KR20210041145A - giant magnetoresistance device - Google Patents

giant magnetoresistance device Download PDF

Info

Publication number
KR20210041145A
KR20210041145A KR1020190122906A KR20190122906A KR20210041145A KR 20210041145 A KR20210041145 A KR 20210041145A KR 1020190122906 A KR1020190122906 A KR 1020190122906A KR 20190122906 A KR20190122906 A KR 20190122906A KR 20210041145 A KR20210041145 A KR 20210041145A
Authority
KR
South Korea
Prior art keywords
layer
cofezr
giant magnetoresistive
free
antiferromagnetic
Prior art date
Application number
KR1020190122906A
Other languages
Korean (ko)
Other versions
KR102263647B1 (en
Inventor
김영수
Original Assignee
옵토파워주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 옵토파워주식회사 filed Critical 옵토파워주식회사
Priority to KR1020190122906A priority Critical patent/KR102263647B1/en
Publication of KR20210041145A publication Critical patent/KR20210041145A/en
Application granted granted Critical
Publication of KR102263647B1 publication Critical patent/KR102263647B1/en

Links

Images

Classifications

    • H01L43/10
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details
    • H10N50/85Magnetic active materials
    • H01L43/02
    • H01L43/08
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details

Landscapes

  • Hall/Mr Elements (AREA)

Abstract

The present invention relates to a giant magnetoresistance element in which a substrate, a buffer layer, an antiferromagnetic layer, a fixed layer, a nonmagnetic layer, and a free layer are sequentially stacked. The free layer is formed by sequentially repeatedly stacking a CoFeZr layer/Pd layer twice, and a protective layer formed of SiO_2 is provided on the free layer. According to the giant magnetoresistance element, magnetoresistance ratio characteristics and thermal stability can be improved, and also the advantage of improving resistance to corrosion is provided.

Description

부식억제형 거대 자기저항소자{giant magnetoresistance device}Corrosion inhibiting type giant magnetoresistance device

본 발명은 거대 자기저항소자에 관한 것으로서, 상세하게는 자기저항비 특성과 열적안정성 및 부식에 대한 저항성을 향상시킨 거대 자기저항소자에 관한 것이다.The present invention relates to a giant magnetoresistive element, and more particularly, to a giant magnetoresistive element having improved magnetoresistive ratio characteristics, thermal stability, and resistance to corrosion.

자기 저항은 그 물질에 인가하는 자기장이 변함에 따라 전기저항값이 변하는 현상으로, 금속인 공초격자(예, Fe/Cr) 및 미세 입상합금박막(예, Cu-Co)에서 매우 큰 저항변화를 일으키는 이른바 거대자기저항 현상이 발견되었으며, 이러한 성질을 이용하여 정보재생수단인 헤드 및 자기장 센서, 초대용량 컴퓨터 하드디스크 헤드 재료, 초정밀 자기장 센서, 고정식 자기장, 인식기, X선 회절기의 거울 재료 등 매우 많은 자기장 분야로의 응용 연구가 활발히 진행되고 있다.Magnetoresistance is a phenomenon in which the electrical resistance value changes as the magnetic field applied to the material changes, and a very large change in resistance is observed in the metal concentric lattice (e.g., Fe/Cr) and fine granular alloy thin film (e.g., Cu-Co). The so-called giant magneto-resistance phenomenon was discovered, and using this property, the head and magnetic field sensor, which are information reproducing means, the head material of the ultra-large computer hard disk, the ultra-precise magnetic field sensor, the fixed magnetic field, the recognizer, and the mirror material of the X-ray diffractometer. Application studies in many fields of magnetic fields are being actively conducted.

거대 자기저항소자는 전도성 비자성층을 사이에 두고 자유층과 고정층의 스핀 방향의 차이에 따라 전도전자의 부가적인 산란으로 저항의 변화가 생기는 것을 이용한 것이다.The giant magnetoresistive element uses a change in resistance due to additional scattering of conductive electrons according to the difference in the spin direction of the free layer and the fixed layer with a conductive nonmagnetic layer interposed therebetween.

이러한 거대 자기저항소자는 국내 공개특허 제10-1997-0003289호 등 다양하게 개시되어 있다.Such a giant magnetoresistive element has been disclosed in various ways, such as Korean Patent Publication No. 10-1997-0003289.

한편, 거대 자기저항소자는 고온에서도 자기방향의 전환이 안정적으로 이루어지기 위한 열적 안정성과 구조적 안정성 및 수직방향으로의 자화유도를 향상시켜 자기 저항비 특성을 개선할 수 있는 구조가 꾸준히 요구되고 있다.On the other hand, the giant magnetoresistive element is constantly required to have a structure capable of improving the magneto-resistance ratio characteristics by improving the thermal stability, structural stability, and magnetization induction in the vertical direction for stably changing the magnetic direction even at high temperatures.

