JP2983492B2 - Stack of antiferromagnetic layer and magnetic layer and magnetic head using the stack - Google Patents

Stack of antiferromagnetic layer and magnetic layer and magnetic head using the stack

Info

Publication number
JP2983492B2
JP2983492B2 JP9129623A JP12962397A JP2983492B2 JP 2983492 B2 JP2983492 B2 JP 2983492B2 JP 9129623 A JP9129623 A JP 9129623A JP 12962397 A JP12962397 A JP 12962397A JP 2983492 B2 JP2983492 B2 JP 2983492B2
Authority
JP
Japan
Prior art keywords
layer
magnetic
antiferromagnetic
alloy
lattice matching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP9129623A
Other languages
Japanese (ja)
Other versions
JPH10320719A (en
Inventor
亮一 中谷
勝美 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP9129623A priority Critical patent/JP2983492B2/en
Publication of JPH10320719A publication Critical patent/JPH10320719A/en
Application granted granted Critical
Publication of JP2983492B2 publication Critical patent/JP2983492B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Magnetic Heads (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、優れた特性を有す
る反強磁性層と磁性層の積層体、及びこれを用いた磁気
ヘッド、磁気記録再生装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laminated body of an antiferromagnetic layer and a magnetic layer having excellent characteristics, and a magnetic head and a magnetic recording / reproducing apparatus using the same.

【0002】[0002]

【従来の技術】磁気記録の高密度化に伴い、再生用磁気
ヘッドとして磁気抵抗効果型ヘッドが用いられ始めてい
る。高い磁気抵抗効果を示す材料としては、Dieny らに
よるPhysical Review B、第43巻、第1号、1297
〜1300ペ−ジに記載の「Giant Magneto-resistance
in Soft Ferromagnetic Multilayers」のように2層の
磁性層を非磁性層で分離し、一方の磁性層に反強磁性層
からの交換バイアス磁界を印加する多層膜が考案されて
いる。また、上述の多層膜の磁性層数を3層に増加し、
高感度化を行った多層膜が、星屋らによる日本応用磁気
学会誌、第18巻、355〜359ペ−ジの「NiO反
強磁性膜を用いたスピンバルブ積層膜の巨大磁気抵抗」
に記載されている。
2. Description of the Related Art With the increase in density of magnetic recording, a magnetoresistive head has begun to be used as a reproducing magnetic head. Materials showing high magnetoresistance are described in Physical Review B, Vol. 43, No. 1, 1297 by Dieny et al.
"Giant Magneto-resistance" on page 1300
A multilayer film in which two magnetic layers are separated by a non-magnetic layer and an exchange bias magnetic field from an antiferromagnetic layer is applied to one of the magnetic layers as in "Soft Ferromagnetic Multilayers" has been devised. Further, the number of magnetic layers of the above-mentioned multilayer film is increased to three layers,
The multi-layered film whose sensitivity has been improved is described in "The Giant Magnetoresistance of a Spin-Valve Stacked Film Using NiO Antiferromagnetic Film" in Journal of the Japan Society of Applied Magnetics, Vol. 18, pages 355-359, by Hoshiya et al.
It is described in.

【0003】上述の目的で用いる反強磁性層材料は、高
い交換バイアス磁界を磁性層に印加することのできる材
料が望まれる。この反強磁性層材料の候補として、Hosh
inoらによる Japanese Journal of Applied Physics、
第35巻、第2A号、607〜612ペ−ジの「Exchan
ge Coupling between Antiferromagnetic Mn-Ir andFer
romagnetic Ni-Fe Layers」に記載のMn−Ir系合金
がある。この論文によれば、Ir組成が20〜30at
%の時に、比較的高い交換バイアス磁界が磁性層に印加
される。
As the material for the antiferromagnetic layer used for the above-mentioned purpose, a material capable of applying a high exchange bias magnetic field to the magnetic layer is desired. As a candidate for this antiferromagnetic layer material, Hosh
Japanese Journal of Applied Physics by ino et al.,
Vol. 35, No. 2A, pp. 607-612, “Exchan
ge Coupling between Antiferromagnetic Mn-Ir andFer
romagnetic Ni-Fe Layers ". According to this paper, the Ir composition is 20 to 30 at.
%, A relatively high exchange bias field is applied to the magnetic layer.

【0004】[0004]

【発明が解決しようとする課題】上記のような反強磁性
層と磁性層との積層体では、出来る限り高い交換バイア
ス磁界が磁性層に印加されていることが好ましい。特
に、3層の磁性層を含むスピンバルブ多層膜では、基板
より、結晶配向性制御層、結晶構造制御層、Mn−Ir
系合金よりなる反強磁性層、磁性層の順に積層されてい
る積層体を含む。このような反強磁性層上に磁性層が積
層されている場合、Mn−Ir系合金よりなる反強磁性
層の成長とともに、Mn−Ir系合金層の結晶配向性が
劣化し、実際に磁性層に接触する部分のMn−Ir系合
金層の結晶構造が面心立方構造にならなくなる。このた
め、Mn−Ir系合金層の最上部では、Mn−Ir系合
金層は反強磁性を示さなくなり、その部分に接触する磁
性層には交換バイアス磁界が印加されない。
In the above-mentioned laminated body of the antiferromagnetic layer and the magnetic layer, it is preferable that the exchange bias magnetic field as high as possible is applied to the magnetic layer. In particular, in a spin valve multilayer film including three magnetic layers, the crystal orientation control layer, the crystal structure control layer, the Mn-Ir
An antiferromagnetic layer made of a system alloy and a magnetic layer are stacked in this order. When a magnetic layer is laminated on such an antiferromagnetic layer, the crystal orientation of the Mn-Ir-based alloy layer deteriorates with the growth of the antiferromagnetic layer made of a Mn-Ir-based alloy, and the The crystal structure of the portion of the Mn-Ir-based alloy layer in contact with the layer no longer has a face-centered cubic structure. For this reason, at the uppermost part of the Mn-Ir-based alloy layer, the Mn-Ir-based alloy layer does not exhibit antiferromagnetism, and no exchange bias magnetic field is applied to the magnetic layer in contact with the portion.

