JPH0661048A - Multilayer magnetoresistance effect film and magnetic head - Google Patents

Multilayer magnetoresistance effect film and magnetic head

Info

Publication number
JPH0661048A
JPH0661048A JP21396292A JP21396292A JPH0661048A JP H0661048 A JPH0661048 A JP H0661048A JP 21396292 A JP21396292 A JP 21396292A JP 21396292 A JP21396292 A JP 21396292A JP H0661048 A JPH0661048 A JP H0661048A
Authority
JP
Japan
Prior art keywords
magnetic layer
magnetic
magnetoresistive effect
film
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21396292A
Other languages
Japanese (ja)
Inventor
Ryoichi Nakatani
亮一 中谷
Ken Sugita
愃 杉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP21396292A priority Critical patent/JPH0661048A/en
Publication of JPH0661048A publication Critical patent/JPH0661048A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3268Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn
    • H01F10/3281Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn only by use of asymmetry of the magnetic film pair itself, i.e. so-called pseudospin valve [PSV] structure, e.g. NiFe/Cu/Co

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Magnetic Heads (AREA)
  • Power Engineering (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To obtain a high change rate of magnetoresistance by using an Ni-Fe based alloy having a face-centered cubic lattice structure as the magnetic layer to orient the (100) face of a magnetic layer crystal in parallel with the substrate. CONSTITUTION:In a magnetoresistance effect element using a multilayer that is a laminate of nonmagnetic layers 12, an Ni-Fe based allay having a face- centered cubic lattice structure is used as a magnetic layer 11 to orient the crystal (100) face of the magnetic layer 11 in parallel with the substrate. The relation between X-ray diffraction strength I200 by the crystal (200) face of the magnetic layer 11 and X-ray diffraction strength I111 by the crystal (111) face is designed so as to be I200/(I111+I200)>=0.4. The film thickness per layer of Ni-Fe based alloy should be 2.5-5mm. This process can provide a low saturation magnetic field and a high magnetoresistance effect simultaneously, which are suitable for magnetoresistance effect element, magnetic field sensor, magnetic head, etc., and this magnetic head is used to provide a high performance magnetic recording reproducer.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は高い磁気抵抗効果を有す
る多層磁気抵抗効果膜膜およびこれを用いた磁気抵抗効
果素子、磁気ヘッド、磁気記録再生装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multilayer magnetoresistive film having a high magnetoresistive effect, a magnetoresistive element using the same, a magnetic head and a magnetic recording / reproducing apparatus.

【0002】[0002]

【従来の技術】磁気記録の高密度化に伴い、再生用磁気
ヘッドに用いる磁気抵抗効果材料として、高い磁気抵抗
効果を示す材料が求められている。現在、使用されてい
るパーマロイの磁気抵抗変化率は約3%であり、新材料
はこれを上回る磁気抵抗変化率を有することが必要であ
る。
2. Description of the Related Art As the magnetic recording density increases, a material having a high magnetoresistive effect is required as a magnetoresistive effect material used for a reproducing magnetic head. At present, the magnetoresistance change rate of permalloy used is about 3%, and it is necessary for the new material to have a magnetoresistance change rate higher than this.

【0003】最近、Baibichらによる、フィジカル・レ
ビュー・レターズ(Pysical ReviewLetters)、第61巻、
第21号、2472〜2475ページに記載の「(001)Fe/(001)Cr
磁性超格子の巨大磁気抵抗効果」(Giant Magnetoresis
tance of (001)Fe/(001)Cr Magnetic Superlattices)
のように、多層構造を持つ磁性膜(Fe/Cr多層膜)
において、約50%の磁気抵抗変化率(4.2Kにおい
て)が観測されている。
Recently, Baibich et al., Physical Review Letters, Vol. 61,
No. 21, pp. 2472-2475, `` (001) Fe / (001) Cr
Giant Magnetoresis Effect of Magnetic Superlattice "
tance of (001) Fe / (001) Cr Magnetic Superlattices)
Magnetic film with a multilayer structure (Fe / Cr multilayer film)
, A magnetoresistance change rate of about 50% (at 4.2 K) is observed.

【0004】[0004]

【発明が解決しようとする課題】しかし、上記Fe/C
r多層膜に十分な磁気抵抗変化を生じさせるためには、
800kA/mもの高い磁界が必要であり、低い磁界で
動作する必要がある磁気抵抗効果素子、磁気ヘッドに用
いることができないという問題がある。
However, the above Fe / C
In order to cause a sufficient magnetoresistance change in the r multilayer film,
A magnetic field as high as 800 kA / m is required, and there is a problem that it cannot be used for a magnetoresistive element or a magnetic head that needs to operate at a low magnetic field.

【0005】磁気記録の高密度化に伴い、再生用磁気ヘ
ッドに用いる磁気抵抗効果材料として、高い磁気抵抗効
果を示す材料が求められている。現在、使用されている
パーマロイの磁気抵抗変化率は3%であり、新材料はこ
れを上回る磁気抵抗変化率を有することが必要である。
最近、上述のような高磁気抵抗効果を示す多層膜が報告
されているが、軟磁気特性の優れたNi−Fe系合金を
多層膜に用いても高い磁気抵抗変化率が得られないとい
う問題があった。
With the increasing density of magnetic recording, a material exhibiting a high magnetoresistive effect is required as a magnetoresistive effect material used for a reproducing magnetic head. Currently, the magnetic resistance change rate of permalloy used is 3%, and it is necessary for the new material to have a magnetic resistance change rate higher than this.
Recently, a multilayer film exhibiting the above-described high magnetoresistive effect has been reported, but a problem that a high magnetoresistance change rate cannot be obtained even when a Ni—Fe alloy having excellent soft magnetic characteristics is used for the multilayer film. was there.

【0006】本発明の目的は、上述の多層膜を用いた磁
気抵抗効果素子の問題の解決方法を提供することにあ
る。
An object of the present invention is to provide a method for solving the problem of the magnetoresistive effect element using the above-mentioned multilayer film.

【0007】[0007]

【課題を解決するための手段】本発明者等は、種々の材
料および膜厚を有する磁性層、非磁性層を積層した多層
磁性膜を用いた磁気抵抗効果素子について鋭意研究を重
ねた結果、磁性層として面心立方格子構造を有するNi
−Fe系合金を用い、上記磁性層の結晶の(100)面
が基板と平行になるように配向させることにより、磁気
抵抗変化率が高くなることを見出し、本発明を完成する
に至った。
Means for Solving the Problems The inventors of the present invention have conducted extensive studies on a magnetoresistive effect element using a multilayer magnetic film in which magnetic layers having various materials and film thicknesses and non-magnetic layers are laminated. Ni having a face-centered cubic lattice structure as a magnetic layer
The inventors have found that the rate of change in magnetoresistance is increased by using a —Fe-based alloy and orienting it so that the (100) plane of the crystal of the magnetic layer is parallel to the substrate, and completed the present invention.

【0008】すなわち、非磁性層を積層した多層膜を用
いた磁気抵抗効果素子において、磁性層として面心立方
格子構造を有するNi−Fe系合金を用い、上記磁性層
の結晶の(100)面が基板と平行になるように配向さ
せることにより高い磁気抵抗変化率が得られる。また、
上記磁性層の結晶の(100)面配向は完全である必要
はなく、上記磁性層の結晶の(200)面によるX線回
折強度I200と結晶の(111)面によるX線回折強度
111の強度の関係が、I200/(I111+I200)≧0.
4であれば、高い磁気抵抗効果が得られる。
That is, in a magnetoresistive element using a multilayer film in which nonmagnetic layers are laminated, a Ni--Fe alloy having a face-centered cubic lattice structure is used as the magnetic layer, and the (100) plane of the crystal of the magnetic layer is used. A high magnetoresistance change rate can be obtained by orienting so as to be parallel to the substrate. Also,
The (100) plane orientation of the crystal of the magnetic layer does not have to be perfect, and the X-ray diffraction intensity I 200 of the (200) plane of the crystal of the magnetic layer and the X-ray diffraction intensity I 111 of the crystal of the (111) plane of the magnetic layer are I 111. The intensity relationship of I 200 / (I 111 + I 200 ) ≧ 0.
If it is 4, a high magnetoresistive effect can be obtained.

【0009】また、上記Ni−Fe系合金層の一層当り
の膜厚を2.5〜5nmとすることにより、低い飽和磁
界と高い磁気抵抗効果を同時に得ることができる。
Further, by setting the film thickness of one layer of the Ni--Fe alloy layer to 2.5 to 5 nm, a low saturation magnetic field and a high magnetoresistive effect can be obtained at the same time.

【0010】また、上記多層磁気抵抗効果膜は、磁気抵
抗効果素子、磁界センサ、磁気ヘッドなどに好適であ
る。また、上記磁気ヘッドを用いることにより、高性能
磁気記録再生装置を得ることができる。
The multilayer magnetoresistive effect film is suitable for a magnetoresistive effect element, a magnetic field sensor, a magnetic head and the like. Further, by using the above magnetic head, a high performance magnetic recording / reproducing apparatus can be obtained.

【0011】[0011]

【作用】上述のように、非磁性層を積層した多層膜を用
いた磁気抵抗効果素子において、磁性層として面心立方
格子構造を有するNi−Fe系合金を用い、上記磁性層
の結晶の(100)面が基板と平行になるように配向さ
せることにより、(111)面が基板と平行になるよう
に配向した多層膜より高い磁気抵抗変化率が得られる。
また、上記磁性層の結晶の(100)面配向は完全であ
る必要はなく、上記磁性層の結晶の(200)面による
X線回折強度I200と結晶の(111)面によるX線回
折強度I111の強度の関係が、I200/(I111+I200
≧0.4であれば、高い磁気抵抗効果が得られる。ま
た、上記Ni−Fe系合金層の一層当りの膜厚を2.5
〜5nmとすることにより、低い飽和磁界と高い磁気抵
抗効果を同時に得ることができる。また、上記多層磁気
抵抗効果膜は、磁気抵抗効果素子、磁界センサ、磁気ヘ
ッドなどに好適である。また、上記磁気ヘッドを用いる
ことにより、高性能磁気記録再生装置を得ることができ
る。
As described above, in the magnetoresistive element using the multilayer film in which the non-magnetic layers are laminated, the Ni--Fe alloy having the face-centered cubic lattice structure is used as the magnetic layer, and the crystal of the magnetic layer ( By orienting so that the (100) plane is parallel to the substrate, a higher magnetoresistance change rate can be obtained than that of the multilayer film in which the (111) plane is oriented parallel to the substrate.
Further, the (100) plane orientation of the crystal of the magnetic layer does not have to be perfect, and the X-ray diffraction intensity I 200 of the (200) plane of the crystal of the magnetic layer and the X-ray diffraction intensity of the (111) plane of the crystal of the magnetic layer are The strength relationship of I 111 is I 200 / (I 111 + I 200 ).
If ≧ 0.4, a high magnetoresistive effect can be obtained. In addition, the film thickness of one layer of the Ni-Fe alloy layer is 2.5.
By setting the thickness to 5 nm, a low saturation magnetic field and a high magnetoresistive effect can be obtained at the same time. The multilayer magnetoresistive effect film is suitable for a magnetoresistive effect element, a magnetic field sensor, a magnetic head, and the like. Further, by using the above magnetic head, a high performance magnetic recording / reproducing apparatus can be obtained.

【0012】[0012]

【実施例】以下に本発明の一実施例を挙げ、図表を参照
しながらさらに具体的に説明する。〔実施例1〕 多層膜の作製にはイオンビームスパッタリング法を用い
た。到達真空度は、3/105Pa、スパッタリング時
のAr圧力は2/102Paである。また、膜形成速度
は、0.1〜0.2nm/sである。基板にはSi(1
00)単結晶を用いた。形成した多層膜の断面構造を図
2に示す。本実施例では、この図の磁性層11として、
膜厚1.0nmのNi−20at%Fe合金を用いた。
また、非磁性層としてはCuを用いた。積層数は20周
期である。また、バッファ層13は膜厚5nmのFeで
ある。Feは基板面に対し、結晶の(110)面が平行
になるように配向していた。
EXAMPLES An example of the present invention will be described below in more detail with reference to the drawings. [Example 1] An ion beam sputtering method was used for manufacturing the multilayer film. The ultimate vacuum is 3/10 5 Pa, and the Ar pressure during sputtering is 2/10 2 Pa. The film formation rate is 0.1 to 0.2 nm / s. Si (1
00) A single crystal was used. The cross-sectional structure of the formed multilayer film is shown in FIG. In this embodiment, as the magnetic layer 11 in this figure,
A Ni-20 at% Fe alloy having a film thickness of 1.0 nm was used.
Moreover, Cu was used for the non-magnetic layer. The number of layers is 20 cycles. The buffer layer 13 is Fe with a film thickness of 5 nm. Fe was oriented so that the (110) plane of the crystal was parallel to the substrate surface.

