JP2856387B2 - Stack of antiferromagnetic layer and magnetic layer and magnetic head - Google Patents

Stack of antiferromagnetic layer and magnetic layer and magnetic head

Info

Publication number
JP2856387B2
JP2856387B2 JP34513196A JP34513196A JP2856387B2 JP 2856387 B2 JP2856387 B2 JP 2856387B2 JP 34513196 A JP34513196 A JP 34513196A JP 34513196 A JP34513196 A JP 34513196A JP 2856387 B2 JP2856387 B2 JP 2856387B2
Authority
JP
Japan
Prior art keywords
layer
magnetic
alloy
based alloy
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34513196A
Other languages
Japanese (ja)
Other versions
JPH10188228A (en
Inventor
亮一 中谷
勝美 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP34513196A priority Critical patent/JP2856387B2/en
Publication of JPH10188228A publication Critical patent/JPH10188228A/en
Application granted granted Critical
Publication of JP2856387B2 publication Critical patent/JP2856387B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、優れた特性を有す
る反強磁性層と磁性層の積層体、及びこれを用いた磁気
ヘッド、磁気記録再生装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laminated body of an antiferromagnetic layer and a magnetic layer having excellent characteristics, and a magnetic head and a magnetic recording / reproducing apparatus using the same.

【0002】[0002]

【従来の技術】磁気記録の高密度化に伴い、再生用磁気
ヘッドとして磁気抵抗効果型ヘッドが用いられ始めてい
る。磁気抵抗効果型ヘッドでは、磁性層内の磁壁のピニ
ングの影響によりバルクハウゼンノイズが生じやすく、
このノイズを抑制するために、磁性層に反強磁性層を積
層し、反強磁性層からの交換バイアス磁界を磁性層に印
加する。また、高い磁気抵抗効果を示す材料としては、
Dieny らによる Physical Review B、第43巻、第1
号、1297〜1300ページに記載の「Giant Magnet
oresistance in Soft Ferromagnetic Multilayers」の
ように、2層の磁性層を非磁性層で分離し、一方の磁性
層に反強磁性層からの交換バイアス磁界を印加する多層
膜が考案されている。
2. Description of the Related Art With the increase in density of magnetic recording, a magnetoresistive head has begun to be used as a reproducing magnetic head. In a magnetoresistive head, Barkhausen noise is likely to occur due to the effect of pinning of the domain wall in the magnetic layer.
To suppress this noise, an antiferromagnetic layer is laminated on the magnetic layer, and an exchange bias magnetic field from the antiferromagnetic layer is applied to the magnetic layer. In addition, materials that exhibit a high magnetoresistance effect include:
Physical Review B by Dieny et al., Vol. 43, No. 1
No., pages 1297-1300, "Giant Magnet
A multilayer film in which two magnetic layers are separated by a nonmagnetic layer and an exchange bias magnetic field from an antiferromagnetic layer is applied to one of the magnetic layers has been devised, as in "oresistance in Soft Ferromagnetic Multilayers".

【0003】上述の目的で用いられる反強磁性層材料
は、比較的高い交換バイアス磁界を磁性層に印加するこ
とのできる材料が望まれる。この反強磁性層材料の候補
として、Hoshino らによる Japanese Journal of Appli
ed Physics、第35巻、第2A号、607〜612ペー
ジの「Exchange Coupling between AntiferromagneticM
n-Ir and Ferromagnrtic Ni-Fe Layers」に記載のMn
−Ir系合金がある。この論文によれば、Ir組成が2
0〜30at%の時に、比較的高い交換バイアス磁界が
磁性層に印加される。
The antiferromagnetic layer material used for the above-mentioned purpose is desired to be a material which can apply a relatively high exchange bias magnetic field to the magnetic layer. Japanese Journal of Appli by Hoshino et al.
ed Physics, Vol. 35, No. 2A, pp. 607-612, “Exchange Coupling between Antiferromagnetic M
n-Ir and Ferromagnrtic Ni-Fe Layers ''
-There is an Ir-based alloy. According to this paper, the Ir composition is 2
At 0 to 30 at%, a relatively high exchange bias magnetic field is applied to the magnetic layer.

【0004】[0004]

【発明が解決しようとする課題】上記のような反強磁性
層と磁性層との積層体においては、反強磁性層の形成条
件によって、反強磁性層から磁性層に印加される交換バ
イアス磁界は大きく変化する。そして、前記積層体を用
いる磁気抵抗効果型ヘッドでは、磁性層に高い交換バイ
アス磁界が印加されていることが必要である。
In the above-described laminate of the antiferromagnetic layer and the magnetic layer, the exchange bias magnetic field applied from the antiferromagnetic layer to the magnetic layer depends on the conditions for forming the antiferromagnetic layer. Varies greatly. In a magnetoresistive head using the above-mentioned laminate, a high exchange bias magnetic field must be applied to the magnetic layer.

【0005】本発明は、このような要請に応えるべく、
磁性層に高い交換バイアス磁界を印加することのできる
反強磁性層と磁性層の積層体を提供することを目的とす
る。また、その積層体を用いた高性能の磁気ヘッド及び
磁気記録再生装置を提供することを目的とする。
[0005] The present invention has been developed to meet such a demand.
It is an object of the present invention to provide a laminated body of an antiferromagnetic layer and a magnetic layer that can apply a high exchange bias magnetic field to the magnetic layer. It is another object of the present invention to provide a high-performance magnetic head and a magnetic recording / reproducing device using the laminate.