【0005】本発明は、Mn−Ir系合金反強磁性層と
磁性層との積層体における問題点に鑑みてなされたもの
で、Mn−Ir系合金よりなる反強磁性層の上に磁性層
を積層した構造において反強磁性層から磁性層に強い交
換バイアス磁界を印加することのできる手段を提供する
ことを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of a problem in a laminated body of an Mn-Ir-based alloy antiferromagnetic layer and a magnetic layer. It is an object of the present invention to provide a means capable of applying a strong exchange bias magnetic field from an antiferromagnetic layer to a magnetic layer in a structure in which are stacked.

【0006】[0006]

【課題を解決するための手段】本発明者等は、Mn−I
r系合金よりなる反強磁性層の成長とともに、Mn−I
r系合金層の結晶配向性が劣化する原因を追求する過程
で、結晶構造制御層とMn−Ir系合金層との格子定数
の違いが大きいことに着目し、鋭意研究を重ねた結果、
上記結晶構造制御層とMn−Ir系合金よりなる反強磁
性層との間に面心立方構造を有する格子整合層を設け、
その格子整合層の格子定数を、結晶構造制御層の格子定
数とMn−Ir系合金層の格子定数との間の値にするこ
とにより、Mn−Ir系合金反強磁性層の結晶配向性が
劣化せず、磁性層に接触する部分が反強磁性を有するこ
とを見出し、本発明を完成するに至った。
Means for Solving the Problems The present inventors have proposed Mn-I
With the growth of the antiferromagnetic layer made of the r-based alloy, Mn-I
In the process of pursuing the cause of the deterioration of the crystal orientation of the r-based alloy layer, focusing on the large difference in the lattice constant between the crystal structure control layer and the Mn-Ir-based alloy layer, the results of intensive research,
A lattice matching layer having a face-centered cubic structure is provided between the crystal structure control layer and an antiferromagnetic layer made of a Mn-Ir-based alloy,
By setting the lattice constant of the lattice matching layer to a value between the lattice constant of the crystal structure control layer and the lattice constant of the Mn-Ir-based alloy layer, the crystal orientation of the Mn-Ir-based alloy antiferromagnetic layer is improved. The present inventors have found that a portion in contact with the magnetic layer does not deteriorate and has antiferromagnetism, and have completed the present invention.

【0007】すなわち、本発明の積層体は、基板より、
結晶配向性制御層、結晶構造制御層、格子整合層、Mn
−Ir系合金よりなる反強磁性層、磁性層の順に積層さ
れており、結晶配向性制御層が周期律表のIVa族もしく
はVa族元素又はIVa族もしくはVa族元素を主成分と
する合金からなり、結晶構造制御層、格子整合層及びM
n−Ir系合金よりなる反強磁性層が面心立方構造を有
し、格子整合層の格子定数が結晶構造制御層の格子定数
とMn−Ir系合金よりなる反強磁性層の格子定数との
間にあることを特徴とする。
[0007] That is, the laminate of the present invention comprises:
Crystal orientation control layer, crystal structure control layer, lattice matching layer, Mn
An antiferromagnetic layer made of an Ir-based alloy, and a magnetic layer, which are stacked in this order, wherein the crystal orientation control layer is made of an alloy containing a Group IVa or Va group element or a group IVa or Va group element of the periodic table as a main component. And a crystal structure control layer, a lattice matching layer and M
The antiferromagnetic layer made of the n-Ir alloy has a face-centered cubic structure, and the lattice constant of the lattice matching layer is the lattice constant of the crystal structure control layer and the lattice constant of the antiferromagnetic layer made of the Mn-Ir alloy. It is characterized by being between.

【0008】ここで、格子整合層を反強磁性体とすると
多層膜全体の層厚を薄くすることができる。このために
は、格子整合層としてFe−Mn系合金を用いることが
好ましい。Mn−Ir系合金反強磁性体のブロッキング
温度は約250℃、Fe−Mn系合金反強磁性体のブロ
ッキング温度は約150℃である。そして、反強磁性層
から磁性層に印加される交換バイアス磁界は温度が上昇
するとともに直線的に低下する。従って、磁性層に接触
する反強磁性層としてはFe−Mn系合金反強磁性体と
するよりMn−In系合金反強磁性体とする方が、温度
に対する余裕度が大きくなり有利である。
Here, when the lattice matching layer is made of an antiferromagnetic material, the thickness of the entire multilayer film can be reduced. For this purpose, it is preferable to use an Fe-Mn alloy as the lattice matching layer. The blocking temperature of the Mn-Ir alloy antiferromagnetic material is about 250 ° C, and the blocking temperature of the Fe-Mn alloy antiferromagnetic material is about 150 ° C. The exchange bias magnetic field applied from the antiferromagnetic layer to the magnetic layer decreases linearly with increasing temperature. Therefore, it is more advantageous to use a Mn-In alloy antiferromagnetic material than a Fe-Mn alloy antiferromagnetic material as the antiferromagnetic layer in contact with the magnetic layer because the degree of room for temperature is increased.