또한, 부식에 대한 저항성도 향상킬 수 있는 구조가 요구된다. In addition, there is a need for a structure capable of improving resistance to corrosion.

본 발명은 상기와 같은 요구사항을 해결하기 위하여 창안된 것으로서, 자기저항비 특성과 열적안정성 및 부식에 대한 저항성을 향상시킨 거대 자기저항소자를 제공하는데 그 목적이있다.The present invention has been invented to solve the above requirements, and an object thereof is to provide a giant magnetoresistive device having improved magnetoresistive ratio characteristics, thermal stability, and resistance to corrosion.

상기의 목적을 달성하기 위하여 본 발명에 따른 거대 자기저항소자는 기판, 버퍼층, 반강자성층, 고정층, 비자성층, 자유층이 순차적으로 적층된 거대 자기저항소자에 있어서, 상기 자유층은 CoFeZr층/Pd층이 2회 순차 반복 적층되어 형성되어 있고, 상기 자유층 상부에 SiO2로 형성된 보호층;을 구비한다.In order to achieve the above object, the giant magnetoresistive element according to the present invention is a giant magnetoresistive element in which a substrate, a buffer layer, an antiferromagnetic layer, a fixed layer, a nonmagnetic layer, and a free layer are sequentially stacked, the free layer is a CoFeZr layer And a protective layer formed by sequentially stacking the Pd layer twice in order, and formed of SiO 2 on the free layer.

또한, 상기 기판은 Si, SiO2, 유리 중 어느 하나가 적용되고, 상기 버퍼층은 Nb로 형성되고, 상기 고정층은 CoFeZr층/Pd층/CoFeZr층이 순차적으로 적층되어 형성된 것이 바람직하다.In addition, it is preferable that any one of Si, SiO 2 , and glass is applied to the substrate, the buffer layer is formed of Nb, and the fixed layer is formed by sequentially stacking a CoFeZr layer/Pd layer/CoFeZr layer.

본 발명의 일 측면에 따르면, 상기 반강자성층은 CoFeZr에 N, Ar, Xe 중 어느 하나를 이온주입하여 형성된다.According to an aspect of the present invention, the antiferromagnetic layer is formed by ion implanting any one of N, Ar, and Xe into CoFeZr.

본 발명에 따른 거대 자기저항소자에 의하면, 자기저항비 특성와 열적안정성 및 부식에 대한 저항성을 향상시킬 수 있는 장점을 제공한다. The giant magnetoresistive device according to the present invention provides an advantage of improving magnetoresistive ratio characteristics, thermal stability, and resistance to corrosion.

도 1은 본 발명에 따른 거대 자기저항소자의 단면도이다.1 is a cross-sectional view of a giant magnetoresistive element according to the present invention.

이하, 첨부된 도면을 참조하면서 본 발명의 바람직한 실시예에 따른 거대 자기저항소자를 더욱 상세하게 설명한다.Hereinafter, a giant magnetoresistive element according to a preferred embodiment of the present invention will be described in more detail with reference to the accompanying drawings.

도 1은 본 발명에 따른 거대 자기저항소자의 단면도이다.1 is a cross-sectional view of a giant magnetoresistive element according to the present invention.

도 1을 참조하면, 본 발명에 따른 거대 자기저항소자(100)는 기판(110), 버퍼층(120), 반강자성층(130), 고정층(140), 비자성층(150), 자유층(160) 및 보호층(170)이 순차적으로 적층된 구조로 되어 있다.Referring to FIG. 1, a giant magnetoresistive device 100 according to the present invention includes a substrate 110, a buffer layer 120, an antiferromagnetic layer 130, a pinned layer 140, a nonmagnetic layer 150, and a free layer 160. ) And the protective layer 170 are sequentially stacked.

기판(110)은 Si, SiO2, 유리 중 어느 하나로 형성된 것을 적용한다.The substrate 110 is formed of any one of Si, SiO 2, and glass.

버퍼층(120)은 기판(110) 위에 형성되어 있고, 반강자성층(130)이 원할하게 성장할 수 있게 성장을 가이드한다.The buffer layer 120 is formed on the substrate 110 and guides growth so that the antiferromagnetic layer 130 can grow smoothly.

버퍼층(120)은 일반적으로 적용되는 Ta로 형성될 수 있다.The buffer layer 120 may be formed of generally applied Ta.