【0006】[0006]

【課題を解決するための手段】本発明者等は、Ni−F
e系磁性層上のMn−Ir系合金層を種々のスパッタリ
ング条件で形成し、反強磁性層の組織及び磁性層に印加
される交換バイアス磁界について鋭意研究を重ねた結
果、高い交換バイアス磁界を得るためには、反強磁性層
の組織を強い(111)配向にする必要があることを見
出し、本発明を完成するに至った。
Means for Solving the Problems The present inventors have proposed Ni-F
The Mn-Ir-based alloy layer on the e-based magnetic layer was formed under various sputtering conditions, and as a result of intensive studies on the structure of the antiferromagnetic layer and the exchange bias magnetic field applied to the magnetic layer, a high exchange bias magnetic field was obtained. In order to obtain, it was found that the structure of the antiferromagnetic layer had to be in a strong (111) orientation, and the present invention was completed.

【0007】すなわち、Mn−Ir系合金よりなる反強
磁性層とNi−Fe系合金を主成分とする磁性層がとも
に(111)面が基板面とほぼ平行になるように配向し
ている時、Mn−Ir系合金層の(111)面の単位厚
さ当りのX線回折強度IMI及びNi−Fe系合金を主成
分とする磁性層の(111)面の単位厚さ当りのX線回
折強度INFが、IMI≧INFなる関係を有する時に、磁性
層に印加される交換バイアス磁界が10kA/mよりも
高くなることを明らかにした。
That is, when the antiferromagnetic layer made of a Mn-Ir alloy and the magnetic layer mainly made of a Ni-Fe alloy are both oriented so that the (111) plane is substantially parallel to the substrate surface. , Mn-Ir system alloy layer (111) plane X-ray per unit thickness (111) plane of the magnetic layer unit thickness per X-ray diffraction intensity I MI and Ni-Fe-based alloy as a main component of When the diffraction intensity I NF has the relationship of I MI ≧ I NF , it has been revealed that the exchange bias magnetic field applied to the magnetic layer becomes higher than 10 kA / m.

【0008】このような検討に基づく本発明は、Mn−
Ir系合金よりなる反強磁性層とNi−Fe系合金を主
成分とする磁性層が積層された積層体において、Mn−
Ir系合金層及びNi−Fe系合金を主成分とする磁性
層が面心立方構造を有し、Mn−Ir系合金層及びNi
−Fe系合金を主成分とする磁性層の(111)面が基
板面とほぼ平行になるように配向し、Mn−Ir系合金
層の(111)面の単位厚さ当りのX線回折強度IMI
びNi−Fe系合金を主成分とする磁性層の(111)
面の単位厚さ当りのX線回折強度INFが、IMI≧INF
る関係を有することを特徴とする。
[0008] The present invention based on such a study provides a Mn-
In a laminate in which an antiferromagnetic layer composed of an Ir-based alloy and a magnetic layer mainly composed of a Ni-Fe-based alloy are laminated, Mn-
The Ir-based alloy layer and the magnetic layer mainly composed of a Ni-Fe alloy have a face-centered cubic structure, and the Mn-Ir-based alloy layer and Ni
-The (111) plane of the magnetic layer mainly composed of an Fe-based alloy is oriented so as to be substantially parallel to the substrate surface, and the X-ray diffraction intensity per unit thickness of the (111) plane of the Mn-Ir-based alloy layer (111) of a magnetic layer mainly composed of IMI and a Ni-Fe alloy
The X-ray diffraction intensity I NF per unit thickness of the surface has a relationship of I MI ≧ I NF .

【0009】上記積層体は、磁気抵抗効果素子、磁界セ
ンサ、磁気ヘッドなどに好適である。また、上記磁気ヘ
ッドを用いることにより、高性能な磁気記録再生装置を
得ることができる。
The above laminate is suitable for a magnetoresistive element, a magnetic field sensor, a magnetic head and the like. Further, by using the magnetic head, a high-performance magnetic recording / reproducing apparatus can be obtained.

【0010】[0010]

【発明の実施の形態】以下、図面を参照して本発明の実
施の形態を説明する。 〔実施例1〕反強磁性層材料による、磁性層に印加され
る交換バイアス磁界の変化を調べるために、図2に示す
ような構造の多層膜を形成した。基板21にはSi(1
00)単結晶を用いた。また、結晶性制御層22とし
て、厚さ5nmのHfを用いた。磁性層23としては、
厚さ5nmのNi−20at%Feを用いた。反強磁性
層24としては、厚さ10nmのMn−22at%Ir
合金を用いた。保護層25には、厚さ5nmのHfを用
いた。
Embodiments of the present invention will be described below with reference to the drawings. Example 1 In order to examine the change in the exchange bias magnetic field applied to the magnetic layer due to the antiferromagnetic layer material, a multilayer film having a structure as shown in FIG. 2 was formed. The substrate 21 has Si (1
00) A single crystal was used. As the crystallinity control layer 22, Hf having a thickness of 5 nm was used. As the magnetic layer 23,
Ni-20 at% Fe with a thickness of 5 nm was used. As the antiferromagnetic layer 24, a 10 nm thick Mn-22 at% Ir
An alloy was used. For the protective layer 25, Hf with a thickness of 5 nm was used.