【0009】また、上記積層体の上に非磁性層、磁性
層、非磁性層、磁性層、Mn−Ir系合金よりなる反強
磁性層の順に積層されている多層膜は、高い磁気抵抗変
化率を示すため、磁気記録再生装置用の磁気抵抗効果型
磁気ヘッドとして好適である。
A multilayer film in which a non-magnetic layer, a magnetic layer, a non-magnetic layer, a magnetic layer, and an antiferromagnetic layer made of a Mn-Ir-based alloy are laminated in this order on the laminate has a high magnetoresistance change. Since it shows the ratio, it is suitable as a magnetoresistive magnetic head for a magnetic recording / reproducing apparatus.

【0010】[0010]

【発明の実施の形態】以下、図面を参照して本発明の実
施の形態を説明する。 [実施例1]図1に断面構造を模式的に示す多層膜を形
成した。基板11にはSi(100)単結晶を用いた。
また、結晶配向性制御層12として、厚さ5nmのHf
を用いた。結晶構造制御層13としては、厚さ3nmの
Cuを用いた。格子整合層14としては、Fe−40a
t%Mn合金を用いた。反強磁性層15としては、Mn
−22at%Ir合金を用いた。磁性層16としては、
厚さ5nmのNi−20at%Fe層を用いた。保護層
17には、厚さ5nmのHfを用いた。本実施例では、
格子整合層14と反強磁性層15の厚さの合計が10n
mとなるようにして、それぞれの層の厚さを変化させ
た。
Embodiments of the present invention will be described below with reference to the drawings. Example 1 A multilayer film whose sectional structure is schematically shown in FIG. 1 was formed. As the substrate 11, a single crystal of Si (100) was used.
As the crystal orientation control layer 12, a 5 nm-thick Hf
Was used. As the crystal structure control layer 13, Cu having a thickness of 3 nm was used. Fe-40a is used as the lattice matching layer 14.
A t% Mn alloy was used. As the antiferromagnetic layer 15, Mn
A -22 at% Ir alloy was used. As the magnetic layer 16,
A Ni-20 at% Fe layer having a thickness of 5 nm was used. For the protective layer 17, Hf having a thickness of 5 nm was used. In this embodiment,
The total thickness of the lattice matching layer 14 and the antiferromagnetic layer 15 is 10 n
m, and the thickness of each layer was changed.

【0011】多層膜の作製にはイオンビ−ムスパッタリ
ング法を用いた。到達真空度は、8×10-5Pa、スパ
ッタリング時のAr圧力は0.02Paである。Hf層
及びFe−Mn層の形成時のスパッタリング条件は、イ
オンガンの加速電圧300V、イオン電流60mA、N
i−Fe層形成時のスパッタリング条件は、イオンガン
の加速電圧300V、イオン電流40mAであった。M
n−Ir合金層の形成時のスパッタリング条件は、イオ
ンガンの加速電圧600V、イオン電流60mAとし
た。
An ion beam sputtering method was used for producing a multilayer film. The ultimate vacuum degree is 8 × 10 −5 Pa, and the Ar pressure during sputtering is 0.02 Pa. The sputtering conditions at the time of forming the Hf layer and the Fe—Mn layer were as follows: acceleration voltage of ion gun: 300 V, ion current: 60 mA, N
The sputtering conditions for forming the i-Fe layer were an acceleration voltage of an ion gun of 300 V and an ion current of 40 mA. M
The sputtering conditions for forming the n-Ir alloy layer were an acceleration voltage of an ion gun of 600 V and an ion current of 60 mA.

【0012】図2に、Fe−Mn系合金からなる格子整
合層14の厚さとMn−Ir系合金反強磁性層15の
(111)面のX線回折強度との関係を示す。Mn−I
r反強磁性層のX線回折強度は、反強磁性層の厚さ1n
mあたりに換算してある。図のように、格子整合層厚が
0nm、すなわち格子整合層を用いない時には、X線回
折強度は低い。これは、Mn−Ir反強磁性層の成長と
ともに、Mn−Ir反強磁性層の(111)配向が弱く
なることを示す。
FIG. 2 shows the relationship between the thickness of the lattice matching layer 14 made of an Fe—Mn alloy and the X-ray diffraction intensity of the (111) plane of the Mn—Ir alloy antiferromagnetic layer 15. Mn-I
The X-ray diffraction intensity of the r antiferromagnetic layer is 1 n
It is converted to around m. As shown in the figure, when the thickness of the lattice matching layer is 0 nm, that is, when the lattice matching layer is not used, the X-ray diffraction intensity is low. This indicates that the (111) orientation of the Mn-Ir antiferromagnetic layer becomes weaker with the growth of the Mn-Ir antiferromagnetic layer.

