistive effect film using a multilayer film in which the exchange bias magnetic field from the antiferromagnetic layer is not directly applied to at least one magnetic layer, between the multilayer film and the substrate,
A magnetoresistive effect element using at least a part of a multilayer magnetoresistive effect film in which a buffer layer made of a nonmagnetic metal having a dense hexagonal structure is formed.

【0026】第5の発明の特徴は、(17)2層以上の
磁性層を非磁性層で分割し、少なくとも1層の磁性層に
反強磁性層からの交換バイアス磁界が印加されており、
少なくとも1層の磁性層に反強磁性層からの交換バイア
ス磁界は直接には印加されていない多層膜を用いた多層
磁気抵抗効果膜において、上記多層膜と基板との間に、
Ti,Hf,Zrから選ばれる少なくとも1種類の金
属、あるいは、Ti,Hf,Zrから選ばれる少なくと
も1種類の金属を主成分とする非磁性金属からなるバッ
ファ層が形成されており、上記バッファ層が非晶質状態
である多層磁気抵抗効果膜を少なくとも一部に用いた磁
気抵抗効果素子にある。
The feature of the fifth invention is that (17) two or more magnetic layers are divided by nonmagnetic layers, and an exchange bias magnetic field from the antiferromagnetic layer is applied to at least one magnetic layer.
In a multilayer magnetoresistive effect film using a multilayer film in which the exchange bias magnetic field from the antiferromagnetic layer is not directly applied to at least one magnetic layer, between the multilayer film and the substrate,
A buffer layer formed of at least one metal selected from Ti, Hf, and Zr or a nonmagnetic metal containing at least one metal selected from Ti, Hf, and Zr as a main component is formed. Is a magnetoresistive effect element using at least a part of a multilayer magnetoresistive effect film in an amorphous state.

【0027】第6の発明の特徴は、(18)4層以上の
磁性層を非磁性層で分割し、少なくとも2層の磁性層に
反強磁性層からの交換バイアス磁界が印加されており、
少なくとも2層の磁性層に反強磁性層からの交換バイア
ス磁界は直接には印加されていない多層膜を用いた多層
磁気抵抗効果膜を少なくとも一部に用いた磁気抵抗効果
素子にある。
A feature of the sixth invention is that (18) four or more magnetic layers are divided by nonmagnetic layers, and an exchange bias magnetic field from an antiferromagnetic layer is applied to at least two magnetic layers.
An exchange bias magnetic field from an antiferromagnetic layer is applied to at least two magnetic layers in a magnetoresistive effect element using at least a part of a multilayer magnetoresistive effect film using a multilayer film which is not directly applied.

【0028】第7の発明の特徴は、(19)2層以上の
磁性層を非磁性層で分割し、少なくとも1層の磁性層に
反強磁性層からの交換バイアス磁界が印加されており、
少なくとも1層の磁性層に反強磁性層からの交換バイア
ス磁界は直接には印加されていない多層膜を用いた多層
磁気抵抗効果膜において、上記多層膜と基板との間に、
稠密六方構造を有する非磁性金属からなるバッファ層が
形成されている多層磁気抵抗効果膜を少なくとも一部に
用いた磁気ヘッドにある。
The feature of the seventh invention is that (19) two or more magnetic layers are divided by nonmagnetic layers, and an exchange bias magnetic field from an antiferromagnetic layer is applied to at least one magnetic layer,
In a multilayer magnetoresistive effect film using a multilayer film in which the exchange bias magnetic field from the antiferromagnetic layer is not directly applied to at least one magnetic layer, between the multilayer film and the substrate,
A magnetic head using a multi-layered magnetoresistive film having a buffer layer made of a non-magnetic metal having a dense hexagonal structure at least in part.

【0029】第8の発明の特徴は、(20)2層以上の
磁性層を非磁性層で分割し、少なくとも1層の磁性層に
反強磁性層からの交換バイアス磁界が印加されており、
少なくとも1層の磁性層に反強磁性層からの交換バイア
ス磁界は直接には印加されていない多層膜を用いた多層
磁気抵抗効果膜において、上記多層膜と基板との間に、
Ti,Hf,Zrから選ばれる少なくとも1種類の金
属、あるいは、Ti,Hf,Zrから選ばれる少なくと
も1種類の金属を主成分とする非磁性金属からなるバッ
ファ層が形成されており、上記バッファ層が非晶質状態
である多層磁気抵抗効果膜を少なくとも一部に用いた磁
気ヘッドにある。
The eighth invention is characterized in that (20) two or more magnetic layers are divided by nonmagnetic layers, and an exchange bias magnetic field from an antiferromagnetic layer is applied to at least one magnetic layer,
In a multilayer magnetoresistive effect film using a multilayer film in which the exchange bias magnetic field from the antiferromagnetic layer is not directly applied to at least one magnetic layer, between the multilayer film and the substrate,
A buffer layer formed of at least one metal selected from Ti, Hf, and Zr or a nonmagnetic metal containing at least one metal selected from Ti, Hf, and Zr as a main component is formed. Is a magnetic head using at least a part of a multilayer magnetoresistive effect film in an amorphous state.

【0030】第9の発明の特徴は、(21)4層以上の
磁性層を非磁性層で分割し、少なくとも2層の磁性層に
反強磁性層からの交換バイアス磁界が印加されており、
少なくとも2層の磁性層に反強磁性層からの交換バイア
ス磁界は直接には印加されていない多層膜を用いた多層
磁気抵抗効果膜を少なくとも一部に用いた磁気ヘッドに
ある。
A feature of the ninth invention is that (21) four or more magnetic layers are divided by nonmagnetic layers, and an exchange bias magnetic field from an antiferromagnetic layer is applied to at least two magnetic layers,
An exchange bias magnetic field from an antiferromagnetic layer is applied to at least two magnetic layers in a magnetic head using at least a part of a multilayer magnetoresistive effect film using a multilayer film that is not directly applied.

【0031】第10の発明の特徴は、(22)2層以上
の磁性層を非磁性層で分割し、少なくとも1層の磁性層
に反強磁性層からの交換バイアス磁界が印加されてお
り、少なくとも1層の磁性層に反強磁性層からの交換バ
イアス磁界は直接には印加されていない多層膜を用いた
多層磁気抵抗効果膜において、上記多層膜と基板との間
に、稠密六方構造を有する非磁性金属からなるバッファ
層が形成されている多層磁気抵抗効果膜を少なくとも一
部に用いた磁気抵抗効果素子と誘導型磁気ヘッドを組み
合わせた複合型磁気ヘッドにある。
The feature of the tenth invention is that (22) two or more magnetic layers are divided by nonmagnetic layers, and an exchange bias magnetic field from an antiferromagnetic layer is applied to at least one magnetic layer. An exchange bias magnetic field from the antiferromagnetic layer is not directly applied to at least one magnetic layer. In a multilayer magnetoresistive film using a multilayer film, a dense hexagonal structure is formed between the multilayer film and the substrate. A composite magnetic head in which a magnetoresistive effect element using at least a part of a multi-layered magnetoresistive effect film having a buffer layer made of a non-magnetic metal and an inductive magnetic head are combined.

【0032】第11の発明の特徴は、(23)2層以上
の磁性層を非磁性層で分割し、少なくとも1層の磁性層
に反強磁性層からの交換バイアス磁界が印加されてお
り、少なくとも1層の磁性層に反強磁性層からの交換バ
イアス磁界は直接には印加されていない多層膜を用いた
多層磁気抵抗効果膜において、上記多層膜と基板との間
に、Ti,Hf,Zrから選ばれる少なくとも1種類の
金属、あるいは、Ti,Hf,Zrから選ばれる少なく
とも1種類の金属を主成分とする非磁性金属からなるバ
ッファ層が形成されており、上記バッファ層が非晶質状
態である多層磁気抵抗効果膜を少なくとも一部に用いた
磁気抵抗効果素子と誘導型磁気ヘッドを組み合わせた複
合型磁気ヘッドにある。
The eleventh invention is characterized in that (23) two or more magnetic layers are divided by nonmagnetic layers, and an exchange bias magnetic field from an antiferromagnetic layer is applied to at least one magnetic layer. An exchange bias magnetic field from an antiferromagnetic layer is not directly applied to at least one magnetic layer. In a multilayer magnetoresistive effect film using a multilayer film, Ti, Hf, A buffer layer made of a non-magnetic metal containing at least one metal selected from Zr or at least one metal selected from Ti, Hf, and Zr as a main component is formed, and the buffer layer is amorphous. A composite magnetic head is a combination of an inductive magnetic head and a magnetoresistive effect element that uses a multi-layered magnetoresistive effect film in at least part of the state.

【0033】第12の発明の特徴は、(24)4層以上
の磁性層を非磁性層で分割し、少なくとも2層の磁性層
に反強磁性層からの交換バイアス磁界が印加されてお
り、少なくとも2層の磁性層に反強磁性層からの交換バ
イアス磁界は直接には印加されていない多層膜を用いた
多層磁気抵抗効果膜を少なくとも一部に用いた磁気抵抗
効果素子と誘導型磁気ヘッドを組み合わせた複合型磁気
ヘッドにある。
A twelfth aspect of the present invention is that (24) four or more magnetic layers are divided by non-magnetic layers, and an exchange bias magnetic field from an antiferromagnetic layer is applied to at least two magnetic layers. The exchange bias magnetic field from the antiferromagnetic layer is not directly applied to at least two magnetic layers. A magnetoresistive effect element and an inductive magnetic head using a multilayer magnetoresistive effect film using a multilayer film. It is a composite type magnetic head that combines

【0034】第13の発明の特徴は、(25)2層以上
の磁性層を非磁性層で分割し、少なくとも1層の磁性層
に反強磁性層からの交換バイアス磁界が印加されてお
り、少なくとも1層の磁性層に反強磁性層からの交換バ
イアス磁界は直接には印加されていない多層膜を用いた
多層磁気抵抗効果膜において、上記多層膜と基板との間
に、稠密六方構造を有する非磁性金属からなるバッファ
層が形成されている多層磁気抵抗効果膜を少なくとも一
部に用いた磁気ヘッドを具えた磁気記録再生装置にあ
る。
A thirteenth aspect of the present invention is that (25) two or more magnetic layers are divided by nonmagnetic layers, and an exchange bias magnetic field from an antiferromagnetic layer is applied to at least one magnetic layer, An exchange bias magnetic field from the antiferromagnetic layer is not directly applied to at least one magnetic layer. In a multilayer magnetoresistive film using a multilayer film, a dense hexagonal structure is formed between the multilayer film and the substrate. A magnetic recording / reproducing apparatus having a magnetic head using at least a part of a multilayer magnetoresistive effect film having a buffer layer made of a non-magnetic metal.

【0035】第14の発明の特徴は、(26)2層以上
の磁性層を非磁性層で分割し、少なくとも1層の磁性層
に反強磁性層からの交換バイアス磁界が印加されてお
り、少なくとも1層の磁性層に反強磁性層からの交換バ
イアス磁界は直接には印加されていない多層膜を用いた
多層磁気抵抗効果膜において、上記多層膜と基板との間
に、Ti,Hf,Zrから選ばれる少なくとも1種類の
金属、あるいは、Ti,Hf,Zrから選ばれる少なく
とも1種類の金属を主成分とする非磁性金属からなるバ
ッファ層が形成されており、上記バッファ層が非晶質状
態である多層磁気抵抗効果膜を少なくとも一部に用いた
磁気ヘッドを具えた磁気記録再生装置にある。
A feature of the fourteenth invention is that (26) two or more magnetic layers are divided by nonmagnetic layers, and an exchange bias magnetic field from an antiferromagnetic layer is applied to at least one magnetic layer, An exchange bias magnetic field from an antiferromagnetic layer is not directly applied to at least one magnetic layer. In a multilayer magnetoresistive effect film using a multilayer film, Ti, Hf, A buffer layer made of a non-magnetic metal containing at least one metal selected from Zr or at least one metal selected from Ti, Hf, and Zr as a main component is formed, and the buffer layer is amorphous. A magnetic recording / reproducing apparatus equipped with a magnetic head using a multi-layered magnetoresistive effect film in at least a part thereof.

