JPH1032119A - The magneto-resistance effect film - Google Patents

The magneto-resistance effect film

Info

Publication number
JPH1032119A
JPH1032119A JP18758996A JP18758996A JPH1032119A JP H1032119 A JPH1032119 A JP H1032119A JP 18758996 A JP18758996 A JP 18758996A JP 18758996 A JP18758996 A JP 18758996A JP H1032119 A JPH1032119 A JP H1032119A
Authority
JP
Grant status
Application
Patent type
Prior art keywords
layer
ferromagnetic
film
laminated
antiferromagnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18758996A
Other languages
Japanese (ja)
Inventor
Atsushi Maeda
Koji Yamano
篤志 前田
耕治 山野
Original Assignee
Sanyo Electric Co Ltd
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3268Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn

Abstract

PROBLEM TO BE SOLVED: To enable obtaining higher magntoresistance effect ratio by a method, wherein an antiferromagnetic layer is composed of an NiO film and NiCoO layer, while the NiCoO layer is provided on a ferromagnetic layer side. SOLUTION: An NiO layer 2 and an NiCoO layer 3 are laminated on a glass substrate 1, so as to compose an antiferromagnetic layer. Next, an NiFe layer 4 and Co layer 5 are laminated on the antiferromagnetic layers to compose a ferromagnetic layer. Furthermore, a Cu layer 6 as a nonmagnetic conductive layer is laminated on the ferromagnetic layer and then a Co layer 7 and an NiFe layer 8, as the other ferromagnetic layers, are laminated on the Cu layer 6. Through these procedures, the magnetoresistance effect ratio higher than the conventional one can be obtained.

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【発明の属する技術分野】本発明は、磁気抵抗効果膜に関するものであり、特にスピンバルブ構造を有する磁気抵抗効果膜に関するものである。 BACKGROUND OF THE INVENTION The present invention relates to a magnetoresistive film, to a magnetoresistive film, especially having a spin valve structure.

【0002】 [0002]

【従来の技術】磁気抵抗効果素子(MR素子)は、磁場印加による磁気抵抗効果膜の電気抵抗の変化を検出することにより、磁界強度及びその変化を測定するための素子である。 BACKGROUND ART magnetoresistive element (MR element), by detecting a change in the electrical resistance of the magnetoresistive film by the magnetic field applied is a device for measuring the magnetic field intensity and the change. このような磁気抵抗効果素子を組み込んだ再生ヘッド(MRヘッド)は、従来の誘導型ヘッドに比べ磁気感度が高いので、ハード・ディスク装置の再生ヘッドとして検討されている。 Such reproducing heads incorporating magnetoresistive element (MR head), since the magnetic sensitive than conventional inductive heads, has been studied as a reproducing head of a hard disk device. このようなMRヘッドの感度を高めることにより、ハード・ディスク装置の面記録密度を向上させることが可能になる。 By increasing the sensitivity of such an MR head, it is possible to improve the surface recording density of a hard disk device. 従って、感度に対応するMR比の高い磁気抵抗効果膜の開発が近年盛んに進められている。 Therefore, development of a high magnetoresistance effect film of MR ratio corresponding to the sensitivity is actively underway in recent years.

【0003】大きなMR比を示す素子として、巨大磁気抵抗素子(GMR素子)が知られており、このようなG As a device showing a large MR ratio, and giant magnetoresistive element (GMR element) is known, such G
MR素子の1つの構造として、反強磁性層/強磁性層/ One structure of the MR element, an antiferromagnetic layer / ferromagnetic layer /
非磁性導電層/強磁性層からなる積層構造を有するスピンバルブ膜が知られている。 Spin-valve film having a laminated structure comprising a nonmagnetic conductive layer / ferromagnetic layer has been known. このようなスピンバルブ膜において、NiO/CoOの積層膜を反強磁性層として用いた、NiO/CoO/Ni−Fe/Co/Cu/C In such a spin valve film, a stacked film of NiO / CoO was used as the antiferromagnetic layer, NiO / CoO / Ni-Fe / Co / Cu / C
o/Ni−Feの積層膜がMR比約11%を示すことが報告されている(日経エレクトロニクス1996年2月12日号(No. 655)第16頁)。 Stacked film of o / Ni-Fe has been reported to show about 11% MR ratio (Nikkei Electronics, 1996 February 12, No. (No. 655) pp. 16). このスピンバルブ膜は、従来反強磁性層として一般的に用いられていたF F The spin valve film, which has been generally used as a conventional antiferromagnetic layer
e−Mnに代えて、NiOとCoOの積層膜を用いているため、耐腐食性が向上し、また反強磁性層が酸化物層であるので、より多くの電流を強磁性層/非磁性導電層/強磁性層に流すことができ、感度を高めることができるとされている。 Instead of the e-Mn, due to the use of a laminated film of NiO and CoO, corrosion resistance is improved, and because the antiferromagnetic layer is an oxide layer, a ferromagnetic layer / nonmagnetic more current can flow to the conductive layer / ferromagnetic layer, it is to be able to increase sensitivity.

【0004】 [0004]

【発明が解決しようとする課題】しかしながら、磁気記録の分野においては、さらに高密度化が望まれており、 However [0005] In the field of magnetic recording is further densification is desired,
このような観点から、より高いMR比を示すMR素子の開発が望まれている。 From this point of view, development of MR elements exhibit higher MR ratio is desired.

【0005】本発明の目的は、より高いMR比を示す磁気抵抗効果膜を提供することにある。 An object of the present invention is to provide a magnetoresistance effect film exhibiting a higher MR ratio.

【0006】 [0006]

【課題を解決するための手段】本発明に従う第1の局面の磁気抵抗効果膜は、反強磁性層、強磁性層、非磁性導電層及び強磁性層をこの順序で備える磁気抵抗効果膜であり、反強磁性層がNiO層とNiCoO層の積層膜であり、NiCoO層が前記強磁性層側に設けられていることを特徴としている。 The first aspect magnetoresistive film according to the invention According to an aspect of the antiferromagnetic layer, a ferromagnetic layer, a nonmagnetic conductive layer and the ferromagnetic layer in a magnetoresistive film provided in this order There, the antiferromagnetic layer is a laminated film of NiO layer and NiCoO layer, it is characterized in that NiCoO layer is provided on the ferromagnetic layer side.

【0007】NiO層の膜厚としては、一般に20〜6 [0007] As the film thickness of the NiO layer is