또 다르게는 버퍼층(120)은 이종 박막의 합성을 지원할 수 있도록 초전도 하이브리드 박막 합성을 지원하는 Nb소재로 형성된다.Alternatively, the buffer layer 120 is formed of an Nb material that supports the synthesis of a superconducting hybrid thin film so as to support the synthesis of a heterogeneous thin film.

버퍼층(120)은 진공분위기에서 250℃에서 1시간 정도 열처리하는 것을 적용하고, 이 경우 자기저항 특성이 향상된다.The buffer layer 120 is subjected to heat treatment at 250° C. for about 1 hour in a vacuum atmosphere, and in this case, the magnetoresistive property is improved.

반강자성층(130)은 Mn을 포함한 합금을 적용할 수 있다. The antiferromagnetic layer 130 may be made of an alloy containing Mn.

일 예로서, 반강자성층(130)은 IrMn합금, FeMn합금, NiMn합금으로 형성될 수 있다.As an example, the antiferromagnetic layer 130 may be formed of an IrMn alloy, a FeMn alloy, or a NiMn alloy.

이와는 다르게, 반강자성층(130)은 후술되는 고정층(140) 형성용 강자성층소재에 반자성 특성을 갖는 물질을 주입하여 형성할 수 있다. 이 경우 제조공정이 단순화될 수 있다.Alternatively, the antiferromagnetic layer 130 may be formed by injecting a material having diamagnetic properties into a ferromagnetic layer material for forming the pinned layer 140 to be described later. In this case, the manufacturing process can be simplified.

일 예로서 반강자성층(130)은 후술되는 고정층(140)용 강자성소재인 CoFeZr에 N, Ar, Xe 중 어나 하나를 이온주입하여 형성한다.As an example, the antiferromagnetic layer 130 is formed by ion implanting any one of N, Ar, and Xe into CoFeZr, which is a ferromagnetic material for the fixed layer 140 to be described later.

여기서, 반강자성층(130)은 CoFeZr에 N, Ar, Xe 중 어느 하나를 반강자성을 유지할 수 있는 양으로 충분히 주입하면 된다.Here, the antiferromagnetic layer 130 may sufficiently inject any one of N, Ar, and Xe into CoFeZr in an amount capable of maintaining antiferromagnetic properties.

CoFeZr층은 Co, Fe, Zr 각각의 모재를 이용하여 스퍼터링에 의해 형성해도 된다.The CoFeZr layer may be formed by sputtering using each of Co, Fe, and Zr base materials.

고정층(140)은 자화방향을 고정시키는 역할을 하며 열적 안정성을 높일 수 있으면서 수직 자화도를 향상시킬 수 있게 형성된다.The pinned layer 140 serves to fix the magnetization direction and is formed to improve thermal stability while improving vertical magnetization.

여기서 수직자화도는 증착면에 수직한 방향에 대해 수직자기 이방성을 갖는 것을 말한다.Here, the degree of perpendicular magnetization refers to having perpendicular magnetic anisotropy with respect to a direction perpendicular to the deposition surface.

증착면에 수평한 방향에 대해 자기 이방성을 갖는 면상자기 이방성은 박막 적층수가 증가할 수록 자기 이방성이 떨어지는 반면 수직자기 이방성은 박막 적층수가 증가해도 자기 이방성이 떨어지지 않는 장점을 갖는다.Planar magnetic anisotropy, which has magnetic anisotropy in a direction horizontal to the evaporation surface, has an advantage that magnetic anisotropy decreases as the number of thin film stacks increases, whereas perpendicular magnetic anisotropy has the advantage that magnetic anisotropy does not decrease even if the number of thin film layers increases.

고정층(140)은 CoFeZr층(141)/Pd층(142)/CoFeZr(143)층이 순차적으로 적층되어 형성되어 있다.The pinned layer 140 is formed by sequentially stacking a CoFeZr layer 141/Pd layer 142/CoFeZr 143 layer.

CoFeZr층(141)(143)은 CoFeZr소재로 형성된 층으로 그 상부에 형성되는 비자성층(150) 및 자유층(160) 등의 구조적 안정성을 제공한다.The CoFeZr layers 141 and 143 are layers formed of a CoFeZr material and provide structural stability such as a nonmagnetic layer 150 and a free layer 160 formed thereon.

즉, CoFeZr층(141)(143)은 고온에서 동작 시에도 원하는 자화 방향의 전환 효율이 안정적이며, 비정질로서 원하는 표면 정밀도를 갖고 있어 그 상부에 형성되는 다층 구조를 안정적으로 성장할 수 있게 지원한다.That is, the CoFeZr layers 141 and 143 have stable conversion efficiency of a desired magnetization direction even when operating at a high temperature, and are amorphous and have a desired surface precision, so that a multilayer structure formed thereon can be stably grown.