【0011】多層膜の作製にはイオンビームスパッタリ
ング法を用いた。到達真空度は5×10-5Pa、スパッ
タリング時のAr圧力は0.02Paとした。Hf層形
成時のスパッタリング条件は、イオンガンの加速電圧を
300V、イオン電流を60mAとした。Ni−Fe層
の形成は、イオンガンの加速電圧を300V、イオン電
流を30mAとし、ターゲットとしてNi−20at%
Feを用いたスパッタリングによって行った。
An ion beam sputtering method was used for producing a multilayer film. The ultimate vacuum was 5 × 10 −5 Pa, and the Ar pressure during sputtering was 0.02 Pa. The sputtering conditions at the time of forming the Hf layer were such that the acceleration voltage of the ion gun was 300 V and the ion current was 60 mA. The Ni—Fe layer is formed by setting the acceleration voltage of the ion gun to 300 V, the ion current to 30 mA, and the Ni—20 at% as a target.
This was performed by sputtering using Fe.

【0012】本実施例では、Mn−Ir合金層の形成条
件を変化させてその影響を調べた。図3に、イオンガン
の加速電圧を変化させたときのMn−Ir層の形成速度
(スパッタリングレート)を示す。イオンガンのイオン
電流は60mAとし、ターゲットにはMn−20at%
Ir合金を用いた。図3のように、加速電圧が低い時に
は形成速度は遅く、加速電圧が600V以上の条件でほ
ぼ一定の形成速度が得られる。
In the present embodiment, the influence was examined by changing the conditions for forming the Mn-Ir alloy layer. FIG. 3 shows the formation rate (sputtering rate) of the Mn-Ir layer when the acceleration voltage of the ion gun was changed. The ion current of the ion gun was 60 mA, and the target was Mn-20 at%.
An Ir alloy was used. As shown in FIG. 3, when the acceleration voltage is low, the formation speed is low, and a substantially constant formation speed can be obtained when the acceleration voltage is 600 V or more.

【0013】図2のような多層膜を形成すると、反強磁
性層24と磁性層23との界面において交換相互作用が
生じ、磁性層23に交換バイアス磁界が印加される。図
4に、Mn−Ir層形成時のイオンガンの加速電圧を変
化させた場合における、交換バイアス磁界の変化を示
す。加速電圧が300〜600Vの範囲では、加速電圧
の増加に伴い、磁性層に印加される交換バイアス磁界が
増加する。加速電圧が700V以上になると、再び交換
バイアス磁界が低下する。
When a multilayer film as shown in FIG. 2 is formed, an exchange interaction occurs at the interface between the antiferromagnetic layer 24 and the magnetic layer 23, and an exchange bias magnetic field is applied to the magnetic layer 23. FIG. 4 shows a change in the exchange bias magnetic field when the acceleration voltage of the ion gun during the formation of the Mn-Ir layer is changed. When the acceleration voltage is in the range of 300 to 600 V, the exchange bias magnetic field applied to the magnetic layer increases as the acceleration voltage increases. When the acceleration voltage becomes 700 V or more, the exchange bias magnetic field decreases again.

【0014】加速電圧による交換バイアス磁界の変化の
原因について調べるために、X線回折による多層膜の組
織観察を行った。その結果、Mn−Ir系合金反強磁性
層及びNi−Fe系合金磁性層は、面心立方構造であっ
た。また、これらの層は、(111)面が基板面とほぼ
平行になるように配向していた。上記Mn−Ir系合金
層の(111)面の単位厚さ当りのX線回折強度IMI
びNi−Fe系合金層の(111)面の単位厚さ当りの
X線回折強度INFを測定し、X線回折強度比I MI/INF
の値を求めた。
The change of the exchange bias magnetic field due to the acceleration voltage
To investigate the cause, a set of multilayer films by X-ray diffraction
Weaving was performed. As a result, Mn-Ir alloy antiferromagnetic
The layer and the Ni-Fe alloy magnetic layer have a face-centered cubic structure.
Was. In these layers, the (111) plane is almost the same as the substrate plane.
They were oriented to be parallel. The above Mn-Ir based alloy
-Ray diffraction intensity I per unit thickness of the (111) plane of the layerMIPassing
Per unit thickness of the (111) plane of the Ni-Fe alloy layer
X-ray diffraction intensity INFAnd the X-ray diffraction intensity ratio I MI/ INF
Was determined.

【0015】図5に、イオンガンの加速電圧を変化させ
た場合における、X線回折強度比IMI/INFの変化を示
す。図示するように、加速電圧が300〜700Vの範
囲では、加速電圧の増加に伴い、IMI/INFが増加す
る。加速電圧が800V以上になると、再び、IMI/I
NFが低下する。図4及び図5より、磁性層に印加される
交換バイアス磁界とIMI/INFの値との間に相関が認め
られる。
FIG. 5 shows a change in the X-ray diffraction intensity ratio I MI / I NF when the acceleration voltage of the ion gun is changed. As shown, when the acceleration voltage is in the range of 300 to 700 V, I MI / I NF increases as the acceleration voltage increases. When the acceleration voltage becomes 800 V or higher, I MI / I
NF decreases. 4 and 5, there is a correlation between the exchange bias magnetic field applied to the magnetic layer and the value of I MI / I NF .