【0036】第15の発明の特徴は、(27)4層以上
の磁性層を非磁性層で分割し、少なくとも2層の磁性層
に反強磁性層からの交換バイアス磁界が印加されてお
り、少なくとも2層の磁性層に反強磁性層からの交換バ
イアス磁界は直接には印加されていない多層膜を用いた
多層磁気抵抗効果膜を少なくとも一部に用いた磁気ヘッ
ドを具えた磁気記録再生装置にある。
A feature of the fifteenth invention is that (27) four or more magnetic layers are divided by nonmagnetic layers, and an exchange bias magnetic field from an antiferromagnetic layer is applied to at least two magnetic layers, A magnetic recording / reproducing apparatus including a magnetic head using at least a part of a multilayer magnetoresistive film using a multilayer film in which an exchange bias magnetic field from an antiferromagnetic layer is not directly applied to at least two magnetic layers. It is in.

【0037】第16の発明の特徴は、(28)2層以上
の磁性層を非磁性層で分割し、少なくとも1層の磁性層
に反強磁性層からの交換バイアス磁界が印加されてお
り、少なくとも1層の磁性層に反強磁性層からの交換バ
イアス磁界は直接には印加されていない多層膜を用いた
多層磁気抵抗効果膜において、上記多層膜と基板との間
に、稠密六方構造を有する非磁性金属からなるバッファ
層が形成されている多層磁気抵抗効果膜を少なくとも一
部に用いた磁気抵抗効果素子と誘導型磁気ヘッドを組み
合わせた複合型磁気ヘッドを具えた磁気記録再生装置に
ある。
The sixteenth invention is characterized in that (28) two or more magnetic layers are divided by nonmagnetic layers, and an exchange bias magnetic field from the antiferromagnetic layer is applied to at least one magnetic layer, An exchange bias magnetic field from the antiferromagnetic layer is not directly applied to at least one magnetic layer. In a multilayer magnetoresistive film using a multilayer film, a dense hexagonal structure is formed between the multilayer film and the substrate. A magnetic recording / reproducing apparatus comprising a composite magnetic head in which a magnetoresistive effect element using at least a part of a multilayer magnetoresistive effect film having a buffer layer made of a non-magnetic metal and an inductive magnetic head are combined. .

【0038】第17の発明の特徴は、(29)2層以上
の磁性層を非磁性層で分割し、少なくとも1層の磁性層
に反強磁性層からの交換バイアス磁界が印加されてお
り、少なくとも1層の磁性層に反強磁性層からの交換バ
イアス磁界は直接には印加されていない多層膜を用いた
多層磁気抵抗効果膜において、上記多層膜と基板との間
に、Ti,Hf,Zrから選ばれる少なくとも1種類の
金属、あるいは、Ti,Hf,Zrから選ばれる少なく
とも1種類の金属を主成分とする非磁性金属からなるバ
ッファ層が形成されており、上記バッファ層が非晶質状
態である多層磁気抵抗効果膜を少なくとも一部に用いた
磁気抵抗効果素子と誘導型磁気ヘッドを組み合わせた複
合型磁気ヘッドを具えた磁気記録再生装置にある。
The seventeenth invention is characterized in that (29) two or more magnetic layers are divided by nonmagnetic layers, and an exchange bias magnetic field from an antiferromagnetic layer is applied to at least one magnetic layer. An exchange bias magnetic field from an antiferromagnetic layer is not directly applied to at least one magnetic layer. In a multilayer magnetoresistive effect film using a multilayer film, Ti, Hf, A buffer layer made of a non-magnetic metal containing at least one metal selected from Zr or at least one metal selected from Ti, Hf, and Zr as a main component is formed, and the buffer layer is amorphous. A magnetic recording / reproducing apparatus comprising a composite type magnetic head in which a magnetoresistive effect element using a multi-layered magnetoresistive effect film in a state of at least a part and an induction type magnetic head are combined.

【0039】第18の発明の特徴は、(30)4層以上
の磁性層を非磁性層で分割し、少なくとも2層の磁性層
に反強磁性層からの交換バイアス磁界が印加されてお
り、少なくとも2層の磁性層に反強磁性層からの交換バ
イアス磁界は直接には印加されていない多層膜を用いた
多層磁気抵抗効果膜を少なくとも一部に用いた磁気抵抗
効果素子と誘導型磁気ヘッドを組み合わせた複合型磁気
ヘッドを具えた磁気記録再生装置にある。
A feature of the eighteenth invention is that (30) four or more magnetic layers are divided by nonmagnetic layers, and an exchange bias magnetic field from an antiferromagnetic layer is applied to at least two magnetic layers. The exchange bias magnetic field from the antiferromagnetic layer is not directly applied to at least two magnetic layers. A magnetoresistive effect element and an inductive magnetic head using a multilayer magnetoresistive effect film using a multilayer film. A magnetic recording / reproducing apparatus having a composite magnetic head in which the above are combined.

【0040】[0040]

【作用】上述のように、上記多層膜と基板との間に、稠
密六方構造を有する非磁性金属からなるバッファ層を形
成することにより、低い磁界で高い磁気抵抗変化率を示
す多層磁気抵抗効果膜を得ることができる。上記稠密六
方構造を有する非磁性金属としてはTi,Hf,Zn,
Zr、あるいはTi,Hf,Zn,Zrを主成分とする
合金が好ましい。上記稠密六方構造を有する非磁性金属
をバッファ層として用いると、多層膜が強い(111)
配向を示し、このため、磁性層間の交換相互作用を最小
限に抑えることができる。また、磁性層を4層以上にす
ると、さらに高い磁気抵抗変化率が得られる。また、上
記磁性層としては、Ni−Fe−Co系合金が軟磁性を
示し、かつNi−Fe−Co系合金の使用により、高い
磁気抵抗変化率が得られることから好ましい。さらに、
上記多層磁気抵抗効果膜は、磁気抵抗効果素子、磁界セ
ンサ、磁気ヘッドなどに好適である。また、上記磁気ヘ
ッドを用いることにより、高性能磁気記録再生装置を得
ることができる。
As described above, by forming a buffer layer made of a nonmagnetic metal having a dense hexagonal structure between the multilayer film and the substrate, a multilayer magnetoresistive effect exhibiting a high magnetoresistive change rate in a low magnetic field is formed. A membrane can be obtained. As the non-magnetic metal having the dense hexagonal structure, Ti, Hf, Zn,
Zr or an alloy containing Ti, Hf, Zn or Zr as a main component is preferable. When the non-magnetic metal having the dense hexagonal structure is used as the buffer layer, the multilayer film is strong (111).
It exhibits an orientation so that exchange interactions between the magnetic layers can be minimized. Further, if the number of magnetic layers is four or more, a higher magnetoresistance change rate can be obtained. Further, as the magnetic layer, a Ni—Fe—Co based alloy exhibits soft magnetism, and the use of a Ni—Fe—Co based alloy is preferable because a high magnetoresistance change rate can be obtained. further,
The multilayer magnetoresistive effect film is suitable for a magnetoresistive effect element, a magnetic field sensor, a magnetic head, and the like. Further, by using the above magnetic head, a high performance magnetic recording / reproducing apparatus can be obtained.

【0041】[0041]

【実施例】以下に本発明の一実施例を挙げ、図表を参照
しながらさらに具体的に説明する。
EXAMPLES An example of the present invention will be described below in more detail with reference to the drawings.

【0042】[実施例1]多層膜の作製にはイオンビ−
ムスパッタリング法を用いた。到達真空度は、3/10
5Pa、スパッタリング時のAr圧力は0.02Paで
ある。また、膜形成速度は、0.1〜0.2nm/sで
ある。形成した多層膜の断面構造を図1に示す。基板1
1にはSi(100)単結晶を用いた。また、バッファ
層12として、厚さ5nmのTi,Zr,Hf,Cr,
Nb,Ta,Cu,Ag,Auを用いた。また、バッフ
ァ層12のない試料も形成した。磁性層13および15
には、厚さ3nmのNi−20at%Fe合金を用い
た。非磁性層14には、厚さ2nmのCuをもちいた。
また、反強磁性層16には、厚さ5nmのFe−40a
t%Mn合金を用いた。また、保護層17には、厚さ5
nmのTi,Zr,Hf,Cr,Nb,Ta,Cu,A
g,Auを用いた。
[Example 1] Ion beads were used to prepare a multilayer film.
The sputtering method was used. Ultimate vacuum is 3/10
5 Pa, Ar pressure during sputtering is 0.02 Pa. The film formation rate is 0.1 to 0.2 nm / s. The cross-sectional structure of the formed multilayer film is shown in FIG. Board 1
1 was a Si (100) single crystal. Further, as the buffer layer 12, Ti, Zr, Hf, Cr having a thickness of 5 nm,
Nb, Ta, Cu, Ag and Au were used. A sample without the buffer layer 12 was also formed. Magnetic layers 13 and 15
For this, a Ni-20 at% Fe alloy having a thickness of 3 nm was used. Cu having a thickness of 2 nm was used for the nonmagnetic layer 14.
The antiferromagnetic layer 16 has a thickness of 5 nm of Fe-40a.
A t% Mn alloy was used. The protective layer 17 has a thickness of 5
nm Ti, Zr, Hf, Cr, Nb, Ta, Cu, A
g, Au was used.

【0043】図2にバッファ層を用いていない多層膜の
磁化曲線を示す。なお、この多層膜の保護層17にはN
bを用いた。図のように、磁化曲線は単純な単層膜の磁
化曲線と同等であり、2層の磁性層は、外部磁界に対し
て同様の磁化過程を示す。
FIG. 2 shows a magnetization curve of a multilayer film which does not use a buffer layer. It should be noted that the protective layer 17 of this multi-layered film contains N
b was used. As shown in the figure, the magnetization curve is equivalent to that of a simple single layer film, and the two magnetic layers show similar magnetization processes to an external magnetic field.

【0044】図3にバッファ層12として、面心立方構
造を有するCu,Ag,Auを用いた多層膜の磁化曲線
を示す。これらの多層膜の保護層17にはバッファ層1
2と同じ材料を用いた。図3のように、バッファ層を用
いていない多層膜と同様に、これらの多層膜において
も、2層の磁性層は、外部磁界に対して同様の磁化過程
を示す。
FIG. 3 shows a magnetization curve of a multilayer film using Cu, Ag, and Au having a face-centered cubic structure as the buffer layer 12. The buffer layer 1 is used as the protective layer 17 of these multilayer films.
The same material as 2 was used. As in FIG. 3, as in the multilayer films not using the buffer layer, in these multilayer films, the two magnetic layers exhibit the same magnetization process with respect to the external magnetic field.