【0013】これに対し、Mn−Ir反強磁性層と結晶
構造制御層との間に、Fe−Mn系合金からなる格子整
合層を形成すると、Mn−Ir反強磁性層の1nmあた
りのX線回折強度が高くなる。また、格子整合層厚が1
nmよりも厚くなっても、上記X線回折強度はほぼ一定
である。このことは、Mn−Ir反強磁性層と結晶構造
制御層との間に、Fe−Mn系合金からなる格子整合層
を形成すると、Mn−Ir反強磁性層の成長とともに生
じていた結晶配向性の劣化が防止されたことを示す。
On the other hand, when a lattice matching layer made of an Fe-Mn alloy is formed between the Mn-Ir antiferromagnetic layer and the crystal structure control layer, X / nm of the Mn-Ir antiferromagnetic layer can be improved. The line diffraction intensity increases. Also, if the lattice matching layer thickness is 1
The X-ray diffraction intensity is substantially constant even when the thickness is larger than nm. This is because, when a lattice matching layer made of an Fe-Mn alloy is formed between the Mn-Ir antiferromagnetic layer and the crystal structure control layer, the crystal orientation that has occurred with the growth of the Mn-Ir antiferromagnetic layer This indicates that the deterioration of the properties has been prevented.

【0014】次に、Fe−Mn系合金からなる格子整合
層14の厚さと磁性層16に印加される交換バイアス磁
界との関係について調べた。この実験では、多層膜を2
50℃において、80kA/mの磁界中で15分間熱処
理している。図3のように、格子整合層厚が0nm、す
なわち、格子整合層を用いない時には、磁性層に印加さ
れる交換バイアス磁界は非常に低い。これは、Mn−I
r反強磁性層の成長とともに、Mn−Ir反強磁性層の
(111)配向が弱くなり、Mn−Ir系合金が面心立
方構造を持たなくなり、室温で反強磁性を示さなくなる
ためである。
Next, the relationship between the thickness of the lattice matching layer 14 made of an Fe—Mn alloy and the exchange bias magnetic field applied to the magnetic layer 16 was examined. In this experiment, two layers were used.
Heat treatment is performed at 50 ° C. in a magnetic field of 80 kA / m for 15 minutes. As shown in FIG. 3, when the thickness of the lattice matching layer is 0 nm, that is, when the lattice matching layer is not used, the exchange bias magnetic field applied to the magnetic layer is very low. This is because Mn-I
This is because the (111) orientation of the Mn-Ir antiferromagnetic layer becomes weaker with the growth of the r antiferromagnetic layer, and the Mn-Ir-based alloy does not have a face-centered cubic structure and does not exhibit antiferromagnetism at room temperature. .

【0015】これに対し、Mn−Ir反強磁性層と結晶
構造制御層との間に、Fe−Mn系合金からなる格子整
合層を形成すると、磁性層に印加される交換バイアス磁
界が高くなる。これは、Mn−Ir反強磁性層の成長と
ともに生じていた結晶配向性の劣化が防止され、Mn−
Ir系合金が面心立方構造を保持しているために、反強
磁性を失わなかったためである。
On the other hand, when a lattice matching layer made of an Fe-Mn alloy is formed between the Mn-Ir antiferromagnetic layer and the crystal structure control layer, the exchange bias magnetic field applied to the magnetic layer increases. . This is because the deterioration of the crystal orientation which occurred with the growth of the Mn-Ir antiferromagnetic layer is prevented, and the Mn-Ir
This is because the Ir-based alloy retains the face-centered cubic structure and thus does not lose its antiferromagnetism.

【0016】上述のように、Mn−Ir反強磁性層と結
晶構造制御層との間に、Fe−Mn系合金からなる格子
整合層を形成すると、Mn−Ir反強磁性層の成長とと
もに生じていた結晶配向性の劣化が防止され、磁性層に
印加される交換バイアス磁界が高くなる。これは、格子
整合層の格子定数が結晶構造制御層の格子定数及びMn
−Ir反強磁性層の格子定数の間にあり、このため、M
n−Ir反強磁性層の成長がスムーズに行われたためと
考えられる。従って、格子整合層の材料としては、面心
立方構造を有し、その格子定数は結晶構造制御層の格子
定数及びMn−Ir反強磁性層の格子定数の間にあるこ
とが必要である。
As described above, when a lattice matching layer made of an Fe-Mn alloy is formed between the Mn-Ir antiferromagnetic layer and the crystal structure control layer, the lattice matching layer is formed with the growth of the Mn-Ir antiferromagnetic layer. As a result, the deterioration of the crystal orientation is prevented, and the exchange bias magnetic field applied to the magnetic layer is increased. This is because the lattice constant of the lattice matching layer is the lattice constant of the crystal structure control layer and Mn.
-Ir is between the lattice constants of the antiferromagnetic layer,
This is probably because the n-Ir antiferromagnetic layer was grown smoothly. Therefore, the material of the lattice matching layer has a face-centered cubic structure, and its lattice constant needs to be between the lattice constant of the crystal structure control layer and the lattice constant of the Mn-Ir antiferromagnetic layer.