【0016】次に、イオンガンの加速電圧を600Vと
し、イオンガンのイオン電流を変化させた。その結果、
図6に示すように、イオン電流の増加に伴いMn−Ir
層の形成速度(スパッタリングレート)が増加した。
Next, the acceleration voltage of the ion gun was set to 600 V, and the ion current of the ion gun was changed. as a result,
As shown in FIG. 6, Mn-Ir
The layer formation rate (sputtering rate) increased.

【0017】図7に、Mn−Ir層形成時のイオンガン
のイオン電流を変化させた場合における、交換バイアス
磁界の変化を示す。イオン電流が30〜50mAの範囲
では、イオン電流の増加に伴い磁性層に印加される交換
バイアス磁界が増加する。イオン電流が60mA以上に
なると、再び、交換バイアス磁界が低下する。
FIG. 7 shows the change of the exchange bias magnetic field when the ion current of the ion gun at the time of forming the Mn-Ir layer is changed. When the ion current is in the range of 30 to 50 mA, the exchange bias magnetic field applied to the magnetic layer increases as the ion current increases. When the ion current becomes 60 mA or more, the exchange bias magnetic field decreases again.

【0018】イオン電流による交換バイアス磁界の変化
の原因について調べるために、X線回折による多層膜の
組織観察を行った。図8に結果を示す。図のように、イ
オン電流が30〜50mAの範囲では、イオン電流の増
加に伴いIMI/INFが増加する。イオン電流が60mA
以上になると、再び、IMI/INFは低下する。図7及び
図8より、イオン電流を変化させた場合にも、磁性層に
印加される交換バイアス磁界とIMI/INFの値との間に
相関が認められる。
In order to investigate the cause of the change in the exchange bias magnetic field due to the ion current, the structure of the multilayer film was observed by X-ray diffraction. FIG. 8 shows the results. As shown in the figure, when the ion current is in the range of 30 to 50 mA, I MI / I NF increases as the ion current increases. Ion current is 60mA
Then, I MI / I NF again decreases. 7 and 8, there is a correlation between the exchange bias magnetic field applied to the magnetic layer and the value of I MI / I NF even when the ion current is changed.

【0019】上述の結果を基に、IMI/INFと交換バイ
アス磁界との関係を求めた。結果を図1に示す。図のよ
うに、IMI/INFが高くなると、高い交換バイアス磁界
が得られることがわかる。この多層膜を用いて磁気ヘッ
ドの再生ヘッドを作製するとき、交換バイアス磁界が1
0kA/mより小さいと書き込みヘッドからの漏れ磁界
の影響を受けてしまうため、交換バイアス磁界は10k
A/m以上であることが望ましいが、IMI/INFが1以
上の時、すなわち、IMIがINF以上の時10kA/m以
上の交換バイアス磁界を得ることができる。
Based on the above results, the relationship between I MI / I NF and the exchange bias magnetic field was determined. The results are shown in FIG. As shown in the figure, when I MI / I NF is increased, a high exchange bias magnetic field can be obtained. When a reproducing head of a magnetic head is manufactured using this multilayer film, the exchange bias magnetic field is 1
If it is smaller than 0 kA / m, it is affected by the leakage magnetic field from the write head.
A / m or more is desirable, but when I MI / I NF is 1 or more, that is, when I MI is I NF or more, an exchange bias magnetic field of 10 kA / m or more can be obtained.

【0020】本実施例では、反強磁性層としてMn−2
2at%Ir合金を用いたが、Mn−Ir合金が反強磁
性を示す範囲内ならば、組成が異なっても良い。また、
Mn−Ir合金に他の元素を添加した合金についても、
ほぼ同様の結果を得ることができる。
In this embodiment, Mn-2 is used as the antiferromagnetic layer.
Although a 2 at% Ir alloy was used, the composition may be different as long as the Mn-Ir alloy is in a range showing antiferromagnetism. Also,
For alloys obtained by adding other elements to the Mn-Ir alloy,
Almost the same result can be obtained.

【0021】また、本実施例では、磁性層としてNi−
Fe系合金を用いたが、他の面心立方構造を有する軟磁
性材料を用いても良い。例えば、Ni−Fe−Co系合
金、Coに10at%程度のFeを含む合金を用いるこ
とができる。また、結晶性制御層材料としては、周期律
率表のIVa、Va族元素が好ましい。
In this embodiment, the magnetic layer is made of Ni-
Although the Fe-based alloy is used, another soft magnetic material having a face-centered cubic structure may be used. For example, a Ni—Fe—Co alloy or an alloy containing about 10 at% of Fe in Co can be used. In addition, as a material of the crystallinity control layer, an element of group IVa or Va in the periodic table is preferable.