또한, CoFeZr층(141)(143) 사이에 삽입된 Pd층(142)은 CoFeZr층(141)(143)의 수직자화를 유도하여 자기 저항비를 향상시킨다.In addition, the Pd layer 142 inserted between the CoFeZr layers 141 and 143 induces perpendicular magnetization of the CoFeZr layers 141 and 143 to improve the magnetoresistive ratio.

CoFeZr층(141)(143)에서 CoFe에 대한 Zr의 분율(at%)은 15 내지 30at%로 적용한다.In the CoFeZr layers 141 and 143, the fraction (at%) of Zr to CoFe is applied at 15 to 30 at%.

비자성층(150)은 Cu 또는 Ag로 형성한다.The nonmagnetic layer 150 is formed of Cu or Ag.

자유층(160)은 CoFeZr층/Pd층이 2회 순차 반복 적층되어 형성되어 있다.The free layer 160 is formed by sequentially stacking the CoFeZr layer/Pd layer twice in sequence.

즉, 자유층(160)은 CoFeZr층(161)/Pd층(162)/CoFeZr층(163)/Pd층(164)으로 형성되어 있다.That is, the free layer 160 is formed of a CoFeZr layer 161 / Pd layer 162 / CoFeZr layer 163 / Pd layer 164.

이러한 자유층(160)은 CoFeZr층(161)(163)에 의해 열적 안정성과 구조적 안정성을 제공함과 아울러 Pd층(162)(164)에 의해 수직 자화도도 향상된다.The free layer 160 provides thermal stability and structural stability by the CoFeZr layers 161 and 163 and also improves vertical magnetization by the Pd layers 162 and 164.

보호층(170)은 최상단의 Pd층(164) 위에 형성되어 있다.The protective layer 170 is formed on the uppermost Pd layer 164.

보호층(170)은 자유층(160) 상부에 부식에 대한 저항성을 향상시키도록 SiO2로 형성되어 있다.The protective layer 170 is formed of SiO 2 on the free layer 160 to improve resistance to corrosion.

이러한 거대 자기저항소자에 의하면, 자기저항비 특성와 열적안정성을 향상시키면서 부식에 대한 저항성도 향상시킬 수 있는 장점을 제공한다. According to such a giant magnetoresistive element, it provides an advantage of improving resistance to corrosion while improving magnetoresistive ratio characteristics and thermal stability.

110: 기판 120: 버퍼층
130: 반강자성층 140: 고정층
150: 비자성층 160: 자유층
170: 보호층
110: substrate 120: buffer layer
130: antiferromagnetic layer 140: fixed layer
150: non-magnetic layer 160: free layer
170: protective layer

Claims (3)

기판, 버퍼층, 반강자성층, 고정층, 비자성층, 자유층이 순차적으로 적층된 거대 자기저항소자에 있어서,
상기 자유층은 CoFeZr층/Pd층이 2회 순차 반복 적층되어 형성되어 있고,
상기 자유층 상부에 SiO2로 형성된 보호층;을 구비하는 것을 특징으로 하는 거대 자기저항소자.
In a giant magnetoresistive device in which a substrate, a buffer layer, an antiferromagnetic layer, a fixed layer, a nonmagnetic layer, and a free layer are sequentially stacked,
The free layer is formed by stacking a CoFeZr layer/Pd layer sequentially and repeatedly two times,
A giant magnetoresistive device comprising: a protective layer formed of SiO 2 on the free layer.
제1항에 있어서, 상기 기판은 Si, SiO2, 유리 중 어느 하나가 적용되고, 상기 버퍼층은 Nb로 형성되고, 상기 고정층은 CoFeZr층/Pd층/CoFeZr층이 순차적으로 적층되어 형성된 것을 특징으로 하는 거대 자기저항소자. The method of claim 1, wherein the substrate is made of any one of Si, SiO 2 , and glass, the buffer layer is formed of Nb, and the fixed layer is formed by sequentially stacking a CoFeZr layer/Pd layer/CoFeZr layer. A giant magnetoresistive element. 제2항에 있어서, 상기 반강자성층은 CoFeZr에 N, Ar, Xe 중 어느 하나를 이온주입하여 형성된 것을 특징으로 하는 거대 자기저항소자.

The giant magnetoresistive device of claim 2, wherein the antiferromagnetic layer is formed by ion implanting any one of N, Ar, and Xe into CoFeZr.

KR1020190122906A 2019-10-04 2019-10-04 giant magnetoresistance device KR102263647B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190122906A KR102263647B1 (en) 2019-10-04 2019-10-04 giant magnetoresistance device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190122906A KR102263647B1 (en) 2019-10-04 2019-10-04 giant magnetoresistance device

Publications (2)

Publication Number Publication Date
KR20210041145A true KR20210041145A (en) 2021-04-15
KR102263647B1 KR102263647B1 (en) 2021-06-10

Family

ID=75441001

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190122906A KR102263647B1 (en) 2019-10-04 2019-10-04 giant magnetoresistance device

Country Status (1)

Country Link
KR (1) KR102263647B1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06310329A (en) * 1993-04-20 1994-11-04 Hitachi Ltd Multilayer magnetoresistance effect film and magnetic head
JP2004079798A (en) * 2002-08-19 2004-03-11 Alps Electric Co Ltd Huge magnetoresistive effect element and its manufacturing method
KR20060084236A (en) * 2005-01-19 2006-07-24 고려대학교 산학협력단 Giant magneto-resistance device using cofezr and manufacturing method for the same
KR20090060063A (en) * 2007-12-07 2009-06-11 상지대학교산학협력단 Spin-valve magnetoresistive element with perpendicular magnetic anisotropy
JP2010093280A (en) * 2009-12-03 2010-04-22 Toshiba Corp Magneto-resistance effect element and magnetic memory

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06310329A (en) * 1993-04-20 1994-11-04 Hitachi Ltd Multilayer magnetoresistance effect film and magnetic head
JP2004079798A (en) * 2002-08-19 2004-03-11 Alps Electric Co Ltd Huge magnetoresistive effect element and its manufacturing method
KR20060084236A (en) * 2005-01-19 2006-07-24 고려대학교 산학협력단 Giant magneto-resistance device using cofezr and manufacturing method for the same
KR20090060063A (en) * 2007-12-07 2009-06-11 상지대학교산학협력단 Spin-valve magnetoresistive element with perpendicular magnetic anisotropy
JP2010093280A (en) * 2009-12-03 2010-04-22 Toshiba Corp Magneto-resistance effect element and magnetic memory

Also Published As

Publication number Publication date
KR102263647B1 (en) 2021-06-10

Similar Documents

Publication Publication Date Title
JP5172472B2 (en) Pinned layer, TMR sensor using the same, and method for manufacturing TMR sensor
US9042057B1 (en) Methods for providing magnetic storage elements with high magneto-resistance using Heusler alloys
Sato et al. Large magnetoresistance effect in epitaxial Co2Fe0. 4Mn0. 6Si/Ag/Co2Fe0. 4Mn0. 6Si devices
US8385027B2 (en) TMR device with novel free layer structure
CN102270736B (en) Magnetic nano-multilayer film used for magnetic sensor and manufacturing method for magnetic nano-multilayer film
US7098495B2 (en) Magnetic tunnel junction element structures and methods for fabricating the same
CN1203561C (en) Magnetoresistance element, its manufacturing method and forming method for compound ferromagnet film
JP5815204B2 (en) TMR element and method for forming the same
EP2434556B1 (en) Ferromagnetic tunnel junction structure and magnetoresistive element using same
US20120286382A1 (en) Co/Ni multilayers with improved out-of-plane anisotropy for magnetic device applications
JP5429480B2 (en) Magnetoresistive element, MRAM, and magnetic sensor
JP2010074170A (en) Tmr device and method of forming the same
JPWO2008155996A1 (en) Tunnel magnetoresistive thin film and magnetic multilayer film manufacturing apparatus
US7554774B2 (en) Magnetic resistance device and method of manufacturing the same
CN112349832B (en) Magneto-resistive effect element and wheatler alloy
CN112349833A (en) Magnetoresistive element and Wheatstone alloy
US20070183101A1 (en) Magnetoresistance device including diffusion barrier layer
KR102117021B1 (en) giant magnetoresistance device
CN100383897C (en) Iron magnetic/anti iron magnet multilayer film pinning system and its preparing method
KR102263647B1 (en) giant magnetoresistance device
KR20190046653A (en) Semiconductor device
CN100452255C (en) Ferromagnetic/antiferromagnetic multilayer membrane material with pinning and its preparing method
KR100733782B1 (en) Manufacturing method for Giant magneto-resistance device using CoFeZr
US6960397B2 (en) Magnetoresistance device
Zhao et al. Pinning effect and thermal stability study in L1 FePt-pinned spin valves

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right