【0013】Cu膜厚と磁気抵抗変化率との関係を図3
に示す。同図のように、Cu膜厚により磁気抵抗変化率
が振動する。この振動における磁気抵抗変化率の高い試
料および磁気抵抗変化率の低い試料のX線回折プロファ
イルを図4に示す。図3及び図4のように、Ni−Fe
系合金およびCu層の結晶の(111)面が基板と平行
に配向している多層膜は磁気抵抗変化率が低い。また、
Ni−Fe系合金およびCu層の結晶の(200)回折
強度が強く、(100)面が基板と平行に配向している
多層膜は磁気抵抗変化率が高くなる。
FIG. 3 shows the relationship between the Cu film thickness and the magnetoresistance change rate.
Shown in. As shown in the figure, the magnetoresistance change rate oscillates depending on the Cu film thickness. FIG. 4 shows the X-ray diffraction profiles of the sample having a high rate of change in magnetic resistance and the sample having a low rate of change in magnetic resistance due to this vibration. As shown in FIGS. 3 and 4, Ni-Fe
The multilayer film in which the (111) plane of the crystal of the system alloy and the Cu layer is oriented parallel to the substrate has a low magnetoresistance change rate. Also,
The (200) diffraction intensity of the crystals of the Ni—Fe alloy and the Cu layer is strong, and the multilayer film in which the (100) plane is oriented parallel to the substrate has a high magnetoresistance change rate.

【0014】このことから、配向性の違いにより磁気抵
抗変化率が異なり、Ni−Fe系合金およびCu層の結
晶の(100)面を基板と平行に配向させることによ
り、磁気抵抗変化率が増加することが明らかになった。
From this, the magnetoresistance change rate differs depending on the orientation, and the (100) plane of the crystal of the Ni—Fe alloy and the Cu layer is oriented parallel to the substrate to increase the magnetoresistance change rate. It became clear to do.

【0015】Co/Cu多層膜において、Egelhoff, J
r.らによる、1992年国際磁気学会予原集(Digests of th
e Intermag Conference,1992)FB-02ページに記載の「Cu
(111)及びCu(100)上に形成したFe/Cu/Fe及びCo/Cu/Co多
層膜における反強磁性的結合」(Antiferromagnetic Co
upling in Fe/Cu/Fe and Co/Cu/Co Multilayers on Cu
(111) and Cu(100))のように、Cu(100)面上にCo/C
u多層膜を形成すると高い磁気抵抗変化率が得られるこ
とが明らかになっている。しかし、Co層は軟磁性材料
ではなく、磁気ヘッド等に用いるには好ましくない。
In Co / Cu multilayer films, Egelhoff, J
r. et al., 1992 Digests of th
e Intermag Conference, 1992) FB-02 page `` Cu
Antiferromagnetic coupling in Fe / Cu / Fe and Co / Cu / Co multilayers formed on (111) and Cu (100) "(Antiferromagnetic Co
upling in Fe / Cu / Fe and Co / Cu / Co Multilayers on Cu
(111) and Cu (100)) such as Co / C on the Cu (100) plane.
It has been clarified that a high magnetoresistance change rate can be obtained by forming a u multilayer film. However, the Co layer is not a soft magnetic material and is not preferable for use in a magnetic head or the like.

【0016】さらに、本実施例の多層膜の結晶の(20
0)面によるX線回折強度I200と結晶の(111)面
によるX線回折強度I111の強度の関係について調べ
た。結果を図1に示す。この図のように、I200/(I
111+I200)の値が0.4以上の時に、磁気抵抗変化率
が5%以上になる。従って、I200/(I111+I200
の値は0.4以上が好ましい。また、I200/(I111
200)の値を0.8以上にすると、10%以上の磁気
抵抗変化率を得ることができる。
Furthermore, (20) of the crystal of the multilayer film of this embodiment is used.
0) and X-ray diffraction intensity I 200 by surface investigated the relationship between the intensity of X-ray diffraction intensity I 111 by (111) plane of the crystal. The results are shown in Fig. 1. As shown in this figure, I 200 / (I
When the value of ( 111 + I 200 ) is 0.4 or more, the magnetoresistance change rate is 5% or more. Therefore, I 200 / (I 111 + I 200 )
The value of is preferably 0.4 or more. Also, I 200 / (I 111 +
When the value of (I 200 ) is 0.8 or more, a magnetoresistance change rate of 10% or more can be obtained.

【0017】また、Ni−20at%Fe合金以外のN
i−Fe系合金を磁性層として用いた多層膜において
も、上記と同様に、(100)面配向させることによ
り、(111)面配向の多層膜よりも高い磁気抵抗変化
率が得られた。また、I200/(I111+I200)の値が
0.4以上の時に、比較的高い磁気抵抗変化率が得られ
た。より、好ましくは、I200/(I111+I200)の値
は0.8以上が良い。また、Ni−Fe系合金のFeの
濃度は、結晶磁気異方性および薄膜磁歪の値を零近傍に
するために、10〜30at%が好ましい。
Further, N other than Ni-20 at% Fe alloy is used.
Also in the multilayer film using the i-Fe-based alloy as the magnetic layer, the magnetoresistance change rate higher than that of the multilayer film having the (111) plane orientation was obtained by orienting the (100) plane in the same manner as above. Further, when the value of I 200 / (I 111 + I 200 ) was 0.4 or more, a relatively high magnetoresistance change rate was obtained. More preferably, the value of I 200 / (I 111 + I 200 ) is 0.8 or more. Further, the Fe concentration of the Ni—Fe alloy is preferably 10 to 30 at% in order to bring the values of the crystal magnetic anisotropy and the thin film magnetostriction to near zero.

【0018】また、本実施例では、非磁性層としてCu
を用いた場合について述べたが、非磁性層として他の材
料を用いても、磁性層を(100)面配向させることに
より、高い磁気抵抗変化率を示す多層膜を得ることがで
きる。
In this embodiment, the nonmagnetic layer is made of Cu.
Although the case of using the above, the multilayer film showing a high magnetoresistance change rate can be obtained by orienting the (100) plane of the magnetic layer even if another material is used for the non-magnetic layer.

【0019】また、本実施例では、バッファ層としてF
eを用いたが、Ni−Fe層が(100)配向できれ
ば、どのような材料でも良い。
Further, in this embodiment, F is used as the buffer layer.
Although e was used, any material may be used as long as the Ni—Fe layer can be (100) oriented.

【0020】また、磁気抵抗効果曲線が左右対称である
場合には、あらかじめ、多層磁気抵抗効果膜の磁界検出
方向ににバイアス磁界を印加する機構を備えておけば、
磁界の正負を判断できる磁気抵抗効果素子を得ることが
できる。
When the magnetoresistive effect curve is symmetrical, if a mechanism for applying a bias magnetic field in the magnetic field detecting direction of the multilayer magnetoresistive film is provided in advance,
It is possible to obtain a magnetoresistive effect element capable of judging the positive / negative of the magnetic field.