【0022】〔実施例2〕実施例1の結果を基に、図9
に断面構造を略示する多層膜を形成した。イオンビーム
スパッタリング法によりMn−Ir系合金反強磁性層を
形成する時のイオンガン加速電圧は600V、イオン電
流は60mAとした。多層膜の積層構造は、基板30上
より順に、厚さ5nmのHfからなる結晶性制御層3
1、厚さ5nmのCu層32、厚さ10nmのMn−2
2at%Ir合金からなる反強磁性層33、厚さ3nm
のNi−16at%Fe−18at%Co合金からなる
磁性層34、厚さ2nmのCu層35、厚さ7nmのN
i−16at%Fe−18at%Co合金からなる磁性
層36、厚さ2nmのCu層37、厚さ3nmのNi−
16at%Fe−18at%Co合金からなる磁性層3
8、厚さ10nmのMn−22at%Ir合金からなる
反強磁性層39とした。
[Embodiment 2] Based on the results of Embodiment 1, FIG.
Then, a multilayer film schematically showing a cross-sectional structure was formed. The ion gun acceleration voltage when forming the Mn-Ir-based alloy antiferromagnetic layer by the ion beam sputtering method was 600 V, and the ion current was 60 mA. The laminated structure of the multilayer film includes a crystalline control layer 3 made of Hf having a thickness of 5 nm in order from the substrate 30.
1. Cu layer 32 with a thickness of 5 nm, Mn-2 with a thickness of 10 nm
Antiferromagnetic layer 33 made of 2 at% Ir alloy, 3 nm thick
Magnetic layer 34 made of Ni-16 at% Fe-18 at% Co alloy, Cu layer 35 having a thickness of 2 nm, and N having a thickness of 7 nm
a magnetic layer 36 made of an i-16 at% Fe-18 at% Co alloy, a Cu layer 37 having a thickness of 2 nm, and a Ni-layer having a thickness of 3 nm
Magnetic layer 3 made of 16 at% Fe-18 at% Co alloy
8. An antiferromagnetic layer 39 made of a Mn-22 at% Ir alloy having a thickness of 10 nm was formed.

【0023】Mn−Ir系合金反強磁性層33,39よ
り磁性層34,38へ印加される交換バイアス磁界が高
いため、上記多層膜は、約6%の磁気抵抗変化率を示し
た。比較のために、Mn−Ir系合金層33,39を形
成する時のスパッタリング条件を、イオンガンの加速電
圧300V、イオン電流60mAとした以外は同一の条
件で図9に断面構造を略示する多層膜を形成した。この
とき、Mn−Ir系合金反強磁性層33,39から磁性
層34,38に印加される交換バイアス磁界は約7kA
/mであった。この比較用に作製した多層膜の磁気抵抗
変化率を測定したところ、3層の磁性層34,36,3
8の磁化の向きが十分に平行と反平行の間を変化しない
ため、約4%の磁気抵抗変化率しか得られなかった。
Since the exchange bias magnetic field applied to the magnetic layers 34 and 38 is higher than that of the Mn-Ir-based alloy antiferromagnetic layers 33 and 39, the multilayer film exhibited a magnetoresistance ratio of about 6%. For comparison, FIG. 9 shows a multi-layered structure whose cross-sectional structure is schematically shown under the same conditions except that the sputtering conditions for forming the Mn-Ir-based alloy layers 33 and 39 were set to an acceleration voltage of an ion gun of 300 V and an ion current of 60 mA. A film was formed. At this time, the exchange bias magnetic field applied from the Mn-Ir-based alloy antiferromagnetic layers 33, 39 to the magnetic layers 34, 38 is about 7 kA.
/ M. When the magnetoresistance ratio of the multilayer film manufactured for comparison was measured, the three magnetic layers 34, 36, 3
Since the magnetization direction of No. 8 did not change sufficiently between parallel and antiparallel, only a magnetoresistance change rate of about 4% was obtained.

【0024】〔実施例3〕実施例2で述べた多層膜を用
い、記録再生分離型複合磁気ヘッドを作製した。磁気ヘ
ッドの一部分を切断した斜視図を図10に示す。この複
合磁気ヘッドは、上述の多層膜61をシールド層62,
63で挾んだ部分が再生ヘッドとして働き、コイル64
を挾む下部磁極65、上部磁極66の部分が記録ヘッド
として働く。また、電極68には、Cr/Cu/Crと
いう多層構造の材料を用いた。
[Embodiment 3] Using the multilayer film described in the embodiment 2, a read / write separation type composite magnetic head was manufactured. FIG. 10 is a perspective view in which a part of the magnetic head is cut. In this composite magnetic head, the above-described multilayer film 61 is formed of a shield layer 62,
The portion sandwiched by 63 functions as a reproducing head, and the coil 64
The lower magnetic pole 65 and the upper magnetic pole 66 sandwiching the above function as a recording head. For the electrode 68, a material having a multilayer structure of Cr / Cu / Cr was used.

【0025】以下に、この複合磁気ヘッドの作製方法を
示す。Al23・TiCを主成分とする焼結体をスライ
ダ用の基板67とした。シールド層62,63及び記録
磁極65,66にはスパッタリング法で形成したNi−
Fe合金を用いた。各磁性膜の膜厚は、以下のようにし
た。上下のシールド層62,63は1.0μm、下部磁
極65、上部磁極66は3.0μm、各層間のギャップ
材としてはスパッタリングで形成したAl23を用い
た。ギャップ層の膜厚は、シールド層と磁気抵抗効果素
子間で0.2μm、記録磁極間では0.4μmとした。
さらに再生ヘッドと記録ヘッドの間隔は約4μmとし、
このギャップもAl23で形成した。コイル64には膜
厚3μmのCuを使用した。
Hereinafter, a method of manufacturing the composite magnetic head will be described. A sintered body mainly composed of Al 2 O 3 .TiC was used as a slider substrate 67. The shield layers 62 and 63 and the recording magnetic poles 65 and 66 are made of Ni-
An Fe alloy was used. The thickness of each magnetic film was as follows. The upper and lower shield layers 62 and 63 were 1.0 μm, the lower magnetic pole 65 and the upper magnetic pole 66 were 3.0 μm, and Al 2 O 3 formed by sputtering was used as a gap material between the respective layers. The thickness of the gap layer was 0.2 μm between the shield layer and the magnetoresistive element, and 0.4 μm between the recording magnetic poles.
Further, the distance between the reproducing head and the recording head is about 4 μm,
This gap was also formed of Al 2 O 3 . Cu having a thickness of 3 μm was used for the coil 64.