【0017】ところで、反強磁性層の厚さは、ある臨界
層厚以上であることが必要である。従って、格子整合層
として反強磁性を有する材料を用いると、その分だけM
n−Ir反強磁性層の厚さを薄くすることができる。上
記積層体を磁気抵抗効果型ヘッドの磁気抵抗効果材料に
用いる場合、狭いシールド間隔の中に磁気ヘッドを配置
する関係上、磁気抵抗効果材料の厚さは薄いことが好ま
しい。このため、格子整合層として反強磁性体を用いる
ことが好ましい。
Incidentally, the thickness of the antiferromagnetic layer needs to be not less than a certain critical layer thickness. Therefore, when a material having antiferromagnetism is used for the lattice matching layer, M
The thickness of the n-Ir antiferromagnetic layer can be reduced. When the laminate is used as a magnetoresistive material for a magnetoresistive head, it is preferable that the thickness of the magnetoresistive material be small because the magnetic head is arranged within a narrow shield interval. Therefore, it is preferable to use an antiferromagnetic material as the lattice matching layer.

【0018】本実施例では、結晶配向性制御層として、
Hfを用いたが、周期律率表のIVa族元素あるいいはV
a族元素を用いても、同様の結果を得ることができる。
また、周期律率表のIVa族あるいはVa族元素を主成分
とする合金材料を用いることもできる。また、本実施例
では、結晶構造制御層としてCuを用いたが、他の面心
立方構造を有する金属材料を用いても同様の結果を得る
ことができる。
In this embodiment, as the crystal orientation control layer,
Hf was used, but element IVa or V in the periodic table was used.
Similar results can be obtained by using a group a element.
In addition, an alloy material containing a Group IVa or Va element in the periodic table as a main component can also be used. In this embodiment, Cu is used as the crystal structure control layer. However, similar results can be obtained by using another metal material having a face-centered cubic structure.

【0019】なお、2種類の反強磁性体を積層する従来
例として、特開平9−50612号公報に記載のものが
ある。しかし、これは磁性層上に反強磁性層を形成する
場合に、2種類の反強磁性層材料の特性の違いを利用し
たものであり、本発明のような、反強磁性層上に磁性層
を形成する場合に、反強磁性層の成長を容易にするため
に行う積層とは、構造、効果の点で異なる。
As a conventional example of laminating two kinds of antiferromagnetic materials, there is one described in Japanese Patent Application Laid-Open No. 9-50612. However, when the antiferromagnetic layer is formed on the magnetic layer, the difference in characteristics between the two types of antiferromagnetic layer material is used. When a layer is formed, it differs from the stacking performed for facilitating the growth of the antiferromagnetic layer in structure and effect.

【0020】[実施例2]実施例1で述べた多層膜を含
むデュアルスピンバルブ多層膜を形成した。多層膜の積
層構造を図4に模式的に示す。図4において、基板31
にはSi(100)単結晶を用いた。また、結晶配向性
制御層32として、厚さ5nmのHfを用いた。結晶構
造制御層33としては、厚さ5nmのCuを用いた。格
子整合層34としては、厚さ2nmのFe−40at%
Mn系合金を用いた。反強磁性層35としては、厚さ8
nmのMn−22at%Ir合金を用いた。磁性層3
6、40としては、厚さ3nmのNi−16at%Fe
−18at%Co合金を用いた。非磁性層37、39と
しては、厚さ2.5nmのCuを用いた。磁性層38と
しては、厚さ5nmのNi−16at%Fe−18at
%Co合金を用いた。反強磁性層41としては、厚さ1
0nmのMn−22at%Ir合金を用いた。
Example 2 A dual spin valve multilayer film including the multilayer film described in Example 1 was formed. FIG. 4 schematically shows the multilayer structure of the multilayer film. In FIG. 4, the substrate 31
Used was a Si (100) single crystal. As the crystal orientation control layer 32, Hf having a thickness of 5 nm was used. As the crystal structure control layer 33, Cu having a thickness of 5 nm was used. As the lattice matching layer 34, Fe-40 at% of thickness 2 nm
A Mn-based alloy was used. The antiferromagnetic layer 35 has a thickness of 8
nm Mn-22 at% Ir alloy was used. Magnetic layer 3
6 and 40 are 3 nm thick Ni-16 at% Fe.
A -18 at% Co alloy was used. As the nonmagnetic layers 37 and 39, Cu having a thickness of 2.5 nm was used. The magnetic layer 38 is made of Ni-16 at% Fe-18 at 5 nm thick.
% Co alloy was used. The antiferromagnetic layer 41 has a thickness of 1
A 0 nm Mn-22 at% Ir alloy was used.

【0021】上記構造の多層膜は、6.5%の磁気抵抗
変化率を示した。これは、反強磁性層に接する磁性層に
高い交換バイアス磁界が印加されているためである。比
較のために、格子整合層34を設けず、結晶構造制御層
33の上に反強磁性層35を直接積層した点でのみ実施
例2と異なるデュアルスピンバルブ多層膜を作製したと
ころ、この多層膜の磁気抵抗変化率は3.0%であっ
た。これは、反強磁性層35から磁性層36に交換バイ
アス磁界が印加されないため磁性層36が磁性層38と
同時に磁化回転し、非磁性層37を挟んだ部分では磁気
抵抗が生じないためである。
The multilayer film having the above structure exhibited a magnetoresistance ratio of 6.5%. This is because a high exchange bias magnetic field is applied to the magnetic layer in contact with the antiferromagnetic layer. For comparison, a dual spin-valve multilayer film different from that of Example 2 was produced only in that the antiferromagnetic layer 35 was directly laminated on the crystal structure control layer 33 without providing the lattice matching layer 34. The magnetoresistance ratio of the film was 3.0%. This is because the exchange bias magnetic field is not applied from the antiferromagnetic layer 35 to the magnetic layer 36, so that the magnetic layer 36 rotates at the same time as the magnetic layer 38, and no magnetic resistance is generated in the portion sandwiching the nonmagnetic layer 37. .

【0022】[実施例3]実施例2で述べた多層膜を用
い、磁気ヘッドを作製した。磁気ヘッドの構造を図5に
示す。図5は、記録再生分離型ヘッドの一部分を切断し
た場合の斜視図である。上述の多層膜51をシ−ルド層
52、53で挾んだ部分が再生ヘッドとして働き、コイ
ル54を挾む下部磁極55、上部磁極56の部分が記録
ヘッドとして働く。また、電極58には、Cr/Cu/
Crという多層構造の材料を用いた。
Example 3 A magnetic head was manufactured using the multilayer film described in Example 2. FIG. 5 shows the structure of the magnetic head. FIG. 5 is a perspective view when a part of the recording / reproducing separation type head is cut. The portion where the above-mentioned multilayer film 51 is sandwiched between the shield layers 52 and 53 functions as a reproducing head, and the portions of the lower magnetic pole 55 and the upper magnetic pole 56 which sandwich the coil 54 function as a recording head. The electrode 58 has a Cr / Cu /
A material having a multilayer structure of Cr was used.

【0023】以下に、このヘッドの作製方法を示す。A
23・TiCを主成分とする焼結体をスライダ用の基
板57とした。シ−ルド層、記録磁極にはスパッタリン
グ法で形成したNi−Fe合金を用いた。各磁性膜の膜
厚は、以下のようにした。上下のシ−ルド層52、53
は1.0μm、上下の磁極55、56は3.0μm、各
層間のギャップ材としてはスパッタリングで形成したA
23を用いた。ギャップ層の膜厚は、シ−ルド層と磁
気抵抗効果素子間で0.2μm、記録磁極間では0.4
μmとした。さらに再生ヘッドと記録ヘッドの間隔は約
4μmとし、このギャップもAl23で形成した。コイ
ル54には膜厚3μmのCuを使用した。
Hereinafter, a method of manufacturing the head will be described. A
A sintered body mainly composed of l 2 O 3 .TiC was used as a substrate 57 for the slider. A Ni-Fe alloy formed by a sputtering method was used for the shield layer and the recording magnetic pole. The thickness of each magnetic film was as follows. Upper and lower shield layers 52, 53
Is 1.0 μm, the upper and lower magnetic poles 55 and 56 are 3.0 μm, and a gap material between the layers is formed by sputtering.
l 2 O 3 was used. The thickness of the gap layer is 0.2 μm between the shield layer and the magnetoresistive element, and 0.4 μm between the recording magnetic poles.
μm. Further, the distance between the reproducing head and the recording head was about 4 μm, and this gap was also formed of Al 2 O 3 . Cu having a thickness of 3 μm was used for the coil 54.

【0024】以上述べた構造の磁気ヘッドで記録再生を
行ったところ、Ni−Fe単層膜を用いた磁気ヘッドと
比較して、6.2倍高い再生出力を得た。これは、本発
明の磁気ヘッドに高磁気抵抗効果を示す多層膜を用いた
ためと考えられる。
When recording and reproduction were performed with the magnetic head having the above-described structure, a reproduction output 6.2 times higher than that of a magnetic head using a Ni—Fe single layer film was obtained. This is probably because the magnetic head of the present invention used a multilayer film exhibiting a high magnetoresistance effect.

【0025】[実施例4]実施例3で述べた本発明の磁
気ヘッドを組み込んだ磁気記録再生装置を作製した。磁
気記録再生装置は、図6(a)に平面図を、図6(b)
にそのAA′断面図を模式的に示すように、磁気記録媒
体61と、これを回転駆動する磁気記録媒体駆動部62
と、磁気ヘッド63及びその駆動部64と、磁気ヘッド
63に接続された記録再生信号処理系65を有して成る
周知の構成の磁気記録再生装置である。
Example 4 A magnetic recording / reproducing apparatus incorporating the magnetic head of the present invention described in Example 3 was manufactured. FIG. 6A is a plan view of the magnetic recording / reproducing apparatus, and FIG.
As schematically shown in the sectional view taken along the line AA 'of FIG.
And a magnetic recording / reproducing apparatus having a well-known configuration including a magnetic head 63, a driving unit 64 thereof, and a recording / reproducing signal processing system 65 connected to the magnetic head 63.