【0045】図4にバッファ層12として、体心立方構
造を有するCr,Nb,Taを用いた多層膜の磁化曲線
を示す。これらの多層膜の保護層17にはバッファ層1
2と同じ材料を用いた。図4のように、磁化曲線は若干
分離している。また、バッファ層として、Nb,Taを
用いた多層膜では、1層の磁性層15に反強磁性層16
からの交換バイアス磁界が印加されており、磁化曲線は
正の印加磁界方向にシフトしている。
FIG. 4 shows a magnetization curve of a multilayer film using Cr, Nb, and Ta having a body-centered cubic structure as the buffer layer 12. The buffer layer 1 is used as the protective layer 17 of these multilayer films.
The same material as 2 was used. As shown in FIG. 4, the magnetization curves are slightly separated. Further, in the multilayer film using Nb and Ta as the buffer layer, the antiferromagnetic layer 16 is formed on the single magnetic layer 15.
The exchange bias magnetic field from is applied and the magnetization curve is shifted in the positive applied magnetic field direction.

【0046】図5にバッファ層12として、稠密六方構
造を有するHf,Zr,Tiを用いた多層膜の磁化曲線
を示す。これらの多層膜の保護層17にはバッファ層1
2と同じ材料を用いた。図5のように、磁化曲線は2つ
の部分に明瞭に分離している。このことから、バッファ
層12として、稠密六方構造を有するHf,Zr,Ti
を用いると、2層の磁性層間の交換相互作用が弱くな
り、かつ、一方の磁性層15に反強磁性層16からの交
換バイアス磁界が強く印加されていることがわかる。こ
の原因を明らかにするために、多層膜に対してX線回折
を行ったところ、バッファ層12として稠密六方構造を
有するHf,Zr,Tiを用いた多層膜は、強い(11
1)配向を示した(図10参照)。しかし、バッファ層
12として、面心立方構造あるいは体心立方構造を有す
る非磁性材料を用いた多層膜、および、バッファ層を用
いていない多層膜は強い(111)配向を示さなかっ
た。
FIG. 5 shows a magnetization curve of a multilayer film using Hf, Zr, and Ti having a close-packed hexagonal structure as the buffer layer 12. The buffer layer 1 is used as the protective layer 17 of these multilayer films.
The same material as 2 was used. As shown in FIG. 5, the magnetization curve is clearly separated into two parts. From this, as the buffer layer 12, Hf, Zr, Ti having a dense hexagonal structure is formed.
It can be seen that by using, the exchange interaction between the two magnetic layers is weakened and the exchange bias magnetic field from the antiferromagnetic layer 16 is strongly applied to the one magnetic layer 15. In order to clarify the cause, X-ray diffraction was performed on the multilayer film, and the multilayer film using Hf, Zr, and Ti having a close-packed hexagonal structure as the buffer layer 12 showed strong (11
1) Orientation was shown (see FIG. 10). However, the multilayer film using the non-magnetic material having the face-centered cubic structure or the body-centered cubic structure as the buffer layer 12 and the multilayer film not using the buffer layer did not show strong (111) orientation.

【0047】以上述べたように、バッファ層12とし
て、稠密六方構造を有する非磁性材料を用いると、2層
の磁性層間の交換相互作用が弱くなり、かつ、一方の磁
性層15に反強磁性層16からの交換バイアス磁界が強
く印加される。しかし、バッファ層12として、面心立
方構造あるいは体心立方構造を有する非磁性材料を用い
た場合、および、バッファ層を用いない場合には、2層
の磁性層間の交換相互作用が強い、あるいは、反強磁性
層16からの交換バイアス磁界が十分ではない。
As described above, when a nonmagnetic material having a dense hexagonal structure is used as the buffer layer 12, the exchange interaction between the two magnetic layers is weakened, and one magnetic layer 15 is antiferromagnetic. The exchange bias magnetic field from layer 16 is strongly applied. However, when a nonmagnetic material having a face-centered cubic structure or a body-centered cubic structure is used as the buffer layer 12, and when the buffer layer is not used, the exchange interaction between the two magnetic layers is strong, or The exchange bias magnetic field from the antiferromagnetic layer 16 is not sufficient.

【0048】バッファ層を用いていない多層膜の磁気抵
抗効果曲線を図6に示す。この図のように、多層膜は、
ほとんど磁気抵抗効果を示さない。これは、図2の磁化
曲線から明らかなように、2層の磁性層が外部磁界に対
して同様の磁化過程を示すため、磁化の向きが常に平行
であるためである。
FIG. 6 shows a magnetoresistive effect curve of a multilayer film which does not use a buffer layer. As shown in this figure, the multilayer film
Shows almost no magnetoresistive effect. This is because, as is clear from the magnetization curve of FIG. 2, the two magnetic layers exhibit similar magnetization processes with respect to the external magnetic field, and thus the directions of magnetization are always parallel.

【0049】同様に、図7のように、バッファ層12と
して、面心立方構造を有するCu,Ag,Auを用いた
多層膜も磁気抵抗効果を示さない。
Similarly, as shown in FIG. 7, a multilayer film using Cu, Ag, and Au having a face-centered cubic structure as the buffer layer 12 does not show the magnetoresistive effect.

【0050】バッファ層12として、体心立方構造を有
するCr,Nb,Taを用いた多層膜は、図8のよう
に、比較的高い磁気抵抗変化率を示す。しかし、図4の
ように、明瞭には磁化曲線が2つの部分に分離していな
いため、電気抵抗が高い磁界領域が狭い。この磁界領域
を超えた磁界を印加すると、多層膜は同じ磁化状態に戻
らなくなる。これは、磁化曲線にヒステリシスがあるた
めである。従って、上記磁界領域は、広い方が好まし
い。
The multilayer film using Cr, Nb, Ta having a body-centered cubic structure as the buffer layer 12 exhibits a relatively high magnetoresistance change rate as shown in FIG. However, as shown in FIG. 4, since the magnetization curve is not clearly divided into two parts, the magnetic field region with high electric resistance is narrow. When a magnetic field exceeding this magnetic field region is applied, the multilayer film will not return to the same magnetization state. This is because the magnetization curve has hysteresis. Therefore, it is preferable that the magnetic field region is wide.

【0051】これに対し、本発明の、バッファ層12と
して、稠密六方構造を有するHf,Zr,Tiを用いた
多層膜は、比較的高い磁気抵抗変化率を示すのみなら
ず、電気抵抗が高い領域が広い。
On the other hand, the multilayer film using Hf, Zr, and Ti having the dense hexagonal structure as the buffer layer 12 of the present invention not only exhibits a relatively high magnetoresistance change rate but also has a high electric resistance. The area is large.

【0052】本発明者等は、バッファ層材料として、Z
nを用いた多層膜についても検討を行ったが、上記稠密
六方構造を有するバッファ層を用いた場合とほぼ同様の
結果を得た。しかし、バッファ層材料としてZnを用い
た多層膜は、(111)配向が、Hf,Zr,Tiを用
いた多層膜よりも弱い。このため、バッファ層材料とし
てZnを用いた多層膜は、Hf,Zr,Tiを用いた多
層膜よりも、若干、特性が劣っていた。
The present inventors have used Z as a buffer layer material.
A study was also conducted on a multilayer film using n, and the same result as when the buffer layer having the dense hexagonal structure was used was obtained. However, the multilayer film using Zn as the buffer layer material has a weaker (111) orientation than the multilayer film using Hf, Zr, and Ti. Therefore, the characteristics of the multilayer film using Zn as the buffer layer material were slightly inferior to those of the multilayer film using Hf, Zr, and Ti.

【0053】また、磁気抵抗効果曲線にバルクハウゼン
ノイズが生じる場合は、多層磁気抵抗効果膜の磁界検出
方向と直角の方向にバイアス磁界を印加する機構を設け
ることが、バルクハウゼンノイズの抑止に効果がある。
磁気抵抗効果膜をトラック幅1μm以下の狭トラック磁
気ヘッドに用いる場合には、トラック幅を厳密に規定す
る必要があるため、上記バイアス磁界を印加する機構と
しては、反強磁性層から直接交換バイアス磁界が印加さ
れていない磁性層のトラック以外の部分に、反強磁性層
を接触させる方法が好ましい。
When Barkhausen noise is generated in the magnetoresistive effect curve, a mechanism for applying a bias magnetic field in a direction perpendicular to the magnetic field detection direction of the multilayer magnetoresistive effect film is effective in suppressing Barkhausen noise. There is.
When the magnetoresistive film is used for a narrow track magnetic head having a track width of 1 μm or less, the track width needs to be strictly defined. Therefore, as a mechanism for applying the bias magnetic field, a direct exchange bias from the antiferromagnetic layer A method of bringing the antiferromagnetic layer into contact with a portion of the magnetic layer other than the track to which the magnetic field is not applied is preferable.

【0054】また、本実施例では、磁性層としてNi−
Fe系合金を使用したが、他の面心立方構造を有する磁
性層を用いても、バッファ層材料による磁化曲線および
磁気抵抗効果曲線の変化は同様である。しかし、反強磁
性層から直接交換バイアス磁界が印加されていない磁性
層は、軟磁性を示すことが必要であり、磁性層として、
Ni−Fe系合金、Ni−Fe−Co系合金を用いるこ
とが好ましい。
In this embodiment, the magnetic layer is made of Ni-
Although the Fe-based alloy is used, even if a magnetic layer having another face-centered cubic structure is used, the changes in the magnetization curve and the magnetoresistive effect curve due to the buffer layer material are the same. However, the magnetic layer to which the exchange bias magnetic field is not directly applied from the antiferromagnetic layer needs to exhibit soft magnetism.
It is preferable to use a Ni-Fe based alloy or a Ni-Fe-Co based alloy.

【0055】また、本実施例では、非磁性層として、C
uを用いたが、電気抵抗率の低い、Au,Ag,Alを
用いても同様の結果が得られる。しかし、磁性層として
3d遷移金属を用いる場合には、磁性層とのフェルミ面
のマッチングの観点から、非磁性層はCuであることが
好ましい。
Further, in this embodiment, C is used as the non-magnetic layer.
Although u was used, similar results can be obtained by using Au, Ag, or Al, which has a low electric resistivity. However, when a 3d transition metal is used for the magnetic layer, the non-magnetic layer is preferably Cu from the viewpoint of matching the Fermi surface with the magnetic layer.

【0056】また、本実施例では、反強磁性層として、
Fe−Mn系合金を用いたが、他の反強磁性材料を用い
ることもできる。反強磁性材料としては、Fe−Mn系
合金およびFe−Mn系合金に耐食性向上元素を添加し
た合金、NiOなどが好ましい。Fe−Mn系合金に耐
食性向上元素を添加した合金としては、Fe−Mn−R
u系合金が、耐食性、ネ−ル温度の高さの点から好まし
い。
Further, in this embodiment, as the antiferromagnetic layer,
Although the Fe-Mn-based alloy was used, other antiferromagnetic materials can also be used. As the antiferromagnetic material, Fe—Mn based alloys, alloys in which a corrosion resistance improving element is added to Fe—Mn based alloys, NiO and the like are preferable. As an alloy in which a corrosion resistance improving element is added to a Fe-Mn-based alloy, Fe-Mn-R
The u-based alloy is preferable in terms of corrosion resistance and high nail temperature.

【0057】また、本実施例では、バッファ層12とし
て、Hf,Zr,Ti,Znを用いたが、実質的にH
f,Zr,Ti,Znを主成分とし、稠密六方構造を有
する非磁性合金であれば、上記実施例と同様の効果が得
られる。
In this embodiment, Hf, Zr, Ti, and Zn are used for the buffer layer 12, but H is substantially
A non-magnetic alloy containing f, Zr, Ti, and Zn as main components and having a close-packed hexagonal structure can achieve the same effects as those of the above-described embodiments.

【0058】[実施例2]実施例1と同様の構造の多層
膜を形成した。図1のバッファ層12として、Tiを用
いた。スパッタリング条件を変え、透過電子顕微鏡によ
る断面観察を行なったところ、Tiは非晶質になってい
た。Tiが非晶質になる原因は明らかではないが、Si
基板上に自然形成したSiO2と反応した可能性があ
る。従って、上記バッファ層12は、Tiの酸化物であ
る可能性がある。また、多層膜に対してX線回折を行っ
たところ、多層膜は強い(111)配向を示した。非晶
質金属上に多層膜を形成したために、面心立方構造を有
するNi−Fe系合金等の最稠密面である(111)面
が基板と平行に配向しやすくなったためと考えられる。
[Example 2] A multilayer film having the same structure as that of Example 1 was formed. Ti was used as the buffer layer 12 in FIG. When the cross section was observed with a transmission electron microscope under different sputtering conditions, Ti was amorphous. The reason why Ti becomes amorphous is not clear, but Si
It is possible that it has reacted with the SiO 2 spontaneously formed on the substrate. Therefore, the buffer layer 12 may be an oxide of Ti. When X-ray diffraction was performed on the multilayer film, the multilayer film showed strong (111) orientation. It is considered that since the multilayer film was formed on the amorphous metal, the (111) plane, which is the closest packed surface of the Ni—Fe alloy having a face-centered cubic structure, was easily oriented parallel to the substrate.

【0059】また、バッファ層12として、Hf,Zr
を用いた場合にも、バッファ層12は非晶質になった。
Further, as the buffer layer 12, Hf, Zr
The buffer layer 12 also became amorphous when using.

【0060】また、本実施例では、バッファ層12とし
て、Hf,Zr,Tiを用いたが、実質的にHf,Z
r,Tiを主成分とした合金であれば、上記実施例と同
様の効果が得られる。
In this embodiment, Hf, Zr and Ti are used as the buffer layer 12, but Hf and Z are substantially used.
If it is an alloy containing r and Ti as the main components, the same effect as in the above embodiment can be obtained.

【0061】[実施例3]実施例1と同様の方法で、多
層膜を形成した。本実施例では、図1の磁性層13およ
び15として、膜厚5nmのNi−Fe−Co系合金を
用いた。NiおよびFeの組成比は、80:20とし、
Coの濃度を変化した。基板11にはSi(100)単
結晶を用いた。また、バッファ層12として、厚さ5n
mのHfを用いた。非磁性層14には、厚さ2nmのC
uをもちいた。また、反強磁性層16には、厚さ5nm
のFe−40at%Mn合金を用いた。また、保護層1
7には、厚さ5nmのHfを用いた。
[Example 3] A multilayer film was formed in the same manner as in Example 1. In this example, as the magnetic layers 13 and 15 of FIG. 1, a Ni—Fe—Co alloy having a film thickness of 5 nm was used. The composition ratio of Ni and Fe is 80:20,
The Co concentration was changed. The substrate 11 was made of Si (100) single crystal. The thickness of the buffer layer 12 is 5n.
m Hf was used. The nonmagnetic layer 14 has a thickness of 2 nm of C.
I used u. The antiferromagnetic layer 16 has a thickness of 5 nm.
Fe-40 at% Mn alloy was used. In addition, the protective layer 1
Hf having a thickness of 5 nm was used for 7.

【0062】図11に、Co濃度と多層膜の磁気抵抗変
化率との関係を示す。この図のように、Co濃度の増加
に従い、磁気抵抗変化率が増加する。2.5%以上の磁
気抵抗変化率を得るためには、Co濃度が10%以上で
あることが必要である。
FIG. 11 shows the relationship between the Co concentration and the magnetoresistance change rate of the multilayer film. As shown in this figure, the magnetoresistance change rate increases as the Co concentration increases. In order to obtain the magnetoresistance change rate of 2.5% or more, the Co concentration needs to be 10% or more.

【0063】図12に、Co濃度と磁性層13の異方性
磁界との関係を示す。この図のように、Co濃度を高く
すると、磁性層13の異方性磁界が高くなる。磁性層1
3の異方性磁界が高くなると、磁界に対する感度が低下
するという問題がある。図12のように、異方性磁界を
2.4kA/m(30Oe)以下とするためには、Co
濃度を25at%以下にする必要がある。
FIG. 12 shows the relationship between the Co concentration and the anisotropic magnetic field of the magnetic layer 13. As shown in this figure, when the Co concentration is increased, the anisotropic magnetic field of the magnetic layer 13 is increased. Magnetic layer 1
When the anisotropic magnetic field of 3 becomes high, there is a problem that the sensitivity to the magnetic field is lowered. As shown in FIG. 12, in order to keep the anisotropic magnetic field at 2.4 kA / m (30 Oe) or less, Co
The concentration needs to be 25 at% or less.

【0064】以上のように、高い磁気抵抗変化率および
低い磁性層の異方性磁界を得るためには、Co濃度を1
0〜25at%にすることが好ましい。
As described above, in order to obtain a high magnetoresistance change rate and a low anisotropic magnetic field of the magnetic layer, the Co concentration is set to 1
It is preferably 0 to 25 at%.

【0065】なお、磁性層の結晶磁気異方性定数を零に
近くし、磁性層の保磁力を低くするためには、NiとF
eの組成比を75:25〜85:15にすることが好ま
しい。
In order to bring the magnetocrystalline anisotropy constant of the magnetic layer close to zero and to lower the coercive force of the magnetic layer, Ni and F are used.
The composition ratio of e is preferably 75:25 to 85:15.

【0066】[実施例4]実施例1と同様の方法で、多
層膜を形成した。本実施例では、図13の基板21には
Si(100)単結晶を用いた。また、バッファ層22
として、厚さ5nmのTi,Zr,Hfを用いた。磁性
層23には、厚さ5nmのNi−16at%Fe−18
at%Co合金を用いた。非磁性層24には、厚さ2n
mのCuをもちいた。磁性層25には、厚さ4nmのC
oを用い、磁性層26には、厚さ3nmのNi−16a
t%Fe−18at%Co合金を用いた。また、反強磁
性層27には、厚さ5nmのFe−40at%Mn合金
を用いた。また、保護層28には、厚さ5nmのTi,
Zr,Hfを用いた。
[Example 4] A multilayer film was formed in the same manner as in Example 1. In this example, Si (100) single crystal was used for the substrate 21 of FIG. In addition, the buffer layer 22
As the material, Ti, Zr, and Hf having a thickness of 5 nm were used. The magnetic layer 23 has a thickness of 5 nm of Ni-16 at% Fe-18.
At% Co alloy was used. The nonmagnetic layer 24 has a thickness of 2n
m of Cu was used. The magnetic layer 25 has a thickness of 4 nm of C
and the magnetic layer 26 has a thickness of 3 nm of Ni-16a.
A t% Fe-18at% Co alloy was used. Further, for the antiferromagnetic layer 27, a Fe-40 at% Mn alloy having a thickness of 5 nm was used. The protective layer 28 has a thickness of 5 nm of Ti,
Zr and Hf were used.

【0067】表1に多層膜の磁気抵抗変化率を示す。表
1のように、磁性層の一部にCoを用いることにより、
高い磁気抵抗変化率を得ることができる。
Table 1 shows the magnetoresistance change rate of the multilayer film. As shown in Table 1, by using Co for a part of the magnetic layer,
A high magnetoresistance change rate can be obtained.

【0068】[0068]

【表1】 [Table 1]

【0069】なお、本実施例で磁性層26としてNi−
Fe−Co系合金を用いた。これは、面心立方構造のF
e−Mn系合金の形成を容易にするためである。Fe−
Mn系合金は面心立方構造の時、室温以上のネ−ル温度
を示す。従って、Co上にFe−Mn系合金を形成して
も、Fe−Mn系合金が面心立方構造になれば、磁性層
26は必要ない。
In this embodiment, the magnetic layer 26 is made of Ni-
An Fe-Co based alloy was used. This is the face-centered cubic structure F
This is to facilitate the formation of the e-Mn-based alloy. Fe-
The Mn-based alloy exhibits a nail temperature above room temperature when it has a face-centered cubic structure. Therefore, even if an Fe-Mn-based alloy is formed on Co, the magnetic layer 26 is not necessary if the Fe-Mn-based alloy has a face-centered cubic structure.

【0070】本実施例では、磁性層25として、Coを
用いたが、Coを主成分とする合金を用いても高い磁気
抵抗変化率を得ることができる。
In this embodiment, Co is used as the magnetic layer 25, but a high magnetoresistance change rate can be obtained by using an alloy containing Co as a main component.

【0071】また、本実施例では、磁性層23としてN
i−Fe−Co系合金を使用したが、他の面心立方構造
を有する磁性層を用いても、同様の結果が得られる。し
かし、反強磁性層から直接交換バイアス磁界が印加され
ていない磁性層は、軟磁性を示すことが必要であり、磁
性層23として、Ni−Fe系合金、Ni−Fe−Co
系合金を用いることが好ましい。
In this embodiment, the magnetic layer 23 is made of N.
Although the i-Fe-Co alloy was used, similar results can be obtained by using other magnetic layers having a face-centered cubic structure. However, the magnetic layer to which the exchange bias magnetic field is not directly applied from the antiferromagnetic layer needs to exhibit soft magnetism, and as the magnetic layer 23, a Ni—Fe based alloy, Ni—Fe—Co is used.
It is preferable to use a system alloy.

【0072】また、本実施例では、非磁性層24とし
て、Cuを用いたが、電気抵抗率の低い、Au,Ag,
Alを用いても同様の結果が得られる。しかし、磁性層
として3d遷移金属を用いる場合には、磁性層とのフェ
ルミ面のマッチングの観点から、非磁性層はCuである
ことが好ましい。
In this embodiment, Cu is used as the nonmagnetic layer 24, but Au, Ag, and
Similar results are obtained with Al. However, when a 3d transition metal is used for the magnetic layer, the non-magnetic layer is preferably Cu from the viewpoint of matching the Fermi surface with the magnetic layer.

【0073】また、本実施例では、反強磁性層27とし
て、Fe−Mn系合金を用いたが、他の反強磁性材料を
用いることもできる。反強磁性材料としては、Fe−M
n系合金およびFe−Mn系合金に耐食性向上元素を添
加した合金、NiOなどが好ましい。Fe−Mn系合金
に耐食性向上元素を添加した合金としては、Fe−Mn
−Ru系合金が、耐食性、ネ−ル温度の高さの点から好
ましい。
In this embodiment, the Fe-Mn alloy is used as the antiferromagnetic layer 27, but other antiferromagnetic materials can be used. As an antiferromagnetic material, Fe-M
An alloy obtained by adding a corrosion resistance improving element to an n-based alloy or an Fe-Mn-based alloy, NiO or the like is preferable. As an alloy obtained by adding a corrosion resistance improving element to an Fe-Mn-based alloy, Fe-Mn
A -Ru alloy is preferable from the viewpoint of corrosion resistance and high nail temperature.

【0074】また、本実施例では、バッファ層22とし
て、Hf,Zr,Tiを用いたが、実質的にHf,Z
r,Tiを主成分とし、稠密六方構造を有する非磁性合
金であれば、上記実施例と同様の効果が得られる。ま
た、多層膜を(111)配向にするには、Hf,Zr,
Tiを主成分とする非晶質合金を用いることが好まし
い。
Although Hf, Zr, and Ti are used as the buffer layer 22 in this embodiment, Hf, Z are substantially used.
If a non-magnetic alloy containing r and Ti as main components and having a close-packed hexagonal structure, the same effect as that of the above-mentioned embodiment can be obtained. Further, in order to make the multilayer film have (111) orientation, Hf, Zr,
It is preferable to use an amorphous alloy containing Ti as a main component.

【0075】[実施例5]実施例1と同様の方法で、多
層膜を形成した。本実施例では、図14の基板31には
Si(100)単結晶を用いた。また、バッファ層32
として、厚さ5nmのTi,Zr,Hfを用いた。磁性
層33および磁性層35には、厚さ2nmのNi−16
at%Fe−18at%Co合金を用いた。非磁性層3
4には、厚さ2nmのCuを用いた。反強磁性層36に
は、厚さ3nmのFe−40at%Mn合金を用いた。
交換相互作用遮断層37には、厚さ1nmのCuを用い
た。また、保護層38には、厚さ5nmのTi,Zr,
Hfを用いた。
[Example 5] A multilayer film was formed in the same manner as in Example 1. In this example, Si (100) single crystal was used for the substrate 31 of FIG. In addition, the buffer layer 32
As the material, Ti, Zr, and Hf having a thickness of 5 nm were used. The magnetic layer 33 and the magnetic layer 35 include Ni-16 having a thickness of 2 nm.
An at% Fe-18at% Co alloy was used. Non-magnetic layer 3
For Cu, 2 nm thick Cu was used. For the antiferromagnetic layer 36, a 3 nm thick Fe-40 at% Mn alloy was used.
For the exchange interaction blocking layer 37, Cu having a thickness of 1 nm was used. The protective layer 38 has a thickness of 5 nm of Ti, Zr,
Hf was used.

【0076】表2に多層膜の磁気抵抗変化率を示す。表
2のように、磁性層を4層にし、その内の2層に反強磁
性層からの交換バイアス磁界を印加することにより、高
い磁気抵抗変化率を得ることができる。
Table 2 shows the magnetoresistance change rate of the multilayer film. As shown in Table 2, it is possible to obtain a high magnetoresistance change rate by forming four magnetic layers and applying an exchange bias magnetic field from the antiferromagnetic layer to two of the magnetic layers.

【0077】[0077]

【表1】 [Table 1]

【0078】本実施例では、磁性層を4層にし、その内
の2層に反強磁性層からの交換バイアス磁界を印加した
場合について述べたが、さらに磁性層数を増やしても高
い磁気抵抗変化率を得ることができる。
In this embodiment, the magnetic layer has four layers, and the exchange bias magnetic field from the antiferromagnetic layer is applied to two of the magnetic layers. However, even if the number of magnetic layers is further increased, the magnetic resistance is high. The rate of change can be obtained.

【0079】[実施例6]本発明の多層膜を用いた磁気
抵抗効果素子を形成した。本実施例では、図1のバッフ
ァ層12として、厚さ5nmのHfを用いた。磁性層1
3および磁性層15には、厚さ5nmのNi−16at
%Fe−18at%Co合金を用いた。非磁性層14に
は、厚さ2nmのCuをもちいた。反強磁性層16に
は、厚さ5nmのFe−40at%Mn合金を用いた。
また、保護層17には、厚さ5nmのHfを用いた。
Example 6 A magnetoresistive effect element using the multilayer film of the present invention was formed. In this example, Hf having a thickness of 5 nm was used as the buffer layer 12 in FIG. Magnetic layer 1
3 and the magnetic layer 15 have a thickness of 5 nm of Ni-16at.
% Fe-18 at% Co alloy was used. Cu having a thickness of 2 nm was used for the nonmagnetic layer 14. For the antiferromagnetic layer 16, a Fe-40 at% Mn alloy having a thickness of 5 nm was used.
The protective layer 17 was made of Hf having a thickness of 5 nm.

【0080】図15に磁気抵抗効果素子の構造を示す。
磁気抵抗効果素子は、多層磁気抵抗効果膜41および電
極42をシ−ルド層43、44で挟んだ構造を有する。
上記磁気抵抗効果素子に磁界を印加し、電気抵抗率の変
化を測定したところ、本発明の多層磁気抵抗効果膜を用
いた磁気抵抗効果素子は、1.6kA/m(20Oe)
程度の印加磁界で3%程度の磁気抵抗変化率を示した。
また、本発明の磁気抵抗効果素子の再生出力は、Ni−
Fe単層膜を用いた磁気抵抗効果素子と比較して2.7
倍であった。
FIG. 15 shows the structure of the magnetoresistive effect element.
The magnetoresistive effect element has a structure in which a multilayer magnetoresistive effect film 41 and an electrode 42 are sandwiched between shield layers 43 and 44.
When a magnetic field was applied to the magnetoresistive effect element and the change in electric resistivity was measured, it was found that the magnetoresistive effect element using the multilayer magnetoresistive effect film of the present invention was 1.6 kA / m (20 Oe).
A magnetic resistance change rate of about 3% was exhibited with an applied magnetic field of about 3%.
The reproduction output of the magnetoresistive effect element of the present invention is Ni-
2.7 compared with the magnetoresistive effect element using the Fe single layer film.
It was double.

【0081】[実施例7]実施例6で述べた磁気抵抗効
果素子を用い、磁気ヘッドを作製した。磁気ヘッドの構
造を以下に示す。図16は、記録再生分離型ヘッドの一
部分を切断した場合の斜視図である。多層磁気抵抗効果
膜51をシ−ルド層52、53で挾んだ部分が再生ヘッ
ドとして働き、コイル54を挾む下部磁極55、上部磁
極56の部分が記録ヘッドとして働く。多層磁気抵抗効
果膜51は実施例5に記載の多層膜からなる。また、電
極58には、Cr/Cu/Crという多層構造の材料を
用いた。
[Embodiment 7] A magnetic head was produced using the magnetoresistive effect element described in Embodiment 6. The structure of the magnetic head is shown below. FIG. 16 is a perspective view when a part of the recording / reproducing separated type head is cut. The portion of the multilayer magnetoresistive film 51 sandwiched between the shield layers 52 and 53 functions as a reproducing head, and the lower magnetic pole 55 and the upper magnetic pole 56 sandwiching the coil 54 function as a recording head. The multilayer magnetoresistive effect film 51 is composed of the multilayer film described in the fifth embodiment. Further, a material having a multilayer structure of Cr / Cu / Cr is used for the electrode 58.

【0082】以下にこのヘッドの作製方法を示す。The manufacturing method of this head will be described below.

【0083】Al23・TiCを主成分とする焼結体を
スライダ用の基板57とした。シ−ルド層、記録磁極に
はスパッタリング法で形成したNi−Fe合金を用い
た。各磁性膜の膜厚は、以下のようにした。上下のシ−
ルド層52、53は1.0μm、下部磁極55、上部5
6は3.0μm、各層間のギャップ材としてはスパッタ
リングで形成したAl23を用いた。ギャップ層の膜厚
は、シ−ルド層と磁気抵抗効果素子間で0.2μm、記
録磁極間では0.4μmとした。さらに再生ヘッドと記
録ヘッドの間隔は約4μmとし、このギャップもAl2
3で形成した。コイル54には膜厚3μmのCuを使
用した。
A sintered body containing Al 2 O 3 .TiC as a main component was used as the slider substrate 57. A Ni-Fe alloy formed by a sputtering method was used for the shield layer and the recording magnetic pole. The thickness of each magnetic film was as follows. Upper and lower seams
Field layers 52 and 53 are 1.0 μm, lower magnetic pole 55, and upper part 5
6 was 3.0 μm, and Al 2 O 3 formed by sputtering was used as the gap material between the layers. The film thickness of the gap layer was 0.2 μm between the shield layer and the magnetoresistive effect element, and 0.4 μm between the recording magnetic poles. Further, the distance between the reproducing head and the recording head is set to about 4 μm, and this gap is also made of Al 2
Formed with O 3 . Cu having a film thickness of 3 μm was used for the coil 54.

【0084】以上述べた構造の磁気ヘッドで記録再生を
行ったところ、Ni−Fe単層膜を用いた磁気ヘッドと
比較して、2.6倍高い再生出力を得た。これは、本発
明の磁気ヘッドに高磁気抵抗効果を示す多層膜を用いた
ためと考えられる。
When recording / reproducing was performed with the magnetic head having the above-mentioned structure, a reproducing output 2.6 times higher than that of the magnetic head using the Ni--Fe single layer film was obtained. It is considered that this is because the magnetic head of the present invention uses a multilayer film having a high magnetoresistive effect.

【0085】また、本発明の磁気抵抗効果素子は、磁気
ヘッド以外の磁界検出器にも用いることができる。
Further, the magnetoresistive effect element of the present invention can be used in a magnetic field detector other than the magnetic head.

【0086】また、さらに、上記磁気ヘッドを磁気記録
再生装置に用いることにより、高性能磁気記録再生装置
が得られる。
Further, by using the above magnetic head in a magnetic recording / reproducing apparatus, a high performance magnetic recording / reproducing apparatus can be obtained.

【0087】[0087]

【発明の効果】上述のように、磁性層の一部に反強磁性
層からの交換バイアス磁界を印加した多層膜において、
基板上にHf,Zr,Tiなどの稠密六方構造を有する
非磁性合金からなるバッファ層を形成することにより、
低い磁界で高い磁気抵抗変化率を示す多層膜が得られ
る。さらに、上記多層磁気抵抗効果膜は、磁気抵抗効果
素子、磁界センサ、磁気ヘッドなどに好適である。ま
た、上記磁気ヘッドを用いることにより、高性能磁気記
録再生装置を得ることができる。
As described above, in the multilayer film in which the exchange bias magnetic field from the antiferromagnetic layer is applied to a part of the magnetic layer,
By forming a buffer layer made of a non-magnetic alloy having a dense hexagonal structure such as Hf, Zr, and Ti on the substrate,
A multilayer film exhibiting a high magnetoresistance change rate at a low magnetic field can be obtained. Further, the multilayer magnetoresistive effect film is suitable for a magnetoresistive effect element, a magnetic field sensor, a magnetic head and the like. Further, by using the above magnetic head, a high performance magnetic recording / reproducing apparatus can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の多層磁気抵抗効果膜の構造を示す断面
図である。
FIG. 1 is a sectional view showing a structure of a multilayer magnetoresistive effect film of the present invention.

【図2】バッファ層を有さない多層膜の磁化曲線図であ
る。
FIG. 2 is a magnetization curve diagram of a multilayer film having no buffer layer.

【図3】面心立方構造を有するバッファ層を用いた多層
膜の磁化曲線図である。
FIG. 3 is a magnetization curve diagram of a multilayer film using a buffer layer having a face-centered cubic structure.

【図4】体心立方構造を有するバッファ層を用いた多層
膜の磁化曲線図である。
FIG. 4 is a magnetization curve diagram of a multilayer film using a buffer layer having a body-centered cubic structure.

【図5】稠密六方構造を有するバッファ層を用いた本発
明の多層膜の磁化曲線図である。
FIG. 5 is a magnetization curve diagram of a multilayer film of the present invention using a buffer layer having a dense hexagonal structure.

【図6】バッファ層を有さない多層膜の磁気抵抗効果曲
線図である。
FIG. 6 is a magnetoresistive effect curve diagram of a multilayer film having no buffer layer.

【図7】面心立方構造を有するバッファ層を用いた多層
膜の磁気抵抗効果曲線図である。
FIG. 7 is a magnetoresistive effect curve diagram of a multilayer film using a buffer layer having a face-centered cubic structure.

【図8】体心立方構造を有するバッファ層を用いた多層
膜の磁気抵抗効果曲線図である。
FIG. 8 is a magnetoresistive effect curve diagram of a multilayer film using a buffer layer having a body-centered cubic structure.

【図9】稠密六方構造を有するバッファ層を用いた本発
明の多層膜の磁気抵抗効果曲線図である。
FIG. 9 is a magnetoresistive effect curve diagram of the multilayer film of the present invention using a buffer layer having a dense hexagonal structure.

【図10】本発明の多層磁気抵抗効果膜のX線回折プロ
ファイルを示す図である。
FIG. 10 is a diagram showing an X-ray diffraction profile of the multilayer magnetoresistive effect film of the present invention.

【図11】本発明の多層磁気抵抗効果膜のCo濃度と磁
気抵抗変化率との関係を示すグラフである。
FIG. 11 is a graph showing the relationship between the Co concentration and the magnetoresistance change rate of the multilayer magnetoresistive effect film of the present invention.

【図12】本発明の多層磁気抵抗効果膜のCo濃度と磁
性層の異方性磁界との関係を示すグラフである。
FIG. 12 is a graph showing the relationship between the Co concentration of the multilayer magnetoresistive film of the present invention and the anisotropic magnetic field of the magnetic layer.

【図13】本発明の磁性層の一部にCo系磁性層を用い
た多層磁気抵抗効果膜の構造を示す断面図である。
FIG. 13 is a cross-sectional view showing the structure of a multilayer magnetoresistive effect film using a Co-based magnetic layer as a part of the magnetic layer of the present invention.

【図14】本発明の磁性層数が4層の多層磁気抵抗効果
膜の構造を示す断面図である。
FIG. 14 is a cross-sectional view showing the structure of a multilayer magnetoresistive film having four magnetic layers according to the present invention.

【図15】本発明の多層磁気抵抗効果膜を用いた磁気抵
抗効果素子の構造を示す斜視図である。
FIG. 15 is a perspective view showing the structure of a magnetoresistive effect element using the multilayer magnetoresistive effect film of the present invention.

【図16】本発明の磁気ヘッドの構造を示す斜視図であ
る。
FIG. 16 is a perspective view showing the structure of the magnetic head of the present invention.

【符号の説明】[Explanation of symbols]

11,21,31…基板、12,22,32…バッファ
層、13,15,23,25,26,33,35…磁性
層、14,24,34…非磁性層、16,27,36…
反強磁性層、17,28,38…保護層、37…交換相
互作用遮断層、41…多層磁気抵抗効果膜、42…電
極、43,44…シ−ルド層、51…多層磁気抵抗効果
膜、52,53…シ−ルド層、54…コイル、55…下
部磁極、56…上部磁極、57…基体、58…電極。
11, 21, 31 ... Substrate, 12, 22, 32 ... Buffer layer, 13, 15, 23, 25, 26, 33, 35 ... Magnetic layer, 14, 24, 34 ... Nonmagnetic layer, 16, 27, 36 ...
Antiferromagnetic layer, 17, 28, 38 ... Protective layer, 37 ... Exchange interaction blocking layer, 41 ... Multilayer magnetoresistive effect film, 42 ... Electrode, 43, 44 ... Shield layer, 51 ... Multilayer magnetoresistive effect film , 52, 53 ... Shield layer, 54 ... Coil, 55 ... Lower magnetic pole, 56 ... Upper magnetic pole, 57 ... Substrate, 58 ... Electrode.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 G11B 11/10 A 9075−5D Z 9075−5D H01L 43/08 Z 9274−4M (72)発明者 鈴木 幹夫 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 二本 正昭 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 北田 正弘 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 常田 久乃 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 5 Identification number Office reference number FI technical display location G11B 11/10 A 9075-5D Z 9075-5D H01L 43/08 Z 9274-4M (72) Inventor Mikio Suzuki 1-280, Higashi Koigokubo, Kokubunji, Tokyo, Central Research Laboratory, Hitachi, Ltd. (72) Inventor Masaaki Nihon 1-280, Higashi Koikeku, Tokyo Kokubunji City, Central Research Laboratory, Hitachi, Ltd. (72) Inventor, Masahiro Kitada Tokyo 1-280, Higashi Koikekubo, Kokubunji City, Central Research Laboratory, Hitachi, Ltd. (72) Inventor, Hisano Tsuneda 1-280, Higashi Koikeku, Tokyo Kokubunji City, Central Research Laboratory, Hitachi Ltd.

Claims (30)

【特許請求の範囲】[Claims] 【請求項1】2層以上の磁性層を非磁性層で分割し、少
なくとも1層の磁性層に反強磁性層からの交換バイアス
磁界が印加されており、少なくとも1層の磁性層に反強
磁性層からの交換バイアス磁界は直接には印加されてい
ない多層膜を用いた多層磁気抵抗効果膜において、上記
多層膜と基板との間に、稠密六方構造を有する非磁性金
属からなるバッファ層が形成されていることを特徴とす
る多層磁気抵抗効果膜。
1. A magnetic layer of two or more layers is divided by a non-magnetic layer, and an exchange bias magnetic field from an antiferromagnetic layer is applied to at least one magnetic layer, and at least one magnetic layer has an antiferromagnetic layer. The exchange bias magnetic field from the magnetic layer is not directly applied. In a multilayer magnetoresistive film using a multilayer film, a buffer layer made of a nonmagnetic metal having a dense hexagonal structure is provided between the multilayer film and the substrate. A multi-layered magnetoresistive effect film characterized by being formed.
【請求項2】請求項1に記載の多層磁気抵抗効果膜にお
いて、上記稠密六方構造を有する非磁性金属がTi,H
f,Zn,Zr、あるいはTi,Hf,Zn,Zrを主
成分とする合金からなることを特徴とする多層磁気抵抗
効果膜。
2. The multilayer magnetoresistive effect film according to claim 1, wherein the non-magnetic metal having the dense hexagonal structure is Ti, H.
A multi-layer magnetoresistive effect film comprising an alloy containing f, Zn, Zr or Ti, Hf, Zn, Zr as a main component.
【請求項3】請求項1から請求項2に記載の多層磁気抵
抗効果膜において、上記稠密六方構造を有する非磁性金
属がTi,Hf,Zrであることを特徴とする多層磁気
抵抗効果膜。
3. The multilayer magnetoresistive effect film according to claim 1, wherein the nonmagnetic metal having the dense hexagonal structure is Ti, Hf, or Zr.
【請求項4】2層以上の磁性層を非磁性層で分割し、少
なくとも1層の磁性層に反強磁性層からの交換バイアス
磁界が印加されており、少なくとも1層の磁性層に反強
磁性層からの交換バイアス磁界は直接には印加されてい
ない多層膜を用いた多層磁気抵抗効果膜において、上記
多層膜と基板との間に、Ti,Hf,Zrから選ばれる
少なくとも1種類の金属、あるいは、Ti,Hf,Zr
から選ばれる少なくとも1種類の金属を主成分とする非
磁性金属からなるバッファ層が形成されており、上記バ
ッファ層が非晶質状態であることを特徴とする多層磁気
抵抗効果膜。
4. An exchange bias magnetic field from an antiferromagnetic layer is applied to at least one magnetic layer by dividing two or more magnetic layers into nonmagnetic layers, and at least one magnetic layer is antiferromagnetic. In a multilayer magnetoresistive effect film using a multilayer film to which an exchange bias magnetic field from a magnetic layer is not directly applied, at least one metal selected from Ti, Hf and Zr is provided between the multilayer film and the substrate. , Or Ti, Hf, Zr
A multi-layered magnetoresistive effect film in which a buffer layer made of a non-magnetic metal containing at least one kind of metal selected from among the above is formed, and the buffer layer is in an amorphous state.
【請求項5】請求項1から請求項4に記載の多層磁気抵
抗効果膜において、上記磁性層が面心立方構造を有し、
(111)配向していることを特徴とする多層磁気抵抗
効果膜。
5. The multilayer magnetoresistive effect film according to claim 1, wherein the magnetic layer has a face-centered cubic structure.
A multilayer magnetoresistive effect film having a (111) orientation.
【請求項6】4層以上の磁性層を非磁性層で分割し、少
なくとも2層の磁性層に反強磁性層からの交換バイアス
磁界が印加されており、少なくとも2層の磁性層に反強
磁性層からの交換バイアス磁界は直接には印加されてい
ない多層膜を用いたことを特徴とする多層磁気抵抗効果
膜。
6. A magnetic layer of four or more layers is divided by non-magnetic layers, an exchange bias magnetic field from an antiferromagnetic layer is applied to at least two magnetic layers, and at least two magnetic layers are anti-strong. A multilayer magnetoresistive effect film characterized by using a multilayer film to which an exchange bias magnetic field from a magnetic layer is not directly applied.
【請求項7】請求項6に記載の多層磁気抵抗効果膜にお
いて、上記多層磁気抵抗効果膜と基板との間に、稠密六
方構造を有する非磁性金属からなるバッファ層が形成さ
れていることを特徴とする多層磁気抵抗効果膜。
7. The multilayer magnetoresistive film according to claim 6, wherein a buffer layer made of a nonmagnetic metal having a dense hexagonal structure is formed between the multilayer magnetoresistive film and the substrate. Characteristic multilayer magnetoresistive effect film.
【請求項8】請求項7に記載の多層磁気抵抗効果膜にお
いて、上記稠密六方構造を有する非磁性金属がTi,H
f,Zn,Zr、あるいはTi,Hf,Zn,Zrを主
成分とする合金からなることを特徴とする多層磁気抵抗
効果膜。
8. The multilayer magnetoresistive effect film according to claim 7, wherein the nonmagnetic metal having the dense hexagonal structure is Ti, H.
A multi-layer magnetoresistive effect film comprising an alloy containing f, Zn, Zr or Ti, Hf, Zn, Zr as a main component.
【請求項9】請求項8に記載の多層磁気抵抗効果膜にお
いて、上記稠密六方構造を有する非磁性金属がTi,H
f,Zrであることを特徴とする多層磁気抵抗効果膜。
9. The multilayer magnetoresistive effect film according to claim 8, wherein the nonmagnetic metal having the dense hexagonal structure is Ti, H.
A multilayer magnetoresistive effect film characterized by being f and Zr.
【請求項10】請求項6に記載の多層磁気抵抗効果膜に
おいて、上記多層磁気抵抗効果膜と基板との間に、T
i,Hf,Zrから選ばれる少なくとも1種類の金属、
あるいは、Ti,Hf,Zrから選ばれる少なくとも1
種類の金属を主成分とする非磁性金属からなるバッファ
層が形成されており、上記バッファ層が非晶質状態であ
ることを特徴とする多層磁気抵抗効果膜。
10. The multilayer magnetoresistive effect film according to claim 6, wherein T is provided between the multilayer magnetoresistive effect film and the substrate.
At least one metal selected from i, Hf, and Zr,
Alternatively, at least 1 selected from Ti, Hf, and Zr
A multi-layered magnetoresistive effect film, characterized in that a buffer layer made of a non-magnetic metal whose main component is a kind of metal is formed, and the buffer layer is in an amorphous state.
【請求項11】請求項7から請求項10に記載の多層磁
気抵抗効果膜において、上記磁性層が面心立方構造を有
し、(111)配向していることを特徴とする多層磁気
抵抗効果膜。
11. The multilayer magnetoresistive effect film according to claim 7, wherein the magnetic layer has a face-centered cubic structure and is (111) oriented. film.
【請求項12】請求項1から請求項11に記載の多層磁
気抵抗効果膜において、上記磁性層の少なくとも一部が
Ni−Fe系合金ないしNi−Fe−Co系合金である
ことを特徴とする多層磁気抵抗効果膜。
12. The multilayer magnetoresistive effect film according to claim 1, wherein at least a part of the magnetic layer is a Ni—Fe based alloy or a Ni—Fe—Co based alloy. Multilayer magnetoresistive film.
【請求項13】請求項12に記載の多層磁気抵抗効果膜
において、上記Ni−Fe−Co系合金のCo濃度が1
0〜25at%であることを特徴とする多層磁気抵抗効
果膜。
13. The multilayer magnetoresistive effect film according to claim 12, wherein the Ni concentration of the Ni—Fe—Co alloy is 1 or less.
A multilayer magnetoresistive effect film, characterized in that it is 0 to 25 at%.
【請求項14】請求項1から請求項11に記載の多層磁
気抵抗効果膜において、少なくとも一部の磁性層がCo
あるいはCoを主成分とする合金であることを特徴とす
る多層磁気抵抗効果膜。
14. The multilayer magnetoresistive effect film according to claim 1, wherein at least a part of the magnetic layer is Co.
Alternatively, a multilayer magnetoresistive effect film, which is an alloy containing Co as a main component.
【請求項15】請求項1から請求項14に記載の多層磁
気抵抗効果膜において、上記非磁性層の少なくとも一部
がCuであることを特徴とする多層磁気抵抗効果膜。
15. The multilayer magnetoresistive effect film according to claim 1, wherein at least a part of the nonmagnetic layer is Cu.
【請求項16】2層以上の磁性層を非磁性層で分割し、
少なくとも1層の磁性層に反強磁性層からの交換バイア
ス磁界が印加されており、少なくとも1層の磁性層に反
強磁性層からの交換バイアス磁界は直接には印加されて
いない多層膜を用いた多層磁気抵抗効果膜において、上
記多層膜と基板との間に、稠密六方構造を有する非磁性
金属からなるバッファ層が形成されている多層磁気抵抗
効果膜を少なくとも一部に用いたことを特徴とする磁気
抵抗効果素子。
16. A magnetic layer of two or more layers is divided by a non-magnetic layer,
An exchange bias magnetic field from the antiferromagnetic layer is applied to at least one magnetic layer, and an exchange bias magnetic field from the antiferromagnetic layer is not directly applied to at least one magnetic layer. In the multi-layered magnetoresistive effect film, the multi-layered magnetoresistive effect film in which a buffer layer made of a nonmagnetic metal having a dense hexagonal structure is formed between at least a part of the above-mentioned multi-layered magnetoresistive film is used. And a magnetoresistive effect element.
【請求項17】2層以上の磁性層を非磁性層で分割し、
少なくとも1層の磁性層に反強磁性層からの交換バイア
ス磁界が印加されており、少なくとも1層の磁性層に反
強磁性層からの交換バイアス磁界は直接には印加されて
いない多層膜を用いた多層磁気抵抗効果膜において、上
記多層膜と基板との間に、Ti,Hf,Zrから選ばれ
る少なくとも1種類の金属、あるいは、Ti,Hf,Z
rから選ばれる少なくとも1種類の金属を主成分とする
非磁性金属からなるバッファ層が形成されており、上記
バッファ層が非晶質状態である多層磁気抵抗効果膜を少
なくとも一部に用いたことを特徴とする磁気抵抗効果素
子。
17. A magnetic layer of two or more layers is divided by a non-magnetic layer,
An exchange bias magnetic field from the antiferromagnetic layer is applied to at least one magnetic layer, and an exchange bias magnetic field from the antiferromagnetic layer is not directly applied to at least one magnetic layer. In the multi-layered magnetoresistive effect film, at least one metal selected from Ti, Hf, and Zr or Ti, Hf, and Z is provided between the multi-layered film and the substrate.
A buffer layer made of a non-magnetic metal containing at least one metal selected from r as a main component is formed, and the buffer layer is in an amorphous state. A magnetoresistive effect element characterized by.
【請求項18】4層以上の磁性層を非磁性層で分割し、
少なくとも2層の磁性層に反強磁性層からの交換バイア
ス磁界が印加されており、少なくとも2層の磁性層に反
強磁性層からの交換バイアス磁界は直接には印加されて
いない多層膜を用いた多層磁気抵抗効果膜を少なくとも
一部に用いたことを特徴とする磁気抵抗効果素子。
18. A magnetic layer of four or more layers is divided by a non-magnetic layer,
An exchange bias magnetic field from the antiferromagnetic layer is applied to at least two magnetic layers, and an exchange bias magnetic field from the antiferromagnetic layer is not directly applied to at least two magnetic layers. A magnetoresistive effect element characterized by using the multi-layered magnetoresistive effect film at least partially.
【請求項19】2層以上の磁性層を非磁性層で分割し、
少なくとも1層の磁性層に反強磁性層からの交換バイア
ス磁界が印加されており、少なくとも1層の磁性層に反
強磁性層からの交換バイアス磁界は直接には印加されて
いない多層膜を用いた多層磁気抵抗効果膜において、上
記多層膜と基板との間に、稠密六方構造を有する非磁性
金属からなるバッファ層が形成されている多層磁気抵抗
効果膜を少なくとも一部に用いたことを特徴とする磁気
ヘッド。
19. A magnetic layer of two or more layers is divided by a non-magnetic layer,
An exchange bias magnetic field from the antiferromagnetic layer is applied to at least one magnetic layer, and an exchange bias magnetic field from the antiferromagnetic layer is not directly applied to at least one magnetic layer. In the multi-layered magnetoresistive effect film, the multi-layered magnetoresistive effect film in which a buffer layer made of a nonmagnetic metal having a dense hexagonal structure is formed between at least a part of the above-mentioned multi-layered magnetoresistive film is used. And a magnetic head.
【請求項20】2層以上の磁性層を非磁性層で分割し、
少なくとも1層の磁性層に反強磁性層からの交換バイア
ス磁界が印加されており、少なくとも1層の磁性層に反
強磁性層からの交換バイアス磁界は直接には印加されて
いない多層膜を用いた多層磁気抵抗効果膜において、上
記多層膜と基板との間に、Ti,Hf,Zrから選ばれ
る少なくとも1種類の金属、あるいは、Ti,Hf,Z
rから選ばれる少なくとも1種類の金属を主成分とする
非磁性金属からなるバッファ層が形成されており、上記
バッファ層が非晶質状態である多層磁気抵抗効果膜を少
なくとも一部に用いたことを特徴とする磁気ヘッド。
20. Two or more magnetic layers are divided into non-magnetic layers,
An exchange bias magnetic field from the antiferromagnetic layer is applied to at least one magnetic layer, and an exchange bias magnetic field from the antiferromagnetic layer is not directly applied to at least one magnetic layer. In the multi-layered magnetoresistive effect film, at least one metal selected from Ti, Hf, and Zr or Ti, Hf, and Z is provided between the multi-layered film and the substrate.
A buffer layer made of a non-magnetic metal containing at least one metal selected from r as a main component is formed, and the buffer layer is in an amorphous state. Magnetic head.
【請求項21】4層以上の磁性層を非磁性層で分割し、
少なくとも2層の磁性層に反強磁性層からの交換バイア
ス磁界が印加されており、少なくとも2層の磁性層に反
強磁性層からの交換バイアス磁界は直接には印加されて
いない多層膜を用いた多層磁気抵抗効果膜を少なくとも
一部に用いたことを特徴とする磁気ヘッド。
21. Four or more magnetic layers are divided by non-magnetic layers,
An exchange bias magnetic field from the antiferromagnetic layer is applied to at least two magnetic layers, and an exchange bias magnetic field from the antiferromagnetic layer is not directly applied to at least two magnetic layers. A magnetic head using the multi-layered magnetoresistive effect film at least partially.
【請求項22】2層以上の磁性層を非磁性層で分割し、
少なくとも1層の磁性層に反強磁性層からの交換バイア
ス磁界が印加されており、少なくとも1層の磁性層に反
強磁性層からの交換バイアス磁界は直接には印加されて
いない多層膜を用いた多層磁気抵抗効果膜において、上
記多層膜と基板との間に、稠密六方構造を有する非磁性
金属からなるバッファ層が形成されている多層磁気抵抗
効果膜を少なくとも一部に用いた磁気抵抗効果素子と誘
導型磁気ヘッドを組み合わせたことを特徴とする複合型
磁気ヘッド。
22. Two or more magnetic layers are divided into non-magnetic layers,
An exchange bias magnetic field from the antiferromagnetic layer is applied to at least one magnetic layer, and an exchange bias magnetic field from the antiferromagnetic layer is not directly applied to at least one magnetic layer. In the multi-layered magneto-resistive effect film, a multi-layered magneto-resistive effect film in which a buffer layer made of a non-magnetic metal having a dense hexagonal structure is formed between at least a part of the multi-layered magnetoresistive effect film A composite magnetic head characterized by combining an element and an inductive magnetic head.
【請求項23】2層以上の磁性層を非磁性層で分割し、
少なくとも1層の磁性層に反強磁性層からの交換バイア
ス磁界が印加されており、少なくとも1層の磁性層に反
強磁性層からの交換バイアス磁界は直接には印加されて
いない多層膜を用いた多層磁気抵抗効果膜において、上
記多層膜と基板との間に、Ti,Hf,Zrから選ばれ
る少なくとも1種類の金属、あるいは、Ti,Hf,Z
rから選ばれる少なくとも1種類の金属を主成分とする
非磁性金属からなるバッファ層が形成されており、上記
バッファ層が非晶質状態である多層磁気抵抗効果膜を少
なくとも一部に用いた磁気抵抗効果素子と誘導型磁気ヘ
ッドを組み合わせたことを特徴とする複合型磁気ヘッ
ド。
23. Two or more magnetic layers are divided by non-magnetic layers,
An exchange bias magnetic field from the antiferromagnetic layer is applied to at least one magnetic layer, and an exchange bias magnetic field from the antiferromagnetic layer is not directly applied to at least one magnetic layer. In the multi-layered magnetoresistive effect film, at least one metal selected from Ti, Hf, and Zr or Ti, Hf, and Z is provided between the multi-layered film and the substrate.
A buffer layer made of a non-magnetic metal containing at least one kind of metal selected from r as a main component is formed, and a magnetic layer using at least a part of the multilayer magnetoresistive film in which the buffer layer is in an amorphous state. A composite magnetic head comprising a combination of a resistance effect element and an inductive magnetic head.
【請求項24】4層以上の磁性層を非磁性層で分割し、
少なくとも2層の磁性層に反強磁性層からの交換バイア
ス磁界が印加されており、少なくとも2層の磁性層に反
強磁性層からの交換バイアス磁界は直接には印加されて
いない多層膜を用いた多層磁気抵抗効果膜を少なくとも
一部に用いた磁気抵抗効果素子と誘導型磁気ヘッドを組
み合わせたことを特徴とする複合型磁気ヘッド。
24. A magnetic layer of four or more layers is divided into non-magnetic layers,
An exchange bias magnetic field from the antiferromagnetic layer is applied to at least two magnetic layers, and an exchange bias magnetic field from the antiferromagnetic layer is not directly applied to at least two magnetic layers. A composite magnetic head comprising a combination of a magnetoresistive effect element using at least a part of the multi-layered magnetoresistive effect film and an inductive magnetic head.
【請求項25】2層以上の磁性層を非磁性層で分割し、
少なくとも1層の磁性層に反強磁性層からの交換バイア
ス磁界が印加されており、少なくとも1層の磁性層に反
強磁性層からの交換バイアス磁界は直接には印加されて
いない多層膜を用いた多層磁気抵抗効果膜において、上
記多層膜と基板との間に、稠密六方構造を有する非磁性
金属からなるバッファ層が形成されている多層磁気抵抗
効果膜を少なくとも一部に用いた磁気ヘッドを具えたこ
とを特徴とする磁気記録再生装置。
25. Two or more magnetic layers are divided into non-magnetic layers,
An exchange bias magnetic field from the antiferromagnetic layer is applied to at least one magnetic layer, and an exchange bias magnetic field from the antiferromagnetic layer is not directly applied to at least one magnetic layer. In the multi-layered magnetoresistive effect film, a magnetic head using a multi-layered magnetoresistive effect film in which a buffer layer made of a nonmagnetic metal having a dense hexagonal structure is formed between at least a part of the multi-layered magnetoresistive effect film and the substrate. A magnetic recording / reproducing apparatus characterized in that it is equipped with.
【請求項26】2層以上の磁性層を非磁性層で分割し、
少なくとも1層の磁性層に反強磁性層からの交換バイア
ス磁界が印加されており、少なくとも1層の磁性層に反
強磁性層からの交換バイアス磁界は直接には印加されて
いない多層膜を用いた多層磁気抵抗効果膜において、上
記多層膜と基板との間に、Ti,Hf,Zrから選ばれ
る少なくとも1種類の金属、あるいは、Ti,Hf,Z
rから選ばれる少なくとも1種類の金属を主成分とする
非磁性金属からなるバッファ層が形成されており、上記
バッファ層が非晶質状態である多層磁気抵抗効果膜を少
なくとも一部に用いた磁気ヘッドを具えたことを特徴と
する磁気記録再生装置。
26. A magnetic layer of two or more layers is divided by a non-magnetic layer,
An exchange bias magnetic field from the antiferromagnetic layer is applied to at least one magnetic layer, and an exchange bias magnetic field from the antiferromagnetic layer is not directly applied to at least one magnetic layer. In the multi-layered magnetoresistive effect film, at least one metal selected from Ti, Hf, and Zr or Ti, Hf, and Z is provided between the multi-layered film and the substrate.
A buffer layer made of a non-magnetic metal containing at least one kind of metal selected from r as a main component is formed, and a magnetic layer using at least a part of a multilayer magnetoresistive effect film in which the buffer layer is in an amorphous state. A magnetic recording / reproducing apparatus having a head.
【請求項27】4層以上の磁性層を非磁性層で分割し、
少なくとも2層の磁性層に反強磁性層からの交換バイア
ス磁界が印加されており、少なくとも2層の磁性層に反
強磁性層からの交換バイアス磁界は直接には印加されて
いない多層膜を用いた多層磁気抵抗効果膜を少なくとも
一部に用いた磁気ヘッドを具えたことを特徴とする磁気
記録再生装置。
27. A magnetic layer of four or more layers is divided into non-magnetic layers,
An exchange bias magnetic field from the antiferromagnetic layer is applied to at least two magnetic layers, and an exchange bias magnetic field from the antiferromagnetic layer is not directly applied to at least two magnetic layers. A magnetic recording / reproducing apparatus comprising a magnetic head using at least a part of the multi-layered magnetoresistive film.
【請求項28】2層以上の磁性層を非磁性層で分割し、
少なくとも1層の磁性層に反強磁性層からの交換バイア
ス磁界が印加されており、少なくとも1層の磁性層に反
強磁性層からの交換バイアス磁界は直接には印加されて
いない多層膜を用いた多層磁気抵抗効果膜において、上
記多層膜と基板との間に、稠密六方構造を有する非磁性
金属からなるバッファ層が形成されている多層磁気抵抗
効果膜を少なくとも一部に用いた磁気抵抗効果素子と誘
導型磁気ヘッドを組み合わせた複合型磁気ヘッドを具え
たことを特徴とする磁気記録再生装置。
28. Two or more magnetic layers are divided by a non-magnetic layer,
An exchange bias magnetic field from the antiferromagnetic layer is applied to at least one magnetic layer, and an exchange bias magnetic field from the antiferromagnetic layer is not directly applied to at least one magnetic layer. In the multi-layered magneto-resistive effect film, a multi-layered magneto-resistive effect film in which a buffer layer made of a non-magnetic metal having a dense hexagonal structure is formed between at least a part of the multi-layered magnetoresistive effect film A magnetic recording / reproducing apparatus comprising a composite magnetic head in which an element and an inductive magnetic head are combined.
【請求項29】2層以上の磁性層を非磁性層で分割し、
少なくとも1層の磁性層に反強磁性層からの交換バイア
ス磁界が印加されており、少なくとも1層の磁性層に反
強磁性層からの交換バイアス磁界は直接には印加されて
いない多層膜を用いた多層磁気抵抗効果膜において、上
記多層膜と基板との間に、Ti,Hf,Zrから選ばれ
る少なくとも1種類の金属、あるいは、Ti,Hf,Z
rから選ばれる少なくとも1種類の金属を主成分とする
非磁性金属からなるバッファ層が形成されており、上記
バッファ層が非晶質状態である多層磁気抵抗効果膜を少
なくとも一部に用いた磁気抵抗効果素子と誘導型磁気ヘ
ッドを組み合わせた複合型磁気ヘッドを具えたことを特
徴とする磁気記録再生装置。
29. Two or more magnetic layers are divided into non-magnetic layers,
An exchange bias magnetic field from the antiferromagnetic layer is applied to at least one magnetic layer, and an exchange bias magnetic field from the antiferromagnetic layer is not directly applied to at least one magnetic layer. In the multi-layered magnetoresistive effect film, at least one metal selected from Ti, Hf, and Zr or Ti, Hf, and Z is provided between the multi-layered film and the substrate.
A buffer layer made of a non-magnetic metal containing at least one kind of metal selected from r as a main component is formed, and a magnetic layer using at least a part of a multilayer magnetoresistive effect film in which the buffer layer is in an amorphous state. A magnetic recording / reproducing apparatus comprising a composite magnetic head in which a resistance effect element and an inductive magnetic head are combined.
【請求項30】4層以上の磁性層を非磁性層で分割し、
少なくとも2層の磁性層に反強磁性層からの交換バイア
ス磁界が印加されており、少なくとも2層の磁性層に反
強磁性層からの交換バイアス磁界は直接には印加されて
いない多層膜を用いた多層磁気抵抗効果膜を少なくとも
一部に用いた磁気抵抗効果素子と誘導型磁気ヘッドを組
み合わせた複合型磁気ヘッドを具えたことを特徴とする
磁気記録再生装置。
30. Dividing four or more magnetic layers by non-magnetic layers,
An exchange bias magnetic field from the antiferromagnetic layer is applied to at least two magnetic layers, and an exchange bias magnetic field from the antiferromagnetic layer is not directly applied to at least two magnetic layers. A magnetic recording / reproducing apparatus comprising a composite type magnetic head in which a magnetoresistive effect element using at least a part of the multi-layered magnetoresistive effect film and an induction type magnetic head are combined.
JP5092744A 1993-04-20 1993-04-20 Multilayer magnetoresistance effect film and magnetic head Pending JPH06310329A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5092744A JPH06310329A (en) 1993-04-20 1993-04-20 Multilayer magnetoresistance effect film and magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5092744A JPH06310329A (en) 1993-04-20 1993-04-20 Multilayer magnetoresistance effect film and magnetic head

Publications (1)

Publication Number Publication Date
JPH06310329A true JPH06310329A (en) 1994-11-04

Family

ID=14062930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5092744A Pending JPH06310329A (en) 1993-04-20 1993-04-20 Multilayer magnetoresistance effect film and magnetic head

Country Status (1)

Country Link
JP (1) JPH06310329A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997005664A1 (en) * 1995-07-28 1997-02-13 Migaku Takahashi Magnetoresistance element and its manufacture
EP0840334A1 (en) * 1996-11-01 1998-05-06 Read-Rite Corporation Antiferromagnetic exchange biasing using buffer layer
SG99358A1 (en) * 2000-02-23 2003-10-27 Fuji Electric Co Ltd Magnetic recording medium and method for producing same
JP2006191356A (en) * 2005-01-06 2006-07-20 Toshiba Corp Thin film piezoelectric resonator and method for manufacturing thin film piezoelectric resonator
KR20210041145A (en) * 2019-10-04 2021-04-15 옵토파워주식회사 giant magnetoresistance device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997005664A1 (en) * 1995-07-28 1997-02-13 Migaku Takahashi Magnetoresistance element and its manufacture
US6051304A (en) * 1995-07-28 2000-04-18 Takahashi; Migaku Magnetoresistance element and its manufacture
EP0840334A1 (en) * 1996-11-01 1998-05-06 Read-Rite Corporation Antiferromagnetic exchange biasing using buffer layer
SG99358A1 (en) * 2000-02-23 2003-10-27 Fuji Electric Co Ltd Magnetic recording medium and method for producing same
JP2006191356A (en) * 2005-01-06 2006-07-20 Toshiba Corp Thin film piezoelectric resonator and method for manufacturing thin film piezoelectric resonator
KR20210041145A (en) * 2019-10-04 2021-04-15 옵토파워주식회사 giant magnetoresistance device

Similar Documents

Publication Publication Date Title
JPH05266436A (en) Magnetoresistive sensor
JPH0766033A (en) Magnetoresistance element, and magnetic thin film memory and magnetoresistance sensor using the magnetoresistance element
JPH04247607A (en) Magnetoresistance effect element
JP4245318B2 (en) Magnetic detection element
JP3231313B2 (en) Magnetic head
JP3177184B2 (en) Magnetoresistive element, magnetic head and magnetic recording / reproducing apparatus using the same
JPH0969211A (en) Magnetoresistance effect film, magnetic head and magnetic recorder/reproducer
JP3527786B2 (en) Multilayer magnetoresistive film and magnetic head
JPH06310329A (en) Multilayer magnetoresistance effect film and magnetic head
JPH076329A (en) Magneto-resistance effect element and magnetic head using the same and magnetic recording and reproducing device
JP3575672B2 (en) Magnetoresistance effect film and magnetoresistance effect element
JP3872958B2 (en) Magnetoresistive element and manufacturing method thereof
JPH0936455A (en) Magnetoresistive effect element
JP3083237B2 (en) Magnetoresistive element and magnetic head
JPH0766036A (en) Multilayer magnetoresistance effect film, and magnetoresistance effect element and magnetic head using same
JP2656449B2 (en) Magnetoresistive head
JPH10294217A (en) Spin valve type magnetoresistance effect film and magnetic head having the same
JPH0774022A (en) Multilayer magnetoresistance-effect film and magnetic head
JPH08241506A (en) Multilayered magnetoresistance effect film and magnetic head
JPH0765329A (en) Multilayered magnetoresistance effect film and magnetic head
JPH09161243A (en) Multilayered magnetoresistive film and magnetic head
JPH05175572A (en) Magnetoresistance effect element, and magnetic head and recording/reproducing device using same
JPH08167120A (en) Multilayered magnetoresistance effect film and magnetic head
JPH06260337A (en) Multilayer magnetoresistance effect film and magnetic head
JPH0661048A (en) Multilayer magnetoresistance effect film and magnetic head