JPH09161243A - Multilayered magnetoresistive film and magnetic head - Google Patents

Multilayered magnetoresistive film and magnetic head

Info

Publication number
JPH09161243A
JPH09161243A JP7319982A JP31998295A JPH09161243A JP H09161243 A JPH09161243 A JP H09161243A JP 7319982 A JP7319982 A JP 7319982A JP 31998295 A JP31998295 A JP 31998295A JP H09161243 A JPH09161243 A JP H09161243A
Authority
JP
Japan
Prior art keywords
layer
magnetic
alloy
film
magnetoresistive effect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7319982A
Other languages
Japanese (ja)
Inventor
Ryoichi Nakatani
亮一 中谷
Hiroyuki Hoshiya
裕之 星屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP7319982A priority Critical patent/JPH09161243A/en
Publication of JPH09161243A publication Critical patent/JPH09161243A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3268Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Power Engineering (AREA)
  • Magnetic Heads (AREA)
  • Thin Magnetic Films (AREA)
  • Hall/Mr Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a multilayered film showing a high change rate of the magnetoresistance effect by using a material having the face centered cubic structure and high electric resistance as a crystal system controlling layer. SOLUTION: A Si (100) single crystal is used as a substrate 11. Hf is used for a crystallinity controlling layer 12 and a Cu(50at.%)-Ni alloy layer is used for a crystal system controlling layer 13. A Fe(40at.%)-Mn alloy is used for an antiferromagnetic layer 14. A Ni(16at.%)-Fe(18at.%)-Co alloy is used for a magnetic layer 15 and a magnetic layer 19. The Co is used for a magnetic layer 16 and a magnetic layer 18. Cu is used for a nonmagnetic layer 17. In the obtd. multilayered film, the crystal system controlling layer 13 has high electric resistivity and an electric current hardly passes through the layer 13 so that a high change rate in the magnetoresistance effect can be obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は高い磁気抵抗効果を
有する多層磁気抵抗効果膜およびこれを用いた磁気抵抗
効果素子,磁気ヘッド,磁気記録再生装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multilayer magnetoresistive effect film having a high magnetoresistive effect, a magnetoresistive effect element using the same, a magnetic head and a magnetic recording / reproducing apparatus.

【0002】[0002]

【従来の技術】磁気記録の高密度化に伴い、再生用磁気
ヘッドに用いる磁気抵抗効果材料として、高い磁気抵抗
効果を示す材料が求められている。そこで、フィジカル
・レビュー・B(Pysical Review B),第43巻,第1
号,1297〜1300ページに記載の「軟磁性多層膜
における巨大磁気抵抗効果」(Giant Magnetoresistance
in Soft Ferromagnetic Multilayers)のように、二層の
磁性層を非磁性層で分離し、一方の磁性層に反強磁性層
からの交換バイアス磁界を印加する方法が考案された。
2. Description of the Related Art As the magnetic recording density increases, a material having a high magnetoresistive effect is required as a magnetoresistive effect material used for a reproducing magnetic head. So, Physical Review B, Vol. 43, Vol. 1
No. 1297-1300, "Giant Magnetoresistance Effect in Soft Magnetic Multilayer Films"
In Soft Ferromagnetic Multilayers), a method has been devised in which two magnetic layers are separated by a non-magnetic layer and an exchange bias magnetic field from an antiferromagnetic layer is applied to one magnetic layer.

【0003】このような多層膜では、通常、シャパニー
ズ ジャーナル オブ アプライドフィジクスJpn. J.
Appl. Phys.,第33巻,第1A号,133〜137ペ
ージに記載の「種々のバッファ層材料を用いたFe−M
n/Ni−Fe/Cu/Ni−Feサンドイッチの磁気
抵抗および結晶配向性」(Magnetoresistance andPrefer
red Orientation in Fe-Mn/Ni-Fe/Cu/Ni-Fe Sandwiches
with Various Buffer Layer Materials)で述べられて
いるように、結晶性を制御するために、Ti,Zr,H
f,Nb,Taなどの金属からなるバッファ層上に多層
膜を形成する。これは、多層膜の面心立方構造を有する
磁性層および非磁性層を(111)面配向とし、その上に
形成するMn系反強磁性層を面心立方構造とするためで
ある。Mn系反強磁性層は、面心立方構造を有する時に
のみ室温で反強磁性を示す材料が多い。
In such a multilayer film, normally, the Chinese Journal of Applied Physics Jpn. J.
Appl. Phys., Vol. 33, No. 1A, pp. 133-137, "Fe-M Using Various Buffer Layer Materials".
Magnetoresistance and Crystal Orientation of n / Ni-Fe / Cu / Ni-Fe Sandwich "(Magnetoresistance and Prefer)
red Orientation in Fe-Mn / Ni-Fe / Cu / Ni-Fe Sandwiches
In order to control crystallinity, Ti, Zr, H
A multilayer film is formed on the buffer layer made of metal such as f, Nb, and Ta. This is because the magnetic layer and the nonmagnetic layer having the face-centered cubic structure of the multilayer film have the (111) plane orientation, and the Mn-based antiferromagnetic layer formed thereon has the face-centered cubic structure. Many Mn antiferromagnetic layers exhibit antiferromagnetism at room temperature only when they have a face-centered cubic structure.

【0004】このような多層膜は、通常、基板側から、
結晶性制御層,磁性層,非磁性層,磁性層,反強磁性層
の順に形成する。しかし、磁気抵抗効果素子の構造によ
っては、基板側から、結晶性制御層,反強磁性層,磁性
層,非磁性層,磁性層の順に形成する必要がある可能性
がある。ところが、Ti,Zr,Hf,Nb,Taなど
の金属からなる結晶性制御層の上に直接、Mn系反強磁
性層を形成しても、Jpn. J. Appl. Phys.,第33巻,第
10号,5734〜5738ページに記載の「3層のN
i−Fe−Co層を有するスピンバルブ多層膜の磁気抵
抗効果」(Magneto-resistance Effects in Spin-Valve
Multilayers Including ThreeNi-Fe-Co Layers)で述べ
られているように、Mn系反強磁性層は面心立方構造と
ならず、室温で反強磁性を示さない。このため、上記文
献のように、結晶性制御層の上にCuからなる結晶系制
御層を形成し、結晶系制御層上にMn系反強磁性層を形
成し、Mn系反強磁性層を面心立方構造とする。また、
この構造は、三層の磁性層を有するスピンバルブにおい
ても使用される。
Such a multilayer film is usually formed from the substrate side.
The crystallinity control layer, the magnetic layer, the nonmagnetic layer, the magnetic layer, and the antiferromagnetic layer are formed in this order. However, depending on the structure of the magnetoresistive effect element, it may be necessary to sequentially form the crystallinity control layer, the antiferromagnetic layer, the magnetic layer, the nonmagnetic layer, and the magnetic layer from the substrate side. However, even if the Mn-based antiferromagnetic layer is formed directly on the crystallinity control layer made of a metal such as Ti, Zr, Hf, Nb, or Ta, Jpn. J. Appl. Phys., Vol. 33, No. 10, pp. 5734-5738, "3 layers of N
Magneto-resistance Effects in Spin-Valve
Multilayers Including Three Ni-Fe-Co Layers), the Mn-based antiferromagnetic layer does not have a face-centered cubic structure and does not exhibit antiferromagnetism at room temperature. Therefore, as in the above-mentioned document, a crystalline control layer made of Cu is formed on the crystalline control layer, an Mn antiferromagnetic layer is formed on the crystalline control layer, and an Mn antiferromagnetic layer is formed. Face-centered cubic structure. Also,
This structure is also used in a spin valve having three magnetic layers.

【0005】[0005]

【発明が解決しようとする課題】しかし、上述のJpn.
J. Appl. Phys.,第33巻,第10号,5734〜573
8ページ記載のように、結晶系制御層にCuを用いる
と、高い磁気抵抗変化率を得ることができない。これ
は、Cuの電気抵抗率が9/108 Ωm程度と低く、多
層膜に流す電流がCu層に分流してしまうためと考えら
れる。
[Problems to be Solved by the Invention] However, Jpn.
J. Appl. Phys., Volume 33, No. 10, 5734-573.
As described on page 8, if Cu is used for the crystal system control layer, a high magnetoresistance change rate cannot be obtained. It is considered that this is because the electric resistivity of Cu is as low as about 9/10 8 Ωm and the current flowing through the multilayer film is shunted to the Cu layer.

【0006】本発明の目的は、磁気抵抗効果型ヘッド用
の高磁気抵抗効果多層膜における磁気抵抗変化率低下の
解決方法を提供することにある。
An object of the present invention is to provide a method for solving the decrease in the magnetoresistive change rate in a high magnetoresistive effect multilayer film for a magnetoresistive effect type head.

【0007】[0007]

【課題を解決するための手段】本発明者等は、種々の材
料および膜厚を有する磁性層,非磁性層を積層した多層
磁性膜を用いた磁気抵抗効果素子について鋭意研究を重
ねた結果、上記結晶系制御層として、高い電気抵抗率を
有する材料を用いることにより、結晶系制御層への電流
の分流を少なくし、高い磁気抵抗変化率が得られること
を見出し、本発明を完成するに至った。
Means for Solving the Problems The inventors of the present invention have conducted extensive studies on a magnetoresistive effect element using a multilayer magnetic film in which magnetic layers and nonmagnetic layers having various materials and film thicknesses are laminated, and as a result, By using a material having a high electric resistivity as the crystal-based control layer, it was found that a shunt of current to the crystal-based control layer was reduced and a high magnetoresistance change rate was obtained, and the present invention was completed. I arrived.

【0008】但し、Mn系反強磁性層の結晶の形を制御
する目的からは、結晶系制御層は面心立方格子を有する
ことが必要になる。また、多層膜の主な部分を構成する
磁性層よりも、結晶系制御層の電気抵抗率は高いことが
好ましい。このような条件から、結晶系制御層はCu−
Ni系合金が好ましい。
However, for the purpose of controlling the crystal shape of the Mn-based antiferromagnetic layer, the crystal-based control layer must have a face-centered cubic lattice. Further, it is preferable that the crystalline control layer has a higher electric resistivity than the magnetic layer forming the main part of the multilayer film. Under these conditions, the crystalline control layer is Cu-
Ni-based alloys are preferred.

【0009】上述のように、結晶系制御層を面心立方格
子を有する材料とすることにより、Mn系反強磁性層
を、室温で反強磁性を有する構造とすることができる。
また、結晶系制御層の電気抵抗率を高くすることによ
り、結晶系制御層への電流の分流を減らすことができ、
多層膜の磁気抵抗変化率を高くすることができる。
As described above, by using a material having a face-centered cubic lattice as the crystal-based control layer, the Mn-based antiferromagnetic layer can have a structure having antiferromagnetism at room temperature.
Further, by increasing the electrical resistivity of the crystal system control layer, it is possible to reduce the shunt of the current to the crystal system control layer,
The magnetoresistance change rate of the multilayer film can be increased.

【0010】また、本発明による多層磁気抵抗効果膜
は、磁気抵抗効果素子,磁界センサ,磁気ヘッドなどに
好適である。また、上記磁気ヘッドを用いることによ
り、高性能磁気記録再生装置を得ることができる。
The multilayer magnetoresistive effect film according to the present invention is suitable for a magnetoresistive effect element, a magnetic field sensor, a magnetic head and the like. Further, by using the magnetic head, a high-performance magnetic recording / reproducing apparatus can be obtained.

【0011】[0011]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

(実施例1)図1は本発明の一実施例の多層膜の断面構
造を示す。
(Embodiment 1) FIG. 1 shows a sectional structure of a multilayer film according to an embodiment of the present invention.

【0012】多層膜の作製にはイオンビームスパッタリ
ング法を用いた。到達真空度は、3/105Pa、スパ
ッタリング時のAr圧力は0.02Paである。また、
膜形成速度は、0.01〜0.02nm/sである。基板
11にはSi(100)単結晶を用いた。また、結晶性
制御層12として、厚さ5nmのHfを用いた。結晶系
制御層13としては、厚さ5nmのCu−50at%Ni
合金層を用いた。反強磁性層14には、厚さ10nmの
Fe−40at%Mn合金を用いた。磁性層15および磁
性層19には、それぞれ、厚さ3nmおよび9nmのN
i−16at%Fe−18at%Co合金を用いた。磁性層
16および磁性層18には、それぞれ、厚さ2nmおよ
び1nmのCoを用いた。また、非磁性層17には、厚
さ2.5nmのCuを用いた。
An ion beam sputtering method was used for manufacturing the multilayer film. The ultimate vacuum is 3/10 5 Pa, and the Ar pressure during sputtering is 0.02 Pa. Also,
The film formation rate is 0.01 to 0.02 nm / s. As the substrate 11, a single crystal of Si (100) was used. As the crystallinity control layer 12, Hf with a thickness of 5 nm was used. As the crystal system control layer 13, Cu-50 at% Ni having a thickness of 5 nm is used.
An alloy layer was used. For the antiferromagnetic layer 14, a Fe-40 at% Mn alloy having a thickness of 10 nm was used. The magnetic layer 15 and the magnetic layer 19 have N thicknesses of 3 nm and 9 nm, respectively.
An i-16 at% Fe-18 at% Co alloy was used. Co having a thickness of 2 nm and 1 nm was used for the magnetic layer 16 and the magnetic layer 18, respectively. The nonmagnetic layer 17 is made of Cu having a thickness of 2.5 nm.

【0013】また、比較例として、結晶系制御層13と
して、厚さ5nmのCu層を用いた多層膜も形成した。
As a comparative example, a multilayer film using a Cu layer having a thickness of 5 nm was also formed as the crystal system control layer 13.

【0014】上記比較例の多層膜の磁気抵抗変化率は
4.8 %であった。これに対し、本発明の多層膜の磁気
抵抗変化率は5.5 %であった。
The rate of change in magnetoresistance of the multilayer film of the above comparative example was 4.8%. On the other hand, the magnetoresistive change rate of the multilayer film of the present invention was 5.5%.

【0015】本発明で用いた結晶系制御層13、すなわ
ち、Cu−50at%Ni合金層の電気抵抗率を測定する
ために、厚さ50nmのCu−50at%Ni合金膜を形
成した。この合金膜の電気抵抗率は65/108 Ωmで
あった。また、厚さ50nmのCuの電気抵抗率は9/
108 Ωmであった。これらの結果より、本発明の多層
膜では、結晶系制御層の電気抵抗率が高く、電流が結晶
系制御層に流れにくくなったために、磁気抵抗変化率が
高くなったものと考えられる。
In order to measure the electrical resistivity of the crystal system control layer 13 used in the present invention, that is, the Cu-50 at% Ni alloy layer, a Cu-50 at% Ni alloy film having a thickness of 50 nm was formed. The electrical resistivity of this alloy film was 65/10 8 Ωm. The electric resistivity of Cu with a thickness of 50 nm is 9 /
It was 10 8 Ωm. From these results, it is considered that the multilayer film of the present invention has a high magnetoresistive change rate because the electric resistance of the crystalline control layer is high and it is difficult for current to flow in the crystalline control layer.

【0016】本発明の構造は、三層の磁性層を含む多層
膜にも応用できる。すなわち、図2のように、基板21
上に厚さ5nmのHfからなる結晶性制御層22を形成
し、さらに、厚さ5nmのCu−50at%Ni合金から
なる結晶系制御層23、厚さ10nmのFe−40at%
Mn合金からなる反強磁性層24を形成した。磁性層2
5および磁性層33には、厚さ3nmのNi−16at%
Fe−18at%Co合金を用いた。磁性層29には、厚
さ8nmのNi−16at%Fe−18at%Co合金を用
いた。磁性層26および磁性層32には、厚さ2nmの
Coを用いた。磁性層28および磁性層30には、厚さ
1nmのCoを用いた。また、非磁性層27および非磁
性層31には、厚さ2.5 nmのCuを用いた。また、
反強磁性層34にも、厚さ10nmのFe−40at%M
n合金層を用いた。この多層膜の磁気抵抗変化率は7.
5 %であった。
The structure of the present invention can also be applied to a multilayer film including three magnetic layers. That is, as shown in FIG.
A crystallinity control layer 22 made of Hf having a thickness of 5 nm is formed thereon, and a crystal system control layer 23 made of a Cu-50 at% Ni alloy having a thickness of 5 nm and Fe-40 at% having a thickness of 10 nm are further formed.
An antiferromagnetic layer 24 made of a Mn alloy was formed. Magnetic layer 2
5 and the magnetic layer 33 have a thickness of 3 nm of Ni-16 at%.
An Fe-18 at% Co alloy was used. For the magnetic layer 29, a Ni-16 at% Fe-18 at% Co alloy having a thickness of 8 nm was used. Co having a thickness of 2 nm was used for the magnetic layer 26 and the magnetic layer 32. Co having a thickness of 1 nm was used for the magnetic layers 28 and 30. Further, for the nonmagnetic layer 27 and the nonmagnetic layer 31, Cu having a thickness of 2.5 nm was used. Also,
The antiferromagnetic layer 34 also has a thickness of 10 nm of Fe-40 at% M.
An n alloy layer was used. The rate of change in magnetoresistance of this multilayer film is 7.
It was 5%.

【0017】本実施例では、結晶系制御層としてCu−
50at%Ni合金層を用いたが、本発明の目的からはM
n系反強磁性層を面心立方構造とし、電気抵抗率の高い
材料であれば、結晶系制御層として用いることができ
る。電流の分流の観点からは、多層膜の主な構成要素で
ある磁性層よりも高い電気抵抗率を有する材料が好まし
い。
In this embodiment, Cu- is used as the crystal system control layer.
A 50 at% Ni alloy layer was used, but for the purpose of the present invention, M
If the n-type antiferromagnetic layer has a face-centered cubic structure and the material has a high electric resistivity, it can be used as a crystal-based control layer. From the viewpoint of current shunting, a material having a higher electrical resistivity than the magnetic layer, which is the main component of the multilayer film, is preferable.

【0018】また、本実施例では、結晶性制御層12ま
たは22としてHfを用いたが、Ti,Zr,V,N
b,Taから選ばれる金属、あるいは、Ti,Zr,H
f,V,Nb,Ta相互の合金、あるいは、上記金属を
主成分とする合金を用いても、結晶系制御層の結晶配向
性が(111)となり、結晶系制御層上に形成したMn
系反強磁性層を面心立方構造とすることができる。
In this embodiment, Hf is used as the crystallinity control layer 12 or 22, but Ti, Zr, V, N is used.
Metal selected from b, Ta, or Ti, Zr, H
Even if an alloy of f, V, Nb, and Ta, or an alloy containing the above-mentioned metal as a main component is used, the crystal orientation of the crystal system control layer becomes (111), and Mn formed on the crystal system control layer.
The system antiferromagnetic layer can have a face-centered cubic structure.

【0019】また、本実施例では、磁性層として、Ni
−Fe−Co系合金層とCo層との積層体を用い、非磁
性層と接触している磁性層をCo層とした。これは、多
層膜の磁気抵抗変化率を高くするためである。しかし、
特に磁性層の軟磁気特性を重視する場合は、磁性層とし
てNi−Fe系合金層、あるいは、Ni−Fe−Co系
合金層を用いることが好ましい。また、Co層の代わり
に、Coを主成分とする合金層を用いることもできる。
In this embodiment, the magnetic layer is made of Ni.
A laminated body of a —Fe—Co based alloy layer and a Co layer was used, and the magnetic layer in contact with the non-magnetic layer was the Co layer. This is to increase the magnetoresistance change rate of the multilayer film. But,
Especially when the soft magnetic characteristics of the magnetic layer are emphasized, it is preferable to use a Ni—Fe based alloy layer or a Ni—Fe—Co based alloy layer as the magnetic layer. Further, instead of the Co layer, an alloy layer containing Co as a main component can be used.

【0020】また、本実施例では、Mnを含む反強磁性
層として、Fe−Mn系合金層を用いたが、他のMn系
合金を用いても良い。他のMn系合金は、Mn−Ir系
合金層,Co−Mn系合金層,Co−Mn−Pt系合金
層,Ni−Mn系合金層,Ni−Mn−Cr系合金層,
Cr−Mn系合金層,Cr−Mn−Pt系合金層などが
好ましい。
In this embodiment, the Fe-Mn alloy layer is used as the antiferromagnetic layer containing Mn, but other Mn alloys may be used. Other Mn-based alloys include Mn-Ir-based alloy layers, Co-Mn-based alloy layers, Co-Mn-Pt-based alloy layers, Ni-Mn-based alloy layers, Ni-Mn-Cr-based alloy layers,
A Cr-Mn-based alloy layer, a Cr-Mn-Pt-based alloy layer, etc. are preferable.

【0021】また、本実施例では、非磁性層として、C
uを用いたが、電気抵抗率の低い、Au,Agを用いて
も同様の結果が得られる。しかし、磁性層として3d遷
移金属を用いる場合には、磁性層とのフェルミ面のマッ
チングの観点から、非磁性層はCuであることが好まし
い。
In this embodiment, the nonmagnetic layer is made of C
Although u was used, similar results can be obtained by using Au or Ag, which has a low electric resistivity. However, when a 3d transition metal is used for the magnetic layer, the non-magnetic layer is preferably Cu from the viewpoint of matching the Fermi surface with the magnetic layer.

【0022】(実施例2)前述のように、面心立方構造
を有し、電気抵抗率の高い材料であれば、結晶系制御層
として用いることができる。しかし、Mn系反強磁性層
の結晶の形を制御する目的からは、結晶系制御層はMn
系反強磁性層とほぼ同じ格子定数を有することが好まし
い。CuおよびNiは面心立方格子を有し、さらに、こ
れらの合金は電気抵抗率が高い。このような条件から、
結晶系制御層はCu−Ni系合金が好ましい。
Example 2 As described above, a material having a face-centered cubic structure and a high electric resistivity can be used as the crystal-based control layer. However, for the purpose of controlling the crystal shape of the Mn-based antiferromagnetic layer, the crystal-based control layer is Mn.
It is preferable that the lattice constant is substantially the same as that of the antiferromagnetic layer. Cu and Ni have a face centered cubic lattice and, in addition, these alloys have high electrical resistivity. From such conditions,
The crystal system control layer is preferably a Cu-Ni system alloy.

【0023】図3に厚さ50nmのCu−Ni系合金膜
の電気抵抗率のNi濃度依存性を示す。試料は、実施例
1と同様の方法で形成した。図のように、Ni濃度が5
0at%近傍の時に、Cu−Ni系合金膜の電気抵抗率が
高くなる。Ni濃度が30〜75at%の時に、Cu−N
i系合金膜の電気抵抗率は、40/108 Ωm以上にな
る。また、Ni濃度が46〜59at%の時に、Cu−N
i系合金膜の電気抵抗率は、60/108 Ωm以上にな
る。
FIG. 3 shows the Ni concentration dependence of the electrical resistivity of a Cu-Ni alloy film having a thickness of 50 nm. The sample was formed in the same manner as in Example 1. As shown in the figure, the Ni concentration is 5
The electric resistivity of the Cu—Ni based alloy film becomes high near 0 at%. When the Ni concentration is 30 to 75 at%, Cu-N
The electrical resistivity of the i-based alloy film is 40/10 8 Ωm or more. Further, when the Ni concentration is 46 to 59 at%, Cu-N
The electrical resistivity of the i-based alloy film is 60/10 8 Ωm or more.

【0024】(実施例3)本発明の多層膜を用いた磁気
抵抗効果素子を形成した。本実施例では、実施例1で述
べた三層の磁性層を有する多層膜を用いた。図4に磁気
抵抗効果素子の構造を示す。磁気抵抗効果素子は、多層
磁気抵抗効果膜51および電極52をシールド層53,
54で挟んだ構造を有する。磁気抵抗効果素子に磁界を
印加し、電気抵抗率の変化を測定したところ、本発明の
多層磁気抵抗効果膜を用いた磁気抵抗効果素子は、1.
6kA/m(20Oe)程度の印加磁界で7.1%の磁
気抵抗変化率を示した。また、本発明の磁気抵抗効果素
子の再生出力は、Ni−Fe単層膜を用いた磁気抵抗効
果素子と比較して3.4 倍であった。
(Example 3) A magnetoresistive effect element using the multilayer film of the present invention was formed. In this example, the multilayer film having the three magnetic layers described in Example 1 was used. FIG. 4 shows the structure of the magnetoresistive effect element. The magnetoresistive effect element includes a multilayer magnetoresistive effect film 51, an electrode 52, a shield layer 53,
It has a structure sandwiched by 54. When a magnetic field was applied to the magnetoresistive effect element and a change in electric resistivity was measured, the magnetoresistive effect element using the multilayer magnetoresistive effect film of the present invention was found to be 1.
The applied magnetic field of about 6 kA / m (20 Oe) showed a magnetoresistance change rate of 7.1%. Further, the reproduction output of the magnetoresistive effect element of the present invention was 3.4 times that of the magnetoresistive effect element using the Ni-Fe single layer film.

【0025】(実施例4)図5に実施例3で述べた磁気
抵抗効果素子を用いて作製した磁気ヘッドの構造を示
す。本図は、記録再生分離型ヘッドの一部分を切断した
場合の斜視図である。多層磁気抵抗効果膜61をシール
ド層62,63で挾んだ部分が再生ヘッドとして働き、
コイル64を挾む下部磁極65,上部磁極66の部分が
記録ヘッドとして働く。また、電極68には、Cr/C
u/Crという多層構造の材料を用いた。
(Embodiment 4) FIG. 5 shows the structure of a magnetic head manufactured by using the magnetoresistive effect element described in Embodiment 3. This figure is a perspective view when a part of the recording / reproducing separated type head is cut. The portion sandwiched between the multilayer magnetoresistive effect film 61 by the shield layers 62 and 63 functions as a reproducing head,
The lower magnetic pole 65 and the upper magnetic pole 66, which sandwich the coil 64, function as a recording head. Further, the electrode 68 is made of Cr / C.
A multi-layered material called u / Cr was used.

【0026】以下にこのヘッドの作製方法を示す。Al
23・TiCを主成分とする焼結体をスライダ用の基板
67とした。シールド層62,63、記録磁極65,6
6にはスパッタリング法で形成したNi−Fe合金を用
いた。各磁性膜の膜厚は、以下のようにした。上下のシ
ールド層62,63は1.0 μm、下部磁極65,上部
66は3.0 μm,各層間のギャップ材(図示せず)と
してはスパッタリングで形成したAl23を用いた。ギ
ャップ層の膜厚は、シールド層と磁気抵抗効果素子間で
0.2μm,記録磁極間では0.4μmとした。さらに再
生ヘッドと記録ヘッドの間隔は約4μmとし、このギャ
ップもAl23で形成(図示せず)した。コイル64に
は膜厚3μmのCuを使用した。
The manufacturing method of this head will be described below. Al
A sintered body mainly composed of 2 O 3 .TiC was used as a slider substrate 67. Shield layers 62 and 63, recording magnetic poles 65 and 6
A Ni—Fe alloy formed by a sputtering method was used for 6. The thickness of each magnetic film was as follows. The upper and lower shield layers 62 and 63 were 1.0 μm, the lower magnetic pole 65 and the upper part 66 were 3.0 μm, and Al 2 O 3 formed by sputtering was used as a gap material (not shown) between the layers. The thickness of the gap layer was 0.2 μm between the shield layer and the magnetoresistive element, and 0.4 μm between the recording magnetic poles. Further, the distance between the reproducing head and the recording head was set to about 4 μm, and this gap was also formed of Al 2 O 3 (not shown). Cu having a film thickness of 3 μm was used for the coil 64.

【0027】この構造の磁気ヘッドで記録再生を行った
ところ、Ni−Fe単層膜を用いた磁気ヘッドと比較し
て、3.2 倍高い再生出力を得た。これは、本発明の磁
気ヘッドに高磁気抵抗効果を示す多層膜を用いたためと
考えられる。
When recording / reproducing was performed with the magnetic head having this structure, a reproducing output 3.2 times higher than that of the magnetic head using the Ni--Fe single layer film was obtained. This is probably because the magnetic head of the present invention used a multilayer film exhibiting a high magnetoresistance effect.

【0028】また、本発明の磁気抵抗効果素子は、磁気
ヘッド以外の磁界検出器にも用いることができる。
The magnetoresistive effect element of the present invention can also be used in a magnetic field detector other than the magnetic head.

【0029】(実施例5)実施例4で述べた本発明の磁
気ヘッドを用い、磁気ディスク装置を作製した。装置の
構造を図6に示す。磁気記録媒体71には、残留磁束密
度0.75TのCo−Ni−Pt−Ta系合金からなる
材料を用いた。磁気ヘッド73のトラック幅は2.5 μ
mとした。ここで、74はヘッド駆動部、75は再生信
号処理系を示す。磁気ヘッド73における磁気抵抗効果
素子は、再生出力が高いため、信号処理に負担をかけな
い高性能磁気ディスク装置が得られた。
(Embodiment 5) Using the magnetic head of the present invention described in Embodiment 4, a magnetic disk device was manufactured. The structure of the device is shown in FIG. For the magnetic recording medium 71, a material made of a Co—Ni—Pt—Ta alloy having a residual magnetic flux density of 0.75T was used. The track width of the magnetic head 73 is 2.5 μ
m. Here, 74 is a head drive unit, and 75 is a reproduction signal processing system. Since the magnetoresistive effect element of the magnetic head 73 has a high reproduction output, a high-performance magnetic disk device that does not impose a burden on signal processing was obtained.

【0030】[0030]

【発明の効果】磁性層/非磁性層/磁性層/Mn系反強
磁性層/結晶系制御層/結晶性制御層/基板という構造
を有する多層膜、あるいは、Mn系反強磁性層/磁性層
/非磁性層/磁性層/非磁性層/磁性層/Mn系反強磁
性層/結晶系制御層/結晶性制御層/基板という構造を
有する多層膜において、結晶系制御層として電気抵抗率
が高く、面心立方構造を有する材料を用いた。この構造
により、Mn系反強磁性層は、室温で反強磁性層を示す
結晶構造となり、また、結晶系制御層の電気抵抗率が高
いために、結晶系制御層に電流が流れにくく、その結
果、高い磁気抵抗変化率を示す多層膜を得ることができ
た。さらに、上記多層磁気抵抗効果膜は、磁気抵抗効果
素子,磁界センサ,磁気ヘッドなどに好適である。ま
た、磁気ヘッドを用いることにより、高性能磁気記録再
生装置を得ることができる。
EFFECT OF THE INVENTION A multilayer film having a structure of magnetic layer / non-magnetic layer / magnetic layer / Mn-based antiferromagnetic layer / crystalline control layer / crystallinity control layer / substrate, or Mn-based antiferromagnetic layer / magnetic In a multilayer film having a structure of layer / nonmagnetic layer / magnetic layer / nonmagnetic layer / magnetic layer / Mn-based antiferromagnetic layer / crystalline control layer / crystallinity control layer / substrate, the electrical resistivity as a crystalline control layer And a material having a face-centered cubic structure was used. With this structure, the Mn-based antiferromagnetic layer has a crystal structure that exhibits an antiferromagnetic layer at room temperature, and because the electric resistivity of the crystal-based control layer is high, it is difficult for current to flow in the crystal-based control layer. As a result, a multilayer film showing a high magnetoresistance change rate could be obtained. Furthermore, the multilayer magnetoresistive effect film is suitable for a magnetoresistive effect element, a magnetic field sensor, a magnetic head, and the like. Further, by using the magnetic head, a high performance magnetic recording / reproducing device can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の二層の磁性層を有する多層磁気抵抗効
果膜の断面図。
FIG. 1 is a cross-sectional view of a multilayer magnetoresistive effect film having two magnetic layers of the present invention.

【図2】本発明の三層の磁性層を有する多層磁気抵抗効
果膜の断面図。
FIG. 2 is a sectional view of a multilayer magnetoresistive effect film having three magnetic layers of the present invention.

【図3】Cu−Ni系合金膜のNi濃度と電気抵抗率と
の関係を示す特性図。
FIG. 3 is a characteristic diagram showing a relationship between Ni concentration and electric resistivity of a Cu—Ni alloy film.

【図4】本発明の多層磁気抵抗効果膜を用いた磁気抵抗
効果素子の構造を示す斜視図。
FIG. 4 is a perspective view showing the structure of a magnetoresistive effect element using the multilayer magnetoresistive effect film of the present invention.

【図5】本発明の磁気ヘッドの構造を示す斜視図。FIG. 5 is a perspective view showing the structure of the magnetic head of the present invention.

【図6】本発明の磁気ディスク装置の説明図。FIG. 6 is an explanatory diagram of a magnetic disk device of the present invention.

【符号の説明】[Explanation of symbols]

11…基板、12…結晶性制御層、13…結晶系制御
層、14…反強磁性層、15,16,18,19…磁性
層、17…非磁性層。
11 ... Substrate, 12 ... Crystallinity control layer, 13 ... Crystal system control layer, 14 ... Antiferromagnetic layer, 15, 16, 18, 19 ... Magnetic layer, 17 ... Nonmagnetic layer.

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】結晶性制御層,結晶系制御層,Mnを含む
反強磁性層、NiおよびFeを含む磁性層,非磁性層,
NiおよびFeを含む磁性層の順に形成されている多層
膜において、上記結晶系制御層が面心立方格子を有し、
上記結晶系制御層の電気抵抗率がNiおよびFeを含む
磁性層よりも高く、上記非磁性層を挟む磁性層の磁化の
なす相対角度により多層膜の電気抵抗率が変化すること
を特徴とする多層磁気抵抗効果膜。
1. A crystallinity control layer, a crystal system control layer, an antiferromagnetic layer containing Mn, a magnetic layer containing Ni and Fe, a non-magnetic layer,
In a multilayer film formed by sequentially forming magnetic layers containing Ni and Fe, the crystal system control layer has a face-centered cubic lattice,
The crystalline control layer has a higher electrical resistivity than the magnetic layers containing Ni and Fe, and the electrical resistivity of the multilayer film changes depending on the relative angle formed by the magnetizations of the magnetic layers sandwiching the non-magnetic layer. Multilayer magnetoresistive film.
【請求項2】結晶性制御層,結晶系制御層,Mnを含む
反強磁性層、NiおよびFeを含む磁性層,非磁性層,
NiおよびFeを含む磁性層,非磁性層,NiおよびF
eを含む磁性層,Mnを含む反強磁性層の順に形成され
ている多層膜において、上記結晶系制御層が面心立方格
子を有し、上記結晶系制御層の電気抵抗率がNiおよび
Feを含む磁性層よりも高く、上記二層の非磁性層を挟
む磁性層の磁化のなす相対角度により多層膜の電気抵抗
率が変化することを特徴とする多層磁気抵抗効果膜。
2. A crystallinity control layer, a crystal system control layer, an antiferromagnetic layer containing Mn, a magnetic layer containing Ni and Fe, a nonmagnetic layer,
Magnetic layer containing Ni and Fe, non-magnetic layer, Ni and F
In a multilayer film in which a magnetic layer containing e and an antiferromagnetic layer containing Mn are formed in this order, the crystal system control layer has a face-centered cubic lattice, and the crystal system control layer has an electrical resistivity of Ni and Fe. A multi-layered magnetoresistive effect film which is higher than a magnetic layer containing the above-mentioned two non-magnetic layers and in which the electrical resistivity of the multi-layered film changes depending on the relative angle formed by the magnetizations of the magnetic layers sandwiching the two non-magnetic layers.
【請求項3】請求項1または2において、上記結晶性制
御層がTi,Zr,Hf,V,Nb,Taから選ばれる
金属、あるいは、上記金属相互の合金、あるいは、上記
金属を主成分とする合金である多層磁気抵抗効果膜。
3. The crystallinity control layer according to claim 1, wherein the crystallinity control layer contains a metal selected from Ti, Zr, Hf, V, Nb, and Ta, an alloy of the above metals, or a metal as a main component. A multi-layered magnetoresistive film that is an alloy.
【請求項4】請求項1,2または3において、上記結晶
系制御層がCu−Ni系合金である多層磁気抵抗効果
膜。
4. The multilayer magnetoresistive effect film according to claim 1, wherein the crystal system control layer is a Cu—Ni system alloy.
【請求項5】請求項4において、上記Cu−Ni系合金
におけるNi濃度が30〜75at%である多層磁気抵抗
効果膜。
5. The multilayer magnetoresistive effect film according to claim 4, wherein the Ni concentration in the Cu—Ni alloy is 30 to 75 at%.
【請求項6】請求項4において、上記Cu−Ni系合金
におけるNi濃度が46〜59at%である多層磁気抵抗
効果膜。
6. The multilayer magnetoresistive effect film according to claim 4, wherein the Ni concentration in the Cu—Ni alloy is 46 to 59 at%.
【請求項7】請求項1,2,3,4,5または6におい
て、上記NiおよびFeを含む磁性層が、Ni−Fe系
合金層、あるいは、Ni−Fe−Co系合金層である多
層磁気抵抗効果膜。
7. The multilayer structure according to claim 1, 2, 3, 4, 5 or 6, wherein the magnetic layer containing Ni and Fe is a Ni—Fe alloy layer or a Ni—Fe—Co alloy layer. Magnetoresistive film.
【請求項8】請求項1,2,3,4,5または6におい
て、上記NiおよびFeを含む磁性層が、Ni−Fe系
合金層、あるいは、Ni−Fe−Co系合金層とCo
層、あるいは、Coを主成分とする合金層との積層体で
あり、Co層、あるいは、Coを主成分とする合金層と
上記非磁性層とが接触している多層磁気抵抗効果膜。
8. The magnetic layer containing Ni and Fe according to claim 1, wherein the magnetic layer containing Ni and Fe is a Ni--Fe alloy layer, or a Ni--Fe--Co alloy layer and Co.
A multilayer magnetoresistive effect film which is a laminated body of a layer or an alloy layer containing Co as a main component, wherein the Co layer or an alloy layer containing Co as a main component is in contact with the nonmagnetic layer.
【請求項9】請求項1,2,3,4,5,6,7または
8において、上記Mnを含む反強磁性層がFe−Mn系
合金層,Mn−Ir系合金層,Co−Mn系合金層,C
o−Mn−Pt系合金層,Ni−Mn系合金層,Ni−
Mn−Cr系合金層,Cr−Mn系合金層,Cr−Mn
−Pt系合金層から選ばれる合金層である多層磁気抵抗
効果膜。
9. The antiferromagnetic layer containing Mn according to claim 1, 2, 3, 4, 5, 6, 7 or 8, wherein an Fe—Mn based alloy layer, a Mn—Ir based alloy layer, and a Co—Mn layer. System alloy layer, C
o-Mn-Pt alloy layer, Ni-Mn alloy layer, Ni-
Mn-Cr alloy layer, Cr-Mn alloy layer, Cr-Mn
-A multilayer magnetoresistive film which is an alloy layer selected from Pt-based alloy layers.
【請求項10】請求項1,2,3,4,5,6,7,8
または9に記載の多層磁気抵抗効果膜を含む磁気抵抗効
果素子。
10. The method of claim 1, 2, 3, 4, 5, 6, 7, 8
Alternatively, a magnetoresistive effect element including the multilayer magnetoresistive effect film described in 9.
【請求項11】請求項10に記載の上記磁気抵抗効果素
子を含む磁気ヘッド。
11. A magnetic head including the magnetoresistive effect element according to claim 10.
【請求項12】請求項11に記載の上記磁気抵抗効果素
子と誘導型磁気ヘッドとを組み合わせた複合型磁気ヘッ
ド。
12. A composite magnetic head in which the magnetoresistive effect element according to claim 11 and an inductive magnetic head are combined.
【請求項13】請求項11または請求項12に記載の上
記磁気ヘッドを用いた磁気記録再生装置。
13. A magnetic recording / reproducing apparatus using the magnetic head according to claim 11 or 12.
JP7319982A 1995-12-08 1995-12-08 Multilayered magnetoresistive film and magnetic head Pending JPH09161243A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7319982A JPH09161243A (en) 1995-12-08 1995-12-08 Multilayered magnetoresistive film and magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7319982A JPH09161243A (en) 1995-12-08 1995-12-08 Multilayered magnetoresistive film and magnetic head

Publications (1)

Publication Number Publication Date
JPH09161243A true JPH09161243A (en) 1997-06-20

Family

ID=18116427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7319982A Pending JPH09161243A (en) 1995-12-08 1995-12-08 Multilayered magnetoresistive film and magnetic head

Country Status (1)

Country Link
JP (1) JPH09161243A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6090480A (en) * 1997-04-30 2000-07-18 Nec Corporation Magnetoresistive device
US6313973B1 (en) 1998-06-30 2001-11-06 Kabushiki Kaisha Toshiba Laminated magnetorestrictive element of an exchange coupling film, an antiferromagnetic film and a ferromagnetic film and a magnetic disk drive using same
KR100330524B1 (en) * 1999-03-30 2002-03-28 포만 제프리 엘 Dual gmr sensor with a single afm layer
US6980405B2 (en) 2002-01-02 2005-12-27 International Business Machines Corporation Method and apparatus for providing precise control of magnetic coupling field in NiMn top spin valve heads and amplitude enhancement

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6090480A (en) * 1997-04-30 2000-07-18 Nec Corporation Magnetoresistive device
US6313973B1 (en) 1998-06-30 2001-11-06 Kabushiki Kaisha Toshiba Laminated magnetorestrictive element of an exchange coupling film, an antiferromagnetic film and a ferromagnetic film and a magnetic disk drive using same
KR100330524B1 (en) * 1999-03-30 2002-03-28 포만 제프리 엘 Dual gmr sensor with a single afm layer
US6980405B2 (en) 2002-01-02 2005-12-27 International Business Machines Corporation Method and apparatus for providing precise control of magnetic coupling field in NiMn top spin valve heads and amplitude enhancement
US7038891B2 (en) 2002-01-02 2006-05-02 International Business Machines Corporation Method and apparatus for providing precise control of magnetic coupling field in NiMn top spin valve heads and amplitude enhancement

Similar Documents

Publication Publication Date Title
JP3833512B2 (en) Magnetoresistive effect element
JP3961496B2 (en) CPP type giant magnetoresistive head
JP4896587B2 (en) Magnetoresistive element, magnetic head, and magnetic reproducing apparatus
JP2002092826A (en) Magnetoresistive effect element, magnetic head and magnetic recording and reproducing device
JP4245318B2 (en) Magnetic detection element
JPH10143822A (en) Thin-film magnetic structure and thin-film magnetic head
JP4237991B2 (en) Magnetic detection element
JP2001014616A (en) Magnetic conversion element, thin-film magnetic head and their production
JPH0969211A (en) Magnetoresistance effect film, magnetic head and magnetic recorder/reproducer
JP2001177163A (en) Magnetic conversion element and thin film magnetic head
JP3137598B2 (en) Magnetoresistive element, magnetic transducer and antiferromagnetic film
JP3527786B2 (en) Multilayer magnetoresistive film and magnetic head
JPH09161243A (en) Multilayered magnetoresistive film and magnetic head
JPH0950612A (en) Magnetoresistive effect film, magnetoresistive effect element, magnetic head and magnetic recording and reproducing device
JP3083237B2 (en) Magnetoresistive element and magnetic head
JPH06310329A (en) Multilayer magnetoresistance effect film and magnetic head
JP2656449B2 (en) Magnetoresistive head
JP2907805B1 (en) Magnetoresistive element, magnetoresistive head and magnetic recording / reproducing device
JPH08241506A (en) Multilayered magnetoresistance effect film and magnetic head
JPH0774022A (en) Multilayer magnetoresistance-effect film and magnetic head
JPH09245320A (en) Multilayer magnetoresistive effect film and magnetic head formed by using the same as well as magnetic recording and reproducing device
JPH0661048A (en) Multilayer magnetoresistance effect film and magnetic head
JPH0766036A (en) Multilayer magnetoresistance effect film, and magnetoresistance effect element and magnetic head using same
JPH08111010A (en) Multilayered magneto-resistance effect film and magnetic head
JPH09237410A (en) Multilayer magnetoresistive effect film and magnetic head using the same and magnetic recording and reproducing device