【0026】磁気記録媒体駆動部62により回転する磁
気記録媒体61には、残留磁束密度0.75TのCo−
Ni−Pt−Ta系合金からなる材料を用いた。磁気ヘ
ッド駆動部64により保持された磁気ヘッド63のトラ
ック幅は1.5μmとした。本実施例によると、磁気ヘ
ッド63における磁気抵抗効果素子の再生出力が高いた
め、記録再生信号処理系65に負担をかけない高性能磁
気記録再生装置が得られた。
The magnetic recording medium 61 rotated by the magnetic recording medium drive 62 has a Co-
A material composed of a Ni-Pt-Ta alloy was used. The track width of the magnetic head 63 held by the magnetic head driving unit 64 was 1.5 μm. According to the present embodiment, a high-performance magnetic recording / reproducing apparatus which does not impose a load on the recording / reproducing signal processing system 65 was obtained because the reproducing output of the magnetoresistive element in the magnetic head 63 is high.

【0027】[0027]

【発明の効果】以上のように、磁性層の下にMn−Ir
系合金反強磁性層を形成する場合に、結晶構造制御層と
Mn−Ir系合金反強磁性層との間に格子整合層を設け
ることにより、Mn−Ir系合金反強磁性層の結晶配向
性が劣化せず、磁性層に接触する部分が反強磁性を有す
る。この積層体をデュアルスピンバルブに応用すること
により、高い磁気抵抗変化率を有する磁気抵抗効果膜が
得られる。この磁気抵抗効果膜は磁気記録再生装置の磁
気抵抗効果型磁気ヘッド用として好適である。
As described above, Mn-Ir is formed under the magnetic layer.
When forming a system alloy antiferromagnetic layer, by providing a lattice matching layer between the crystal structure control layer and the Mn-Ir system alloy antiferromagnetic layer, the crystal orientation of the Mn-Ir system alloy antiferromagnetic layer is provided. The portion in contact with the magnetic layer has antiferromagnetism without deterioration in properties. By applying this laminate to a dual spin valve, a magnetoresistive film having a high magnetoresistance ratio can be obtained. This magnetoresistive film is suitable for a magnetoresistive magnetic head of a magnetic recording / reproducing apparatus.

【図面の簡単な説明】[Brief description of the drawings]

【図1】反強磁性層と磁性層を積層した多層膜の構造を
示す断面模式図。
FIG. 1 is a schematic sectional view showing the structure of a multilayer film in which an antiferromagnetic layer and a magnetic layer are stacked.

【図2】格子整合層厚とMn−Ir系合金反強磁性層の
(111)面のX線回折強度との関係を示すグラフ。
FIG. 2 is a graph showing the relationship between the thickness of the lattice matching layer and the X-ray diffraction intensity of the (111) plane of the Mn—Ir-based alloy antiferromagnetic layer.

【図3】格子整合層厚と磁性層に印加される交換バイア
ス磁界との関係を示すグラフ。
FIG. 3 is a graph showing a relationship between a thickness of a lattice matching layer and an exchange bias magnetic field applied to a magnetic layer.

【図4】本発明の多層膜を用いたデュアルスピンバルブ
多層膜の積層構造を示す断面模式図。
FIG. 4 is a schematic sectional view showing a laminated structure of a dual spin valve multilayer film using the multilayer film of the present invention.

【図5】磁気ヘッドの構造を示す斜視図。FIG. 5 is a perspective view showing the structure of a magnetic head.

【図6】磁気ディスク装置の模式図。FIG. 6 is a schematic diagram of a magnetic disk drive.

【符号の説明】[Explanation of symbols]

11,31…基板、12,32…結晶性配向性制御層、
13,33…結晶構造制御層、14,34…格子整合
層、15,35,41…Mn−Ir系合金反強磁性層、
16,36,38,40…磁性層、17…保護層、3
7,39…非磁性層、51…多層膜、52,53…シ−
ルド層、54…コイル、55…下部磁極、56…上部磁
極、57…基板、58…電極、61…磁気記録媒体、6
2…磁気記録媒体駆動部、63…磁気ヘッド、64…磁
気ヘッド駆動部、65…記録再生信号処理系
11, 31 ... substrate, 12, 32 ... crystalline orientation control layer,
13, 33: crystal structure control layer, 14, 34: lattice matching layer, 15, 35, 41: Mn-Ir alloy antiferromagnetic layer,
16, 36, 38, 40: magnetic layer, 17: protective layer, 3
7, 39: non-magnetic layer, 51: multilayer film, 52, 53 ...
Magnetic layer, 54 ... coil, 55 ... lower magnetic pole, 56 ... upper magnetic pole, 57 ... substrate, 58 ... electrode, 61 ... magnetic recording medium, 6
2: magnetic recording medium driving unit, 63: magnetic head, 64: magnetic head driving unit, 65: recording / reproducing signal processing system