【0021】また、磁気抵抗効果曲線にバルクハウゼン
ノイズが生じる場合は、多層磁気抵抗効果膜の磁界検出
方向と直角の方向にバイアス磁界を印加する機構を設け
ることが、バルクハウゼンノイズの抑止に効果がある。
多層膜では、各磁性層に均一にバイアス磁界を印加する
ことが好ましいため、バイアス磁界印加には永久磁石層
を用いることが好ましい。
When Barkhausen noise is generated in the magnetoresistive effect curve, a mechanism for applying a bias magnetic field in a direction perpendicular to the magnetic field detection direction of the multilayer magnetoresistive effect film is effective in suppressing Barkhausen noise. There is.
In a multilayer film, it is preferable to apply a bias magnetic field uniformly to each magnetic layer, and therefore it is preferable to use a permanent magnet layer for bias magnetic field application.

【0022】〔実施例2〕実施例1と同様の方法で多層
膜を形成した。本実施例では、図2の非磁性層12とし
て膜厚1.0nmのCuを用いた。磁性層11としては
Ni−20at%Fe合金を用いた。バッファ層13に
は膜厚5nmのFeを、基板14にはSi(100)単
結晶を用いた。
Example 2 A multilayer film was formed by the same method as in Example 1. In this example, Cu having a film thickness of 1.0 nm was used as the non-magnetic layer 12 in FIG. A Ni-20 at% Fe alloy was used for the magnetic layer 11. Fe having a film thickness of 5 nm was used for the buffer layer 13, and Si (100) single crystal was used for the substrate 14.

【0023】得られた試料について、X線回折プロファ
イルを測定したところ、Ni−Fe磁性層は(100)
配向していた。
When the X-ray diffraction profile of the obtained sample was measured, the Ni--Fe magnetic layer was (100).
It was oriented.

【0024】図5にNi−Fe膜厚による磁気抵抗変化
率41および飽和磁界42の変化を示す。この図のよう
に、Ni−Fe膜厚を0.8〜5nmにすることによ
り、10%以上の磁気抵抗変化率が得られる。また、N
i−Fe膜厚を2.5nm以上にすることにより、64
kA/m(800Oe)以下の飽和磁界が得られる。従
って、10%以上の磁気抵抗変化率および64kA/m
(800Oe)以下の飽和磁界を同時に得るためには、
Ni−Fe膜厚を2.5〜5nmにすることが好まし
い。
FIG. 5 shows changes in the magnetoresistance change rate 41 and the saturation magnetic field 42 depending on the Ni—Fe film thickness. As shown in this figure, by setting the Ni—Fe film thickness to 0.8 to 5 nm, a magnetoresistance change rate of 10% or more can be obtained. Also, N
By setting the i-Fe film thickness to 2.5 nm or more, 64
A saturation magnetic field of kA / m (800 Oe) or less can be obtained. Therefore, the magnetic resistance change rate of 10% or more and 64 kA / m
To obtain a saturation magnetic field of (800 Oe) or less at the same time,
It is preferable that the Ni-Fe film thickness is 2.5 to 5 nm.

【0025】Ni−Fe系合金のFeの濃度は、結晶磁
気異方性および薄膜磁歪の値を零近傍にするために、1
0〜30at%が好ましい。
The Fe concentration of the Ni--Fe alloy is set to 1 in order to bring the values of crystal magnetic anisotropy and thin film magnetostriction to near zero.
0 to 30 at% is preferable.

【0026】また、本実施例では、非磁性層としてCu
を用いた場合について述べたが、非磁性層として他の材
料を用いても、磁性層を(100)面配向させることに
より、本実施例と同様の結果を得ることができる。
In this embodiment, the nonmagnetic layer is made of Cu.
However, the same result as in this example can be obtained by orienting the magnetic layer in the (100) plane even if another material is used for the non-magnetic layer.

【0027】また、本実施例では、バッファ層としてF
eを用いたが、Ni−Fe層が(100)配向できれ
ば、どのような材料でも良い。
Further, in this embodiment, F is used as the buffer layer.
Although e was used, any material may be used as long as the Ni—Fe layer can be (100) oriented.

【0028】〔実施例3〕(111)配向した多層膜お
よび(100)配向した多層膜を用いた磁気抵抗効果素
子を形成した。多層磁気抵抗効果膜の組成及び構造は実
施例1と同様である。図6に磁気抵抗効果素子の構造を
示す。磁気抵抗効果素子は、多層磁気抵抗効果膜23お
よび電極24をシールド層21、22で挟んだ構造を有
する。上記磁気抵抗効果素子に磁界を印加し、磁気抵抗
効果素子の電気抵抗率の変化を測定したところ、(11
1)配向した多層磁気抵抗効果膜を用いた磁気抵抗効果
素子ほとんど磁気抵抗変化率を示さなかった。また、
(100)配向した多層磁気抵抗効果膜を用いた磁気抵
抗効果素子は高い磁気抵抗変化率を示した。
Example 3 A magnetoresistive effect element using a (111) oriented multilayer film and a (100) oriented multilayer film was formed. The composition and structure of the multilayer magnetoresistive effect film are the same as in Example 1. FIG. 6 shows the structure of the magnetoresistive effect element. The magnetoresistive effect element has a structure in which a multilayer magnetoresistive effect film 23 and an electrode 24 are sandwiched between shield layers 21 and 22. A magnetic field was applied to the magnetoresistive effect element, and the change in the electrical resistivity of the magnetoresistive effect element was measured.
1) Magnetoresistive element using an oriented multilayered magnetoresistive film Almost showed no magnetoresistance change rate. Also,
The magnetoresistive element using the (100) -oriented multilayer magnetoresistive film showed a high magnetoresistive change rate.

【0029】〔実施例4〕実施例3で述べた磁気抵抗効
果素子を用い、磁気ヘッドを作製した。磁気ヘッドの構
造を以下に示す。図7は、記録再生分離型ヘッドの一部
分を切断した場合の斜視図である。多層磁気抵抗効果膜
31をシールド層32、33で挾んだ部分が再生ヘッド
として働き、コイル34を挾む下部磁極35、上部磁極
36の部分が記録ヘッドとして働く。多層磁気抵抗効果
膜31は実施例1に記載の多層膜からなる。Ni−Fe
磁性層の膜厚は4.0nm、Cu層の膜厚は1.0nm
とした。また、磁界検出方向のバイアス磁界印加のた
め、多層膜上にTaからなる導体層38を形成した。ま
た、電極39には、Cr/Cu/Crという多層構造の
材料を用いた。
Example 4 A magnetic head was manufactured using the magnetoresistive effect element described in Example 3. The structure of the magnetic head is shown below. FIG. 7 is a perspective view when a part of the recording / reproducing separated type head is cut. The portion of the multi-layered magnetoresistive film 31 sandwiched by the shield layers 32 and 33 serves as a reproducing head, and the lower magnetic pole 35 and the upper magnetic pole 36 sandwiching the coil 34 serve as a recording head. The multilayer magnetoresistive effect film 31 is composed of the multilayer film described in the first embodiment. Ni-Fe
The magnetic layer has a thickness of 4.0 nm, and the Cu layer has a thickness of 1.0 nm.
And Further, a conductor layer 38 made of Ta was formed on the multilayer film in order to apply a bias magnetic field in the magnetic field detection direction. Further, for the electrode 39, a material having a multilayer structure of Cr / Cu / Cr was used.

【0030】以下にこのヘッドの作製方法を示す。The manufacturing method of this head will be described below.

【0031】Al23・TiCを主成分とする焼結体を
スライダ用の基板37とした。シールド層、記録磁極に
はスパッタリング法で形成したNi−Fe合金を用い
た。各磁性膜の膜厚は、以下のようにした。上下のシー
ルド層32、33は1.0μm、下部磁極35、上部3
6は3.0μm、多層磁気抵抗効果膜全体の膜厚は約3
8nmである。各層間のギャップ材としてはスパッタリ
ングで形成したAl23を用いた。ギャップ層の膜厚
は、シールド層と磁気抵抗効果素子間で0.2μm、記
録磁極間では0.4μmとした。さらに再生ヘッドと記
録ヘッドの間隔は約4μmとし、このギャップもAl2
3で形成した。コイル34には膜厚3μmのCuを使
用した。
A sintered body containing Al 2 O 3 .TiC as a main component was used as the substrate 37 for the slider. A Ni—Fe alloy formed by a sputtering method was used for the shield layer and the recording magnetic pole. The thickness of each magnetic film was as follows. The upper and lower shield layers 32 and 33 are 1.0 μm, the lower magnetic pole 35 and the upper 3
6 is 3.0 μm, and the total thickness of the multilayer magnetoresistive effect film is about 3
It is 8 nm. Al 2 O 3 formed by sputtering was used as the gap material between the layers. The film thickness of the gap layer was 0.2 μm between the shield layer and the magnetoresistive effect element and 0.4 μm between the recording magnetic poles. Further, the distance between the reproducing head and the recording head is set to about 4 μm, and this gap is also made of Al 2
Formed with O 3 . Cu having a film thickness of 3 μm was used for the coil 34.

【0032】以上述べた構造の磁気ヘッドで記録再生を
行ったところ、高い再生出力を得た。これは、本発明の
磁気ヘッドに高磁気抵抗効果を示す多層膜を用い、適切
なバイアス磁界を印加したためと考えられる。
When recording / reproducing was performed with the magnetic head having the above-described structure, a high reproducing output was obtained. It is considered that this is because the magnetic head of the present invention uses a multilayer film having a high magnetoresistive effect and an appropriate bias magnetic field is applied.

【0033】上記実施例ではバイアス法としてはシャン
トバイアス法を用いた場合を示したが、電流バイアス
法、永久磁石法、ソフトバイアス法、相互バイアス法な
ど別のバイアス法を使用しても同様な効果が得られる。
Although the shunt bias method is used as the bias method in the above embodiment, the same applies when another bias method such as the current bias method, the permanent magnet method, the soft bias method or the mutual bias method is used. The effect is obtained.

【0034】ところで、磁気ヘッドが記録および再生能
力を同時に有している場合、基板に近い部分に記録用の
素子を形成すると、記録用素子の上部では、コイル、磁
極などの形成のために、大きな段差が生じる。この上
に、多層磁気抵抗効果膜を形成すると、段差の影響で多
層構造が乱れ、好ましくない。これに対し、図7のよう
に、基板に近い部分に再生用の磁気抵抗効果素子を形成
すると、比較的段差の少ない部分に磁気抵抗効果素子が
形成されるため、多層構造の乱れが生じにくい。これ
は、パーマロイ単層膜を用いた磁気抵抗効果素子とは本
質的に異なる現象である。
By the way, in the case where the magnetic head has recording and reproducing capabilities at the same time, if a recording element is formed in a portion close to the substrate, a coil, a magnetic pole, etc. are formed above the recording element. A large step is generated. If a multi-layered magnetoresistive film is formed on top of this, the multi-layered structure is disturbed due to the effect of steps, which is not preferable. On the other hand, as shown in FIG. 7, when the magnetoresistive effect element for reproduction is formed in the portion close to the substrate, the magnetoresistive effect element is formed in the portion having relatively few steps, so that the disorder of the multilayer structure hardly occurs. . This is a phenomenon that is essentially different from the magnetoresistive effect element using a permalloy single layer film.

【0035】以上の観点から、磁気ヘッドが記録および
再生能力を同時に有している場合、基板に近い部分に再
生用の磁気抵抗効果素子を形成することが好ましい。
From the above points of view, when the magnetic head has recording and reproducing capabilities at the same time, it is preferable to form a magnetoresistive effect element for reproduction in a portion near the substrate.

【0036】また、同じ観点から、記録用の素子と、再
生用の磁気抵抗効果素子を同じ基板における他の場所に
形成すると、段差の少ない部分に磁気抵抗効果素子を形
成できる。
From the same point of view, if the recording element and the reproducing magnetoresistive effect element are formed in other places on the same substrate, the magnetoresistive effect element can be formed in a portion having a small step.

【0037】また、本発明の磁気抵抗効果素子は、磁気
ヘッド以外の磁界検出器にも用いることができる。
Further, the magnetoresistive effect element of the present invention can be used in a magnetic field detector other than the magnetic head.

【0038】また、さらに、上記磁気ヘッドを磁気記録
再生装置に用いることにより、高性能磁気記録再生装置
が得られる。
Further, by using the above magnetic head in a magnetic recording / reproducing apparatus, a high performance magnetic recording / reproducing apparatus can be obtained.

【0039】[0039]

【発明の効果】上述のように、非磁性層を積層した多層
膜を用いた磁気抵抗効果素子において、磁性層として面
心立方格子構造を有するNi−Fe系合金を用い、上記
磁性層の結晶の(100)面が基板と平行になるように
配向させることにより、高い磁気抵抗変化率が得られ
る。さらに、上記多層磁気抵抗効果膜は、磁気抵抗効果
素子、磁界センサ、磁気ヘッドなどに好適である。ま
た、上記磁気ヘッドを用いることにより、高性能磁気記
録再生装置を得ることができる。
As described above, in the magnetoresistive effect element using the multilayer film in which the non-magnetic layers are laminated, the Ni-Fe alloy having the face-centered cubic lattice structure is used as the magnetic layer, and the crystal of the magnetic layer is formed. A high magnetoresistance change rate can be obtained by orienting so that the (100) plane of is parallel to the substrate. Further, the multilayer magnetoresistive effect film is suitable for a magnetoresistive effect element, a magnetic field sensor, a magnetic head and the like. Further, by using the above magnetic head, a high performance magnetic recording / reproducing apparatus can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の多層磁気抵抗効果膜のX線回折強度比
と磁気抵抗変化率との関係を示すグラフである。
FIG. 1 is a graph showing a relationship between an X-ray diffraction intensity ratio and a magnetoresistance change rate of a multilayer magnetoresistive effect film of the present invention.

【図2】本発明の多層磁気抵抗効果膜の構造を示す断面
図である。
FIG. 2 is a sectional view showing a structure of a multilayer magnetoresistive effect film of the present invention.

【図3】本発明の多層磁気抵抗効果膜におけるCu膜厚
による磁気抵抗変化率の振動を示すグラフである。
FIG. 3 is a graph showing vibration of the magnetoresistance change rate depending on the Cu film thickness in the multilayer magnetoresistive effect film of the present invention.

【図4】本発明の多層磁気抵抗効果膜のX線回折プロフ
ァイルを示すグラフである。
FIG. 4 is a graph showing an X-ray diffraction profile of the multilayer magnetoresistive effect film of the present invention.

【図5】本発明の(100)面配向した多層膜のNi−
Fe膜厚と磁気抵抗変化率および飽和磁界との関係を示
すグラフである。
FIG. 5 is the Ni- of the (100) -oriented multilayer film of the present invention.
6 is a graph showing the relationship between the Fe film thickness, the magnetoresistance change rate, and the saturation magnetic field.

【図6】本発明の多層磁気抵抗効果膜を用いた磁気抵抗
効果素子の構造を示す斜視図である。
FIG. 6 is a perspective view showing the structure of a magnetoresistive effect element using the multilayer magnetoresistive effect film of the present invention.

【図7】本発明の磁気ヘッドの構造を示す斜視図であ
る。
FIG. 7 is a perspective view showing the structure of the magnetic head of the present invention.

【符号の説明】[Explanation of symbols]

11…磁性層、12…非磁性層、13…バッファ層、1
4…基板、21,22…シールド層、23…多層磁気抵
抗効果膜、24…電極、31…多層磁気抵抗効果膜、3
2,33…シールド層、34…コイル、35…下部磁
極、36…上部磁極、37…基体、38…導体層、39
…電極、41…磁気抵抗変化率、42…飽和磁界。
11 ... Magnetic layer, 12 ... Nonmagnetic layer, 13 ... Buffer layer, 1
4 ... Substrate 21, 22 ... Shield layer, 23 ... Multilayer magnetoresistive effect film, 24 ... Electrode, 31 ... Multilayer magnetoresistive effect film, 3
2, 33 ... Shield layer, 34 ... Coil, 35 ... Lower magnetic pole, 36 ... Upper magnetic pole, 37 ... Base, 38 ... Conductor layer, 39
... electrode, 41 ... rate of change in magnetic resistance, 42 ... saturation magnetic field.

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】磁性層と非磁性層を積層した多層膜を用い
た多層磁気抵抗効果膜において、上記磁性層が面心立方
格子構造を有するNi−Fe系合金であり、上記磁性層
の結晶の(100)面が基板と平行になるように配向し
ていることを特徴とする多層磁気抵抗効果膜。
1. A multilayer magnetoresistive effect film using a multilayer film in which a magnetic layer and a non-magnetic layer are laminated, wherein the magnetic layer is a Ni--Fe based alloy having a face-centered cubic lattice structure, and the crystal of the magnetic layer. A multi-layered magnetoresistive effect film having a (100) plane oriented in parallel with the substrate.
【請求項2】上記Ni−Fe系合金層の一層当りの膜厚
が2.5〜5nmであることを特徴とする請求項1記載
の多層磁気抵抗効果膜。
2. The multilayer magnetoresistive effect film according to claim 1, wherein the film thickness of each of said Ni—Fe alloy layers is 2.5 to 5 nm.
【請求項3】磁性層と非磁性層を積層した多層膜を用い
た多層磁気抵抗効果膜において、上記磁性層が面心立方
格子構造を有するNi−Fe系合金であり、上記磁性層
の結晶の(200)面によるX線回折強度I200と結晶
の(111)面によるX線回折強度I111の強度の関係
が、I200/(I111+I200)≧0.4であることを特
徴とする多層磁気抵抗効果膜。
3. A multilayer magnetoresistive effect film using a multilayer film in which a magnetic layer and a nonmagnetic layer are laminated, wherein the magnetic layer is a Ni--Fe alloy having a face-centered cubic lattice structure, and the crystal of the magnetic layer. The relationship between the X-ray diffraction intensity I 200 due to the (200) plane and the intensity of the X-ray diffraction intensity I 111 due to the (111) plane of the crystal is I 200 / (I 111 + I 200 ) ≧ 0.4. And a multilayer magnetoresistive effect film.
【請求項4】上記Ni−Fe系合金層の一層当りの膜厚
が2.5〜5nmであることを特徴とする請求項3記載
の多層磁気抵抗効果膜。
4. The multilayer magnetoresistive effect film according to claim 3, wherein the film thickness of each of said Ni—Fe alloy layers is 2.5 to 5 nm.
【請求項5】磁性層と非磁性層を積層した多層膜を有す
る磁気抵抗効果素子において、上記磁性層が面心立方格
子構造を有するNi−Fe系合金であり、上記磁性層の
結晶の(100)面が基板と平行になるように配向して
いる多層磁気抵抗効果膜を少なくとも一部に用いたこと
を特徴とする磁気抵抗効果素子。
5. A magnetoresistive element having a multilayer film in which a magnetic layer and a non-magnetic layer are laminated, wherein the magnetic layer is a Ni--Fe based alloy having a face-centered cubic lattice structure, and crystals of the magnetic layer ( A magnetoresistive effect element comprising a multi-layered magnetoresistive effect film at least a part of which the (100) plane is oriented parallel to the substrate.
【請求項6】磁性層と非磁性層を積層した多層膜を有す
る磁気抵抗効果素子において、上記磁性層が面心立方格
子構造を有するNi−Fe系合金であり、上記磁性層の
結晶の(200)面によるX線回折強度I200と結晶の
(111)面によるX線回折強度I111の強度の関係
が、I200/(I111+I200)≧0.4である多層磁気
抵抗効果膜を少なくとも一部に用いたことを特徴とする
磁気抵抗効果素子。
6. A magnetoresistive element having a multilayer film comprising a magnetic layer and a non-magnetic layer laminated, wherein the magnetic layer is a Ni--Fe alloy having a face-centered cubic lattice structure, and crystals of the magnetic layer ( A multilayer magnetoresistive film in which the relationship between the X-ray diffraction intensity I 200 due to the ( 200 ) plane and the X-ray diffraction intensity I 111 due to the (111) plane of the crystal is I 200 / (I 111 + I 200 ) ≧ 0.4. A magnetoresistive effect element characterized by using at least a part of.
【請求項7】磁性層と非磁性層を積層した多層膜を有す
る磁気抵抗効果素子を用いた磁気ヘッドにおいて、上記
磁性層が面心立方格子構造を有するNi−Fe系合金で
あり、上記磁性層の結晶の(100)面が基板と平行に
なるように配向している多層磁気抵抗効果膜を少なくと
も一部に用いた磁気抵抗効果素子を少なくとも一部に用
いたことを特徴とする磁気ヘッド。
7. A magnetic head using a magnetoresistive effect element having a multi-layer film in which a magnetic layer and a non-magnetic layer are laminated, wherein the magnetic layer is a Ni--Fe alloy having a face-centered cubic lattice structure, and A magnetic head comprising at least a part of a magnetoresistive effect element using at least a part of a multilayer magnetoresistive effect film in which a (100) plane of a layer crystal is oriented parallel to a substrate. .
【請求項8】磁性層と非磁性層を積層した多層膜を有す
る磁気抵抗効果素子を用いた磁気ヘッドにおいて、上記
磁性層が面心立方格子構造を有するNi−Fe系合金で
あり、上記磁性層の結晶の(200)面によるX線回折
強度I200と結晶の(111)面によるX線回折強度I
111の強度の関係が、I200/(I111+I200)≧0.4
である多層磁気抵抗効果膜を少なくとも一部に用いた磁
気抵抗効果素子を少なくとも一部に用いたことを特徴と
する磁気ヘッド。
8. A magnetic head using a magnetoresistive effect element having a multi-layer film in which a magnetic layer and a non-magnetic layer are laminated, wherein the magnetic layer is a Ni--Fe alloy having a face-centered cubic lattice structure, and X-ray diffraction intensity I 200 of the (200) plane of the layer crystal and X-ray diffraction intensity I of the (111) plane of the crystal
The relationship of the strength of 111 is I 200 / (I 111 + I 200 ) ≧ 0.4
2. A magnetic head characterized in that a magnetoresistive effect element using at least a part of the multilayer magnetoresistive effect film is used at least a part.
【請求項9】磁性層と非磁性層を積層した多層膜を有す
る磁気抵抗効果素子を用いた磁気ヘッドにおいて、上記
磁性層が面心立方格子構造を有するNi−Fe系合金で
あり、上記磁性層の結晶の(100)面が基板と平行に
なるように配向していることを特徴とする多層磁気抵抗
効果膜を少なくとも一部に用いた磁気抵抗効果素子と誘
導型磁気ヘッドを組み合わせたことを特徴とする複合型
磁気ヘッド。
9. A magnetic head using a magnetoresistive effect element having a multilayer film in which a magnetic layer and a non-magnetic layer are laminated, wherein the magnetic layer is a Ni--Fe based alloy having a face-centered cubic lattice structure, and A magnetoresistive effect element using at least a part of a multi-layered magnetoresistive effect film, characterized in that the (100) plane of the layer crystal is oriented parallel to the substrate, and an induction type magnetic head are combined. A composite type magnetic head.
【請求項10】磁性層と非磁性層を積層した多層膜を有
する磁気抵抗効果素子を用いた磁気ヘッドにおいて、上
記磁性層が面心立方格子構造を有するNi−Fe系合金
であり、上記磁性層の結晶の(200)面によるX線回
折強度I200と結晶の(111)面によるX線回折強度
111の強度の関係が、I200/(I111+I200)≧0.
4である多層磁気抵抗効果膜を少なくとも一部に用いた
磁気抵抗効果素子と誘導型磁気ヘッドを組み合わせたこ
とを特徴とする複合型磁気ヘッド。
10. A magnetic head using a magnetoresistive effect element having a multi-layer film in which a magnetic layer and a non-magnetic layer are laminated, wherein the magnetic layer is a Ni--Fe alloy having a face-centered cubic lattice structure, and relationship of the intensity of X-ray diffraction intensity I 111 and X-ray diffraction intensity I 200 by (200) plane of the crystal layer by (111) plane of the crystal, I 200 / (I 111 + I 200) ≧ 0.
4. A composite magnetic head comprising a combination of a magnetoresistive effect element using the multilayer magnetoresistive effect film of 4 and an inductive magnetic head.
【請求項11】磁性層と非磁性層を積層した多層膜を有
する磁気抵抗効果素子を用いた磁気ヘッドを備えた装置
において、上記磁性層が面心立方格子構造を有するNi
−Fe系合金であり、上記磁性層の結晶の(100)面
が基板と平行になるように配向している多層磁気抵抗効
果膜を少なくとも一部に用いた磁気抵抗効果素子を少な
くとも一部に用いた磁気ヘッドを用いたことを特徴とす
る磁気記録再生装置。
11. A device provided with a magnetic head using a magnetoresistive effect element having a multilayer film in which a magnetic layer and a nonmagnetic layer are laminated, wherein the magnetic layer has a face-centered cubic lattice structure.
A magnetoresistive effect element using at least a part of a multi-layered magnetoresistive effect film, which is an Fe-based alloy and is oriented so that the (100) plane of the crystal of the magnetic layer is parallel to the substrate. A magnetic recording / reproducing apparatus characterized by using the used magnetic head.
【請求項12】磁性層と非磁性層を積層した多層膜を有
する磁気抵抗効果素子を用いた磁気ヘッドを備えた装置
において、上記磁性層が面心立方格子構造を有するNi
−Fe系合金であり、上記磁性層の結晶の(200)面
によるX線回折強度I200と結晶の(111)面による
X線回折強度I111の強度の関係が、I200/(I111
200)≧0.4である多層磁気抵抗効果膜を少なくと
も一部に用いた磁気抵抗効果素子を少なくとも一部に用
いた磁気ヘッドを用いたことを特徴とする磁気記録再生
装置。
12. A device provided with a magnetic head using a magnetoresistive effect element having a multilayer film in which a magnetic layer and a nonmagnetic layer are laminated, wherein the magnetic layer has a face-centered cubic lattice structure.
A -Fe system alloy, the relationship of the intensity of the magnetic layer of the crystal of (200) plane by X-ray diffraction intensity I 200 and the crystal (111) plane X-ray diffraction intensity I 111 by the, I 200 / (I 111 +
A magnetic recording / reproducing apparatus characterized by using a magnetic head having a magnetoresistive effect element having at least a part of a multi-layered magnetoresistive film satisfying I 200 ) ≧ 0.4.
【請求項13】磁性層と非磁性層を積層した多層膜を有
する磁気抵抗効果素子を用いた磁気ヘッドを備えた装置
において、上記磁性層が面心立方格子構造を有するNi
−Fe系合金であり、上記磁性層の結晶の(100)面
が基板と平行になるように配向していることを特徴とす
る多層磁気抵抗効果膜を少なくとも一部に用いた磁気抵
抗効果素子と誘導型磁気ヘッドを組み合わせた複合型磁
気ヘッドを用いたことを特徴とする磁気記録再生装置。
13. A device provided with a magnetic head using a magnetoresistive effect element having a multilayer film in which a magnetic layer and a nonmagnetic layer are laminated, wherein the magnetic layer has a face-centered cubic lattice structure.
A magnetoresistive effect element using a multi-layered magnetoresistive effect film, which is an -Fe alloy and is oriented so that the (100) plane of the crystal of the magnetic layer is parallel to the substrate. A magnetic recording / reproducing apparatus characterized by using a composite type magnetic head which is a combination of a magnetic head and an induction type magnetic head.
【請求項14】磁性層と非磁性層を積層した多層膜を有
する磁気抵抗効果素子を用いた磁気ヘッドを備えた装置
において、上記磁性層が面心立方格子構造を有するNi
−Fe系合金であり、上記磁性層の結晶の(200)面
によるX線回折強度I200と結晶の(111)面による
X線回折強度I111の強度の関係が、I200/(I111
200)≧0.4である多層磁気抵抗効果膜を少なくと
も一部に用いた磁気抵抗効果素子と誘導型磁気ヘッドを
組み合わせた複合型磁気ヘッドを用いたことを特徴とす
る磁気記録再生装置。
14. A device provided with a magnetic head using a magnetoresistive effect element having a multilayer film in which a magnetic layer and a non-magnetic layer are laminated, wherein the magnetic layer has a face-centered cubic lattice structure.
A -Fe system alloy, the relationship of the intensity of the magnetic layer of the crystal of (200) plane by X-ray diffraction intensity I 200 and the crystal (111) plane X-ray diffraction intensity I 111 by the, I 200 / (I 111 +
A magnetic recording / reproducing apparatus characterized by using a composite magnetic head in which a magnetoresistive effect element using a multi-layered magnetoresistive film satisfying I 200 ) ≧ 0.4 is used at least in part and an induction type magnetic head.
JP21396292A 1992-08-11 1992-08-11 Multilayer magnetoresistance effect film and magnetic head Pending JPH0661048A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21396292A JPH0661048A (en) 1992-08-11 1992-08-11 Multilayer magnetoresistance effect film and magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21396292A JPH0661048A (en) 1992-08-11 1992-08-11 Multilayer magnetoresistance effect film and magnetic head

Publications (1)

Publication Number Publication Date
JPH0661048A true JPH0661048A (en) 1994-03-04

Family

ID=16647951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21396292A Pending JPH0661048A (en) 1992-08-11 1992-08-11 Multilayer magnetoresistance effect film and magnetic head

Country Status (1)

Country Link
JP (1) JPH0661048A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08316549A (en) * 1994-05-02 1996-11-29 Matsushita Electric Ind Co Ltd Magnetoresistive effect element, magnetoresistive effect head, memory device, and amplifying element equipped therewith
US5850318A (en) * 1995-06-06 1998-12-15 Seagate Technology, Inc. Slotless spindle motor for disc drive
US6256222B1 (en) 1994-05-02 2001-07-03 Matsushita Electric Industrial Co., Ltd. Magnetoresistance effect device, and magnetoresistaance effect type head, memory device, and amplifying device using the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08316549A (en) * 1994-05-02 1996-11-29 Matsushita Electric Ind Co Ltd Magnetoresistive effect element, magnetoresistive effect head, memory device, and amplifying element equipped therewith
US6111782A (en) * 1994-05-02 2000-08-29 Matsushita Electric Industrial Co., Ltd. Magnetoresistance effect device, and magnetoresistance effect type head, memory device, and amplifying device using the same
US6256222B1 (en) 1994-05-02 2001-07-03 Matsushita Electric Industrial Co., Ltd. Magnetoresistance effect device, and magnetoresistaance effect type head, memory device, and amplifying device using the same
US5850318A (en) * 1995-06-06 1998-12-15 Seagate Technology, Inc. Slotless spindle motor for disc drive

Similar Documents

Publication Publication Date Title
JP3231313B2 (en) Magnetic head
JPH0969211A (en) Magnetoresistance effect film, magnetic head and magnetic recorder/reproducer
JP2001167410A (en) Spin valve type thin-film magnetic element and thin-film magnetic head
JP3527786B2 (en) Multilayer magnetoresistive film and magnetic head
JPH0950612A (en) Magnetoresistive effect film, magnetoresistive effect element, magnetic head and magnetic recording and reproducing device
JPH0661048A (en) Multilayer magnetoresistance effect film and magnetic head
JP3083237B2 (en) Magnetoresistive element and magnetic head
JPH076329A (en) Magneto-resistance effect element and magnetic head using the same and magnetic recording and reproducing device
JPH06310329A (en) Multilayer magnetoresistance effect film and magnetic head
JPH06260337A (en) Multilayer magnetoresistance effect film and magnetic head
JPH05175572A (en) Magnetoresistance effect element, and magnetic head and recording/reproducing device using same
JPH0774022A (en) Multilayer magnetoresistance-effect film and magnetic head
JPH09161243A (en) Multilayered magnetoresistive film and magnetic head
JP3243092B2 (en) Thin film magnetic head
JP2907805B1 (en) Magnetoresistive element, magnetoresistive head and magnetic recording / reproducing device
JPH06295818A (en) Multilayer magnetoresistive effect film and magnetic head
JPH0766036A (en) Multilayer magnetoresistance effect film, and magnetoresistance effect element and magnetic head using same
JP3096589B2 (en) Magnetoresistive head
JPH0799113A (en) Magnetoresistance effect multilayer film and magnetic head
JP2983492B2 (en) Stack of antiferromagnetic layer and magnetic layer and magnetic head using the stack
JPH09237410A (en) Multilayer magnetoresistive effect film and magnetic head using the same and magnetic recording and reproducing device
JPH08241506A (en) Multilayered magnetoresistance effect film and magnetic head
JPH09245320A (en) Multilayer magnetoresistive effect film and magnetic head formed by using the same as well as magnetic recording and reproducing device
JPH08111010A (en) Multilayered magneto-resistance effect film and magnetic head
JPH05258248A (en) Multilayer magnetoresistance effect film, magnetic head, and magnetic recording and reproducing device