【0026】以上述べた構造の磁気ヘッドで記録再生を
行ったところ、Ni−Fe単層膜を用いた磁気ヘッドと
比較して、約5.2倍高い再生出力を得た。これは、磁
気ヘッドに高磁気抵抗効果を示す本発明の多層膜を用い
たためと考えられる。
When recording / reproducing was performed with the magnetic head having the above-described structure, a reproducing output approximately 5.2 times higher than that of the magnetic head using the Ni—Fe single layer film was obtained. This is presumably because the multilayer film of the present invention showing a high magnetoresistance effect was used for the magnetic head.

【0027】〔実施例4〕実施例3で述べた本発明の磁
気ヘッドを用い、磁気記録再生装置を作製した。装置の
構造を図11に示す。図11(a)は装置の平面図、図
11(b)は図11(a)のA−A線に沿った断面図で
ある。
Embodiment 4 A magnetic recording / reproducing apparatus was manufactured using the magnetic head of the present invention described in Embodiment 3. FIG. 11 shows the structure of the device. FIG. 11A is a plan view of the device, and FIG. 11B is a cross-sectional view taken along line AA of FIG. 11A.

【0028】磁気記録再生装置は、磁性膜を表面に担持
して中心軸の回りで回転する磁気記録媒体71、磁気記
録媒体に対してデータの記録及び再生を行う磁気ヘッド
73、磁気ヘッド73を支持して磁気記録媒体上の所望
の半径位置に位置決めする機構、記録信号や再生信号を
処理する記録再生信号処理系75から主に構成される。
The magnetic recording / reproducing apparatus includes a magnetic recording medium 71 which carries a magnetic film on its surface and rotates around a central axis, a magnetic head 73 for recording and reproducing data on and from the magnetic recording medium, and a magnetic head 73. It mainly comprises a mechanism for supporting and positioning at a desired radial position on the magnetic recording medium, and a recording / reproducing signal processing system 75 for processing recording signals and reproducing signals.

【0029】磁気記録媒体71はスピンドル軸72に固
定され、スピンドル軸72によって回転駆動される。磁
気ヘッド73はアームに支持されたサスペンションに支
持されており、アームはロータリーアクチュエータ74
に固定されている。磁気ヘッド73はロータリーアクチ
ュエータ74の回転によって磁気記録媒体71上の所望
の位置に位置決めされる。記録再生信号処理系75は、
磁気ヘッド73に記録電流を流してデータを記録した
り、磁気ヘッド73より得られる電気信号を処理してデ
ータに変換する処理を行う。データの記録は、記録電流
に応じた記録磁界の変化を利用して磁気記録媒体上の磁
性膜の磁化方向を反転することにより行われる。また、
データの再生は、磁気記録媒体から発生する漏れ磁界を
再生ヘッドで検出し、それを電気信号に変換することに
よって行われる。
The magnetic recording medium 71 is fixed to a spindle shaft 72 and is driven to rotate by the spindle shaft 72. The magnetic head 73 is supported by a suspension supported by an arm.
It is fixed to. The magnetic head 73 is positioned at a desired position on the magnetic recording medium 71 by the rotation of the rotary actuator 74. The recording / reproducing signal processing system 75
The recording current is applied to the magnetic head 73 to record data, and the electric signal obtained from the magnetic head 73 is processed to be converted into data. Data recording is performed by reversing the magnetization direction of a magnetic film on a magnetic recording medium using a change in a recording magnetic field according to a recording current. Also,
Data is reproduced by detecting a leakage magnetic field generated from a magnetic recording medium by a reproducing head and converting the detected magnetic field into an electric signal.

【0030】磁気記録媒体71には、残留磁束密度0.
75TのCo−Ni−Pt−Ta系合金からなる材料を
用いた。磁気ヘッド73のトラック幅は1.5μmとし
た。磁気ヘッド73における磁気抵抗効果素子は、再生
出力が高いため、信号処理に負担をかけない高性能磁気
ディスク装置が得られた。
The magnetic recording medium 71 has a residual magnetic flux density of 0.
A material made of a 75T Co-Ni-Pt-Ta alloy was used. The track width of the magnetic head 73 was 1.5 μm. Since the magnetoresistive effect element of the magnetic head 73 has a high reproduction output, a high-performance magnetic disk device that does not impose a burden on signal processing was obtained.

【0031】[0031]

【発明の効果】上述のように、Mn−Ir系合金層を適
正な範囲のスパッタリング条件で形成することにより、
反強磁性層の(111)配向を強くし、磁性層に印加さ
れる交換バイアスを高くすることができる。すなわち、
Mn−Ir系合金よりなる反強磁性層とNi−Fe系合
金を主成分とする磁性層がともに(111)面が基板面
とほぼ平行になるように配向している時、Mn−Ir系
合金層の(111)面の単位厚さ当りのX線回折強度I
MI及びNi−Fe系合金を主成分とする磁性層の(11
1)面の単位厚さ当りのX線回折強度INFが、IMI≧I
NFなる関係を有する時に、磁性層に印加される交換バイ
アス磁界が10kA/mよりも高くなることを明らかに
した。また、上記積層体は、磁気抵抗効果素子、磁界セ
ンサ、磁気ヘッドなどに好適である。そして、上記磁気
ヘッドを用いることにより、高性能磁気記録再生装置を
得ることができる。
As described above, by forming the Mn-Ir-based alloy layer under an appropriate range of sputtering conditions,
It is possible to increase the (111) orientation of the antiferromagnetic layer and increase the exchange bias applied to the magnetic layer. That is,
When both the antiferromagnetic layer made of a Mn-Ir-based alloy and the magnetic layer mainly made of a Ni-Fe-based alloy are oriented so that the (111) plane is substantially parallel to the substrate surface, the Mn-Ir-based X-ray diffraction intensity I per unit thickness of (111) plane of alloy layer
(11) of a magnetic layer mainly containing MI and a Ni—Fe alloy
1) The X-ray diffraction intensity I NF per unit thickness of the surface is I MI ≧ I
It has been clarified that the exchange bias magnetic field applied to the magnetic layer becomes higher than 10 kA / m when having the relationship of NF . Further, the laminate is suitable for a magnetoresistive element, a magnetic field sensor, a magnetic head, and the like. By using the magnetic head, a high-performance magnetic recording / reproducing apparatus can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】Ni−Fe系合金層及びMn−Ir系合金層の
単位厚さ当りのX線回折強度の比と磁性層に印加される
交換バイアス磁界との関係を示す図。
FIG. 1 is a view showing the relationship between the ratio of the X-ray diffraction intensity per unit thickness of a Ni—Fe alloy layer and a Mn—Ir alloy layer and an exchange bias magnetic field applied to a magnetic layer.

【図2】反強磁性層と磁性層を積層した多層膜の構造を
示す断面図。
FIG. 2 is a sectional view showing a structure of a multilayer film in which an antiferromagnetic layer and a magnetic layer are stacked.

【図3】イオンガンの加速電圧とスパッタリングレート
との関係を示す図。
FIG. 3 is a diagram showing a relationship between an acceleration voltage of an ion gun and a sputtering rate.

【図4】イオンガンの加速電圧と交換バイアス磁界との
関係を示す図。
FIG. 4 is a diagram showing a relationship between an acceleration voltage of an ion gun and an exchange bias magnetic field.

【図5】イオンガンの加速電圧とNi−Fe系合金及び
Mn−Ir系合金の単位厚さ当りのX線回折強度の比と
の関係を示す図。
FIG. 5 is a diagram showing the relationship between the acceleration voltage of an ion gun and the ratio of the X-ray diffraction intensity per unit thickness of a Ni—Fe alloy and a Mn—Ir alloy.

【図6】イオンガンのイオン電流とスパッタリングレー
トとの関係を示す図。
FIG. 6 is a diagram showing a relationship between an ion current of an ion gun and a sputtering rate.

【図7】イオンガンのイオン電流と交換バイアス磁界と
の関係を示す図。
FIG. 7 is a diagram showing a relationship between an ion current of an ion gun and an exchange bias magnetic field.

【図8】イオンガンのイオン電流とNi−Fe系合金及
びMn−Ir系合金の単位厚さ当りのX線回折強度の比
との関係を示す図。
FIG. 8 is a diagram showing the relationship between the ion current of the ion gun and the ratio of the X-ray diffraction intensity per unit thickness of the Ni—Fe alloy and the Mn—Ir alloy.

【図9】本発明による多層膜の一例の構造を示す略断面
図。
FIG. 9 is a schematic sectional view showing the structure of an example of a multilayer film according to the present invention.

【図10】磁気ヘッドの構造を示す一部切断斜視図。FIG. 10 is a partially cutaway perspective view showing the structure of a magnetic head.

【図11】磁気記録再生装置の構造を示す図。FIG. 11 is a diagram showing a structure of a magnetic recording / reproducing apparatus.

【符号の説明】[Explanation of symbols]

21…基板、22…結晶性制御層、23…磁性層、24
…反強磁性層、25…保護層、30…基板、31…結晶
性制御層、32…Cu層、33…反強磁性層、34…磁
性層、35…Cu層、36…磁性層、37…Cu層、3
8…磁性層、39…反強磁性層、61…多層膜、62,
63…シールド層、64…コイル、65…下部磁極、6
6…上部磁極、67…基板、68…電極、71…磁気記
録媒体、72…磁気記録媒体駆動部、73…磁気ヘッ
ド、74…磁気ヘッド駆動部、75…記録再生信号処理
21: substrate, 22: crystallinity control layer, 23: magnetic layer, 24
... Antiferromagnetic layer, 25 ... Protective layer, 30 ... Substrate, 31 ... Crystallinity control layer, 32 ... Cu layer, 33 ... Antiferromagnetic layer, 34 ... Magnetic layer, 35 ... Cu layer, 36 ... Magnetic layer, 37 ... Cu layer, 3
8 magnetic layer, 39 antiferromagnetic layer, 61 multilayer film, 62,
63: shield layer, 64: coil, 65: lower magnetic pole, 6
Reference numeral 6: Upper magnetic pole, 67: Substrate, 68: Electrode, 71: Magnetic recording medium, 72: Magnetic recording medium drive, 73: Magnetic head, 74: Magnetic head drive, 75: Recording / reproducing signal processing system

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 Mn−Ir系合金よりなる反強磁性層と
Ni−Fe系合金を主成分とする磁性層が積層された積
層体において、 前記Mn−Ir系合金層及びNi−Fe系合金を主成分
とする磁性層が面心立方構造を有し、前記Mn−Ir系
合金層及びNi−Fe系合金を主成分とする磁性層の
(111)面が基板面とほぼ平行になるように配向し、
前記Mn−Ir系合金層の(111)面の単位厚さ当り
のX線回折強度IMI及びNi−Fe系合金を主成分とす
る磁性層の(111)面の単位厚さ当りのX線回折強度
NFが、IMI≧INFなる関係を有することを特徴とする
積層体。
1. A laminate comprising an antiferromagnetic layer made of a Mn-Ir-based alloy and a magnetic layer mainly composed of a Ni-Fe-based alloy, wherein the Mn-Ir-based alloy layer and the Ni-Fe-based alloy are Has a face-centered cubic structure, and the (111) plane of the Mn-Ir-based alloy layer and the magnetic layer mainly containing a Ni-Fe alloy is substantially parallel to the substrate surface. Oriented to
X-ray per unit thickness of the Mn-Ir system alloy layer (111) X-ray per unit thickness of the surface diffraction intensity I MI and Ni-Fe-based alloy magnetic layer mainly (111) plane A laminated body, wherein the diffraction intensity I NF has a relationship of I MI ≧ I NF .
【請求項2】 請求項1記載の積層体を少なくとも一部
に用いたことを特徴とする磁気ヘッド。
2. A magnetic head comprising at least a part of the laminate according to claim 1.
【請求項3】 請求項2記載の磁気ヘッドを用いたこと
を特徴とする磁気記録再生装置。
3. A magnetic recording and reproducing apparatus using the magnetic head according to claim 2.
JP34513196A 1996-12-25 1996-12-25 Stack of antiferromagnetic layer and magnetic layer and magnetic head Expired - Fee Related JP2856387B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34513196A JP2856387B2 (en) 1996-12-25 1996-12-25 Stack of antiferromagnetic layer and magnetic layer and magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34513196A JP2856387B2 (en) 1996-12-25 1996-12-25 Stack of antiferromagnetic layer and magnetic layer and magnetic head

Publications (2)

Publication Number Publication Date
JPH10188228A JPH10188228A (en) 1998-07-21
JP2856387B2 true JP2856387B2 (en) 1999-02-10

Family

ID=18374497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34513196A Expired - Fee Related JP2856387B2 (en) 1996-12-25 1996-12-25 Stack of antiferromagnetic layer and magnetic layer and magnetic head

Country Status (1)

Country Link
JP (1) JP2856387B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6693775B1 (en) * 2000-03-21 2004-02-17 International Business Machines Corporation GMR coefficient enhancement for spin valve structures

Also Published As

Publication number Publication date
JPH10188228A (en) 1998-07-21

Similar Documents

Publication Publication Date Title
JP3180027B2 (en) Spin valve magnetoresistive sensor and magnetic recording system using this sensor
US5408377A (en) Magnetoresistive sensor with improved ferromagnetic sensing layer and magnetic recording system using the sensor
JP3177229B2 (en) Magnetic tunnel junction type magnetoresistive read head with longitudinal and lateral bias
JP3177199B2 (en) Magnetic tunnel junction device and magnetoresistive read head
US5465185A (en) Magnetoresistive spin valve sensor with improved pinned ferromagnetic layer and magnetic recording system using the sensor
JP2002025013A (en) Magnetic tunnel junction laminated type head and method of manufacture
JP3231313B2 (en) Magnetic head
JPH0969211A (en) Magnetoresistance effect film, magnetic head and magnetic recorder/reproducer
EP0624868B1 (en) Magnetoresistance effect elements and method of fabricating the same
JP2001307308A (en) Magnetoresistive effect type head and information reproducing device
JP2856387B2 (en) Stack of antiferromagnetic layer and magnetic layer and magnetic head
JP2888810B2 (en) Stack of antiferromagnetic layer and magnetic layer, magnetoresistive element, and magnetic head
JP2961087B2 (en) Stack of antiferromagnetic layer and magnetic layer and magnetic head
JP3083237B2 (en) Magnetoresistive element and magnetic head
JP2000276714A (en) Spin valve sensor fixing magnetization with current
JP2983492B2 (en) Stack of antiferromagnetic layer and magnetic layer and magnetic head using the stack
JPH08153314A (en) Multilayered magnetoresistance effect film and magnetic head
JP2833586B2 (en) Magnetoresistive element and method of manufacturing the same
JPH08241506A (en) Multilayered magnetoresistance effect film and magnetic head
JPH09237410A (en) Multilayer magnetoresistive effect film and magnetic head using the same and magnetic recording and reproducing device
JPH0817631A (en) Multilayered magnetoresistance effect film and magnetic head
JPH0661048A (en) Multilayer magnetoresistance effect film and magnetic head
JP3008910B2 (en) Magnetoresistive element, magnetoresistive head and magnetic recording / reproducing apparatus using the same
JPH0714710A (en) Magnetoresistive effect element
JPH11284248A (en) Magnetoresistance effect element

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071127

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081127

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20091127

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101127

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20101127

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20111127

LAPS Cancellation because of no payment of annual fees