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 基板より、結晶配向性制御層、結晶構造
制御層、格子整合層、Mn−Ir系合金よりなる反強磁
性層、磁性層の順に積層されており、 前記結晶配向性制御層が周期律表のIVa族もしくはVa
族元素又はIVa族もしくはVa族元素を主成分とする合
金からなり、前記結晶構造制御層、格子整合層及びMn
−Ir系合金よりなる反強磁性層が面心立方構造を有
し、前記格子整合層の格子定数が前記結晶構造制御層の
格子定数とMn−Ir系合金よりなる反強磁性層の格子
定数との間にあることを特徴とする積層体。
1. A crystal orientation control layer comprising: a crystal orientation control layer, a crystal structure control layer, a lattice matching layer, an antiferromagnetic layer made of a Mn—Ir-based alloy, and a magnetic layer. Is group IVa or Va in the periodic table
A crystal structure control layer, a lattice matching layer, and an alloy containing a group IV element or an alloy mainly containing a group IVa or group Va element.
The antiferromagnetic layer made of an Ir-based alloy has a face-centered cubic structure, and the lattice constant of the lattice matching layer is the lattice constant of the crystal structure control layer and the lattice constant of the antiferromagnetic layer made of a Mn-Ir-based alloy And a laminate.
【請求項2】 前記格子整合層が反強磁性体であること
を特徴とする請求項1に記載の積層体。
2. The laminate according to claim 1, wherein the lattice matching layer is an antiferromagnetic material.
【請求項3】 前記格子整合層がFe−Mn系合金であ
ることを特徴とする請求項1に記載の積層体。
3. The laminate according to claim 1, wherein the lattice matching layer is an Fe—Mn alloy.
【請求項4】 請求項1、2又は3に記載の積層体の上
に非磁性層、磁性層、非磁性層、磁性層、Mn−Ir系
合金よりなる反強磁性層が順に積層されている多層膜を
少なくとも一部に用いたことを特徴とする磁気ヘッド。
4. A non-magnetic layer, a magnetic layer, a non-magnetic layer, a magnetic layer, and an antiferromagnetic layer made of a Mn-Ir-based alloy are sequentially laminated on the laminate according to claim 1, 2 or 3. A magnetic head characterized in that at least a part of a multilayer film is used.
【請求項5】 請求項4に記載の磁気ヘッドを備えるこ
とを特徴とする磁気記録再生装置。
5. A magnetic recording / reproducing apparatus comprising the magnetic head according to claim 4.
JP9129623A 1997-05-20 1997-05-20 Stack of antiferromagnetic layer and magnetic layer and magnetic head using the stack Expired - Fee Related JP2983492B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9129623A JP2983492B2 (en) 1997-05-20 1997-05-20 Stack of antiferromagnetic layer and magnetic layer and magnetic head using the stack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9129623A JP2983492B2 (en) 1997-05-20 1997-05-20 Stack of antiferromagnetic layer and magnetic layer and magnetic head using the stack

Publications (2)

Publication Number Publication Date
JPH10320719A JPH10320719A (en) 1998-12-04
JP2983492B2 true JP2983492B2 (en) 1999-11-29

Family

ID=15014068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9129623A Expired - Fee Related JP2983492B2 (en) 1997-05-20 1997-05-20 Stack of antiferromagnetic layer and magnetic layer and magnetic head using the stack

Country Status (1)

Country Link
JP (1) JP2983492B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003086866A (en) * 2001-09-13 2003-03-20 Anelva Corp Method for manufacturing spin valve type large magnetic resistance thin film

Also Published As

Publication number Publication date
JPH10320719A (en) 1998-12-04

Similar Documents

Publication Publication Date Title
JP3137580B2 (en) Magnetic multilayer film, magnetoresistive element and magnetic transducer
EP0814519B1 (en) Magnetoresistive effect device, process for fabricating the same, and magnetic head produced using the same
GB2387711A (en) Magnetic sensing element with multi-layer free layer
JPH1041132A (en) Magnetic resistance effect film
US6147843A (en) Magnetoresistive effect element having magnetoresistive layer and underlying metal layer
EP0624868B1 (en) Magnetoresistance effect elements and method of fabricating the same
JP3527786B2 (en) Multilayer magnetoresistive film and magnetic head
JPH0950612A (en) Magnetoresistive effect film, magnetoresistive effect element, magnetic head and magnetic recording and reproducing device
JPH0963021A (en) Magneto-resistive effect element having spin valve structure and its production
JP2983492B2 (en) Stack of antiferromagnetic layer and magnetic layer and magnetic head using the stack
JP3083237B2 (en) Magnetoresistive element and magnetic head
JPH10294217A (en) Spin valve type magnetoresistance effect film and magnetic head having the same
JPH1131312A (en) Double spin valve sensor
JP2907805B1 (en) Magnetoresistive element, magnetoresistive head and magnetic recording / reproducing device
JP2888810B2 (en) Stack of antiferromagnetic layer and magnetic layer, magnetoresistive element, and magnetic head
JP2856387B2 (en) Stack of antiferromagnetic layer and magnetic layer and magnetic head
JPH08241506A (en) Multilayered magnetoresistance effect film and magnetic head
JPH0774022A (en) Multilayer magnetoresistance-effect film and magnetic head
JPH09161243A (en) Multilayered magnetoresistive film and magnetic head
JPH0661048A (en) Multilayer magnetoresistance effect film and magnetic head
JP3096589B2 (en) Magnetoresistive head
JPH1032119A (en) Magnetoresistance effect film
JPH0935216A (en) Magnetoresistance effect film and magnetic recording head
JPH09237410A (en) Multilayer magnetoresistive effect film and magnetic head using the same and magnetic recording and reproducing device
JPH0817631A (en) Multilayered magnetoresistance effect film and magnetic head

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070924

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100924

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees