KR102117021B1 - giant magnetoresistance device - Google Patents

giant magnetoresistance device Download PDF

Info

Publication number
KR102117021B1
KR102117021B1 KR1020180151254A KR20180151254A KR102117021B1 KR 102117021 B1 KR102117021 B1 KR 102117021B1 KR 1020180151254 A KR1020180151254 A KR 1020180151254A KR 20180151254 A KR20180151254 A KR 20180151254A KR 102117021 B1 KR102117021 B1 KR 102117021B1
Authority
KR
South Korea
Prior art keywords
layer
cofezr
magnetoresistive element
giant magnetoresistance
magnetoresistance device
Prior art date
Application number
KR1020180151254A
Other languages
Korean (ko)
Inventor
김영수
Original Assignee
옵토파워주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 옵토파워주식회사 filed Critical 옵토파워주식회사
Priority to KR1020180151254A priority Critical patent/KR102117021B1/en
Application granted granted Critical
Publication of KR102117021B1 publication Critical patent/KR102117021B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/06Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material including means to minimise changes in resistance with changes in temperature

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Hall/Mr Elements (AREA)

Abstract

The present invention relates to a giant magnetoresistance device in which a substrate, a buffer layer, an anti-ferromagnetic layer, a fixed layer, a non-magnetic layer, and a free layer are sequentially stacked. The free layer is formed by repeatedly stacking a CoFeZr layer/Pd layer twice. According to such a giant magnetoresistance device, the giant magnetoresistance device provides advantages which can improve magnetoresistance ratio characteristics and thermal stability.

Description

거대 자기저항소자{giant magnetoresistance device}Giant magnetoresistance device

본 발명은 거대 자기저항소자에 관한 것으로서, 상세하게는 자기저항비 특성과 열적안정성을 향상시킨 거대 자기저항소자에 관한 것이다.The present invention relates to a large magnetoresistive element, and more particularly, to a large magnetoresistance element with improved magnetoresistance ratio characteristics and thermal stability.

자기 저항은 그 물질에 인가하는 자기장이 변함에 따라 전기저항값이 변하는 현상으로, 금속인 공초격자(예, Fe/Cr) 및 미세 입상합금박막(예, Cu-Co)에서 매우 큰 저항변화를 일으키는 이른바 거대자기저항 현상이 발견되었으며, 이러한 성질을 이용하여 정보재생수단인 헤드 및 자기장 센서, 초대용량 컴퓨터 하드디스크 헤드 재료, 초정밀 자기장 센서, 고정식 자기장, 인식기, X선 회절기의 거울 재료 등 매우 많은 자기장 분야로의 응용 연구가 활발히 진행되고 있다.Magnetoresistance is a phenomenon in which the electric resistance value changes as the magnetic field applied to the material changes, resulting in a very large resistance change in the metal confocal lattice (eg Fe / Cr) and fine granular alloy thin film (eg Cu-Co). The so-called giant magnetoresistance phenomenon has been discovered, and by using these properties, it is very useful, such as a head and magnetic field sensor that is an information reproduction means, a supercapacity computer hard disk head material, an ultra-precision magnetic field sensor, a fixed magnetic field, a recognizer, and a mirror material of an X-ray diffractometer. Research into applications in many magnetic field fields is actively underway.

거대 자기저항소자는 전도성 비자성층을 사이에 두고 자유층과 고정층의 스핀 방향의 차이에 따라 전도전자의 부가적인 산란으로 저항의 변화가 생기는 것을 이용한 것이다.The giant magnetoresistive element utilizes a change in resistance caused by additional scattering of conductive electrons according to a difference in spin directions between a free layer and a fixed layer with a conductive nonmagnetic layer interposed therebetween.

이러한 거대 자기저항소자는 국내 공개특허 제10-1997-0003289호 등 다양하게 개시되어 있다.Such a giant magnetoresistive element has been variously disclosed, such as Korean Patent Publication No. 10-1997-0003289.

한편, 거대 자기저항소자는 고온에서도 자기방향의 전환이 안정적으로 이루어지기 위한 열적 안정성과 구조적 안정성 및 수직방향으로의 자화유도를 향상시켜 자기 저항비 특성을 개선할 수 있는 구조가 꾸준히 요구되고 있다. On the other hand, a large magnetoresistive element has been steadily required a structure capable of improving the magnetic resistance ratio characteristics by improving thermal stability, structural stability, and magnetization induction in the vertical direction to stably change the magnetic direction even at high temperatures.

본 발명은 상기와 같은 요구사항을 해결하기 위하여 창안된 것으로서, 자기저항비 특성과 열적안정성을 향상시킨 거대 자기저항소자를 제공하는데 그 목적이있다.The present invention was devised to solve the above requirements, and has an object to provide a large magnetoresistive element with improved magnetoresistance ratio characteristics and thermal stability.

상기의 목적을 달성하기 위하여 본 발명에 따른 거대 자기저항소자는 기판, 버퍼층, 반강자성층, 고정층, 비자성층, 자유층이 순차적으로 적층된 거대 자기저항소자에 있어서, 상기 자유층은 CoFeZr층/Pd층이 2회 순차 반복 적층되어 형성된다.In order to achieve the above object, the giant magnetoresistive element according to the present invention is a giant magnetoresistive element in which a substrate, a buffer layer, an antiferromagnetic layer, a fixed layer, a nonmagnetic layer, and a free layer are sequentially stacked, wherein the free layer is a CoFeZr layer / The Pd layer is formed by repeatedly stacking two times.

또한, 상기 기판은 Si, SiO2, 유리 중 어느 하나가 적용되고, 상기 버퍼층은 Nb로 형성되고, 상기 고정층은 CoFeZr층/Pd층/CoFeZr층이 순차적으로 적층되어 형성된 것이 바람직하다.In addition, any one of Si, SiO 2 and glass is applied to the substrate, and the buffer layer is formed of Nb, and the fixed layer is preferably formed by sequentially stacking a CoFeZr layer / Pd layer / CoFeZr layer.

본 발명의 일 측면에 따르면, 상기 반강자성층은 CoFeZr에 N, Ar, Xe 중 어느 하나를 이온주입하여 형성된다.According to an aspect of the present invention, the antiferromagnetic layer is formed by ion implantation of N, Ar, or Xe into CoFeZr.

본 발명에 따른 거대 자기저항소자에 의하면, 자기저항비 특성와 열적안정성을 향상시킬 수 있는 장점을 제공한다. According to the giant magnetoresistive element according to the present invention, it provides advantages that can improve the magnetoresistance ratio characteristics and thermal stability.

도 1은 본 발명에 따른 거대 자기저항소자의 단면도이다.1 is a cross-sectional view of a giant magnetoresistive element according to the present invention.

이하, 첨부된 도면을 참조하면서 본 발명의 바람직한 실시예에 따른 거대 자기저항소자를 더욱 상세하게 설명한다.Hereinafter, a giant magnetoresistive element according to a preferred embodiment of the present invention will be described in more detail with reference to the accompanying drawings.

도 1은 본 발명에 따른 거대 자기저항소자의 단면도이다.1 is a cross-sectional view of a giant magnetoresistive element according to the present invention.

도 1을 참조하면, 본 발명에 따른 거대 자기저항소자(100)는 기판(110), 버퍼층(120), 반강자성층(130), 고정층(140), 비자성층(150), 자유층(160)이 순차적으로 적층된 구조로 되어 있다.Referring to FIG. 1, the giant magnetoresistive element 100 according to the present invention includes a substrate 110, a buffer layer 120, an antiferromagnetic layer 130, a fixed layer 140, a nonmagnetic layer 150, and a free layer 160 ) Has a stacked structure.

기판(110)은 Si, SiO2, 유리 중 어느 하나로 형성된 것을 적용한다.The substrate 110 is formed of any one of Si, SiO 2 , and glass.

버퍼층(120)은 기판(110) 위에 형성되어 있고, 반강자성층(130)이 원할하게 정할 수 있게 성장을 가이드한다.The buffer layer 120 is formed on the substrate 110 and guides growth so that the antiferromagnetic layer 130 can be smoothly determined.

버퍼층(120)은 일반적으로 적용되는 Ta로 형성될 수 있다.The buffer layer 120 may be formed of Ta which is generally applied.

또 다르게는 버퍼층(120)은 이종 박막의 합성을 지원할 수 있도록 초전도 하이브리드 박막 합성을 지원하는 Nb소재로 형성된다.Alternatively, the buffer layer 120 is formed of an Nb material that supports superconducting hybrid thin film synthesis to support the synthesis of heterogeneous thin films.

버퍼층(120)은 진공분위기에서 250℃에서 1시간 정도 열처리하는 것을 적용하고, 이경우 자기저항 특성이 향상된다.The buffer layer 120 is heat-treated at 250 ° C. for about 1 hour in a vacuum atmosphere, in which case the magnetoresistance characteristics are improved.

반강자성층(130)은 Mn을 포함한 합금을 적용할 수 있다. The antiferromagnetic layer 130 may apply an alloy including Mn.

일 예로서, 반강자성층(130)은 IrMn합금, FeMn합금, NiMn합금으로 형성될 수 있다.As an example, the antiferromagnetic layer 130 may be formed of an IrMn alloy, a FeMn alloy, or a NiMn alloy.

이와는 다르게, 반강자성층(130)은 후술되는 고정층(140) 형성용 강자성층소재에 반자성 특성을 갖는 물질을 주입하여 형성할 수 있다. 이 경우 제조공정이 단순화될 수 있다.Alternatively, the antiferromagnetic layer 130 may be formed by injecting a material having antimagnetic properties into the ferromagnetic layer material for forming the fixed layer 140 to be described later. In this case, the manufacturing process can be simplified.

일 예로서 반강자성층(130)은 후술되는 고정층(140)용 강자성소재인 CoFeZr에 N, Ar, Xe 중 어나 하나를 이온주입하여 형성한다.As an example, the antiferromagnetic layer 130 is formed by ion implanting any one of N, Ar, and Xe into CoFeZr, a ferromagnetic material for the fixed layer 140, which will be described later.

여기서, 반강자성층(130)은 CoFeZr에 N, Ar, Xe 중 어느 하나를 반강자성을 유지할 수 있는 양으로 충분히 주입하면 된다.Here, the antiferromagnetic layer 130 is sufficient to inject any one of N, Ar, and Xe into CoFeZr in an amount capable of maintaining antiferromagnetic.

CoFeZr층은 Co, Fe, Zr 각각의 모재를 이용하여 스퍼터링에 의해 형성해도 된다.The CoFeZr layer may be formed by sputtering using Co, Fe, and Zr base materials.

고정층(140)은 자화방향을 고정시키는 역할을 하며 열적 안정성을 높일 수 있으면서 수직 자화도를 향상시킬 수 있게 형성된다.The fixed layer 140 serves to fix the magnetization direction and is formed to improve thermal susceptibility while improving thermal stability.

여기서 수직자화도는 증착면에 수직한 방향에 대해 수직자기 이방성을 갖는 것을 말한다.Here, the degree of perpendicular magnetization refers to having perpendicular magnetic anisotropy with respect to a direction perpendicular to the deposition surface.

증착면에 수평한 방향에 대해 자기 이방성을 갖는 면상자기 이방성은 박막 적층수가 증가할 수록 자기 이방성이 떨어지는 반면 수직자기 이방성은 박막 적층수가 증가해도 자기 이방성이 떨어지지 않는 장점을 갖는다.The surface anisotropy having magnetic anisotropy with respect to the horizontal direction on the deposition surface has an advantage that the magnetic anisotropy decreases as the number of thin film stacks increases, whereas the perpendicular magnetic anisotropy does not deteriorate even when the number of thin film stacks increases.

고정층(140)은 CoFeZr층(141)/Pd층(142)/CoFeZr(143)층이 순차적으로 적층되어 형성되어 있다.The fixed layer 140 is formed by sequentially stacking CoFeZr layer 141 / Pd layer 142 / CoFeZr 143 layers.

CoFeZr층(141)(143)은 CoFeZr소재로 형성된 층으로 그 상부에 형성되는 비자성층(150) 및 자유층(160) 등의 구조적 안정성을 제공한다.The CoFeZr layers 141 and 143 are layers formed of a CoFeZr material and provide structural stability such as a non-magnetic layer 150 and a free layer 160 formed thereon.

즉, CoFeZr층(141)(143)은 고온에서 동작 시에도 원하는 자화 방향의 전환 효율이 안정적이며, 비정질로서 원하는 표면 정밀도를 갖고 있어 그 상부에 형성되는 다층 구조를 안정적으로 성장할 수 있게 지원한다.That is, the CoFeZr layers 141 and 143 are stable in conversion efficiency in a desired magnetization direction even when operating at a high temperature, and have a desired surface precision as an amorphous material, so that the multi-layer structure formed thereon can be stably grown.

또한, CoFeZr층(141)(143) 사이에 삽입된 Pd층(142)은 CoFeZr층(141)(143)의 수직자화를 유도하여 자기 저항비를 향상시킨다.In addition, the Pd layer 142 inserted between the CoFeZr layers 141 and 143 induces the perpendicular magnetization of the CoFeZr layers 141 and 143, thereby improving the magnetic resistance ratio.

CoFeZr층(141)(143)에서 CoFe에 대한 Zr의 분율(at%)은 15 내지 30at%로 적용한다.In the CoFeZr layers 141 and 143, the fraction (at%) of Zr with respect to CoFe is applied at 15 to 30 at%.

비자성층(150)은 Cu 또는 Ag로 형성한다.The non-magnetic layer 150 is formed of Cu or Ag.

자유층(160)은 CoFeZr층/Pd층이 2회 순차 반복 적층되어 형성되어 있다.The free layer 160 is formed by repeatedly stacking the CoFeZr layer / Pd layer twice.

즉, 자유층(160)은 CoFeZr층(161)/Pd층(162)/CoFeZr층(163)/Pd층(164)으로 형성되어 있다.That is, the free layer 160 is formed of a CoFeZr layer 161 / Pd layer 162 / CoFeZr layer 163 / Pd layer 164.

이러한 자유층(160)은 CoFeZr층(161)(163)에 의해 열적 안정성과 구조적 안정성을 제공함과 아울러 Pd층(162)(164)에 의해 수직 자화도도 향상된다.The free layer 160 provides thermal stability and structural stability by the CoFeZr layers 161 and 163, and vertical magnetization is also improved by the Pd layers 162 and 164.

최상단의 Pd층(164) 위에는 보호층이 형성될 수 있다.A protective layer may be formed on the uppermost Pd layer 164.

이러한 거대 자기저항소자에 의하면, 자기저항비 특성와 열적안정성을 향상시킬 수 있는 장점을 제공한다. According to such a large magnetoresistive element, it provides advantages that can improve the magnetoresistance ratio characteristics and thermal stability.

110: 기판 120: 버퍼층
130: 반강자성층 140: 고정층
150: 비자성층 160: 자유층
110: substrate 120: buffer layer
130: antiferromagnetic layer 140: fixed layer
150: non-magnetic layer 160: free layer

Claims (3)

기판, 버퍼층, 반강자성층, 고정층, 비자성층, 자유층이 순차적으로 적층된 거대 자기저항소자에 있어서,
상기 자유층은 CoFeZr층/Pd층이 2회 순차 반복 적층되어 형성되고,
상기 기판은 Si, SiO2, 유리 중 어느 하나가 적용되고, 상기 버퍼층은 Nb로 형성되고, 상기 고정층은 CoFeZr층/Pd층/CoFeZr층이 순차적으로 적층되어 형성되며,
상기 반강자성층은 CoFeZr에 N을 이온주입하여 형성된 것을 특징으로 하는 거대 자기저항소자.

In a large magnetoresistive element in which a substrate, a buffer layer, an antiferromagnetic layer, a fixed layer, a nonmagnetic layer, and a free layer are sequentially stacked,
The free layer is formed by repeatedly stacking the CoFeZr layer / Pd layer twice,
The substrate is formed of Si, SiO 2 or glass, the buffer layer is formed of Nb, and the fixed layer is formed by sequentially stacking CoFeZr layer / Pd layer / CoFeZr layer,
The antiferromagnetic layer is a giant magnetoresistive element characterized by being formed by ion implantation of N into CoFeZr.

삭제delete 삭제delete
KR1020180151254A 2018-11-29 2018-11-29 giant magnetoresistance device KR102117021B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180151254A KR102117021B1 (en) 2018-11-29 2018-11-29 giant magnetoresistance device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180151254A KR102117021B1 (en) 2018-11-29 2018-11-29 giant magnetoresistance device

Publications (1)

Publication Number Publication Date
KR102117021B1 true KR102117021B1 (en) 2020-06-01

Family

ID=71083179

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180151254A KR102117021B1 (en) 2018-11-29 2018-11-29 giant magnetoresistance device

Country Status (1)

Country Link
KR (1) KR102117021B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220091100A (en) * 2020-12-23 2022-06-30 태성전장주식회사 air gap keeping unit between GMR device bus-bar

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004079798A (en) * 2002-08-19 2004-03-11 Alps Electric Co Ltd Huge magnetoresistive effect element and its manufacturing method
KR20060084236A (en) * 2005-01-19 2006-07-24 고려대학교 산학협력단 Giant magneto-resistance device using cofezr and manufacturing method for the same
KR20090060063A (en) * 2007-12-07 2009-06-11 상지대학교산학협력단 Spin-valve magnetoresistive element with perpendicular magnetic anisotropy
JP4582488B2 (en) * 2006-04-27 2010-11-17 独立行政法人科学技術振興機構 Magnetic thin film, magnetoresistive effect element and magnetic device using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004079798A (en) * 2002-08-19 2004-03-11 Alps Electric Co Ltd Huge magnetoresistive effect element and its manufacturing method
KR20060084236A (en) * 2005-01-19 2006-07-24 고려대학교 산학협력단 Giant magneto-resistance device using cofezr and manufacturing method for the same
JP4582488B2 (en) * 2006-04-27 2010-11-17 独立行政法人科学技術振興機構 Magnetic thin film, magnetoresistive effect element and magnetic device using the same
KR20090060063A (en) * 2007-12-07 2009-06-11 상지대학교산학협력단 Spin-valve magnetoresistive element with perpendicular magnetic anisotropy

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220091100A (en) * 2020-12-23 2022-06-30 태성전장주식회사 air gap keeping unit between GMR device bus-bar
KR102473717B1 (en) 2020-12-23 2022-12-02 태성전장주식회사 air gap keeping unit between GMR device bus-bar

Similar Documents

Publication Publication Date Title
JP5172472B2 (en) Pinned layer, TMR sensor using the same, and method for manufacturing TMR sensor
US8385027B2 (en) TMR device with novel free layer structure
US9042057B1 (en) Methods for providing magnetic storage elements with high magneto-resistance using Heusler alloys
US7780820B2 (en) Low resistance tunneling magnetoresistive sensor with natural oxidized double MgO barrier
US8456781B2 (en) TMR device with novel free layer structure
JP5815204B2 (en) TMR element and method for forming the same
EP2434556B1 (en) Ferromagnetic tunnel junction structure and magnetoresistive element using same
JP4551484B2 (en) Tunnel magnetoresistive thin film and magnetic multilayer film manufacturing apparatus
JP5429480B2 (en) Magnetoresistive element, MRAM, and magnetic sensor
JP2010074170A (en) Tmr device and method of forming the same
JP6857421B2 (en) Ferromagnetic tunnel junction, spintronics device using it, and method for manufacturing ferromagnetic tunnel junction
JP2005217422A (en) Magnetoresistive element
CN112349832A (en) Magnetoresistive element and Wheatstone alloy
KR102117021B1 (en) giant magnetoresistance device
JP5647406B2 (en) Free layer, formation method thereof, magnetoresistive effect element
CN100383897C (en) Iron magnetic/anti iron magnet multilayer film pinning system and its preparing method
KR102263647B1 (en) giant magnetoresistance device
KR20190046653A (en) Semiconductor device
CN100452255C (en) Ferromagnetic/antiferromagnetic multilayer membrane material with pinning and its preparing method
KR101443190B1 (en) Magnetic tunnel junction device
US11156678B2 (en) Magnetic field sensor using in situ solid source graphene and graphene induced anti-ferromagnetic coupling and spin filtering
US6960397B2 (en) Magnetoresistance device
KR101406358B1 (en) Ultra soft magnetic material and spin valve comprising the same
Jun et al. Rotation of the pinned direction in artificial antiferromagnetic tunnel junctions by field annealing
KR20060113245A (en) Multilayer structure of device using texal1-x(0<x<1)as underlayer or capping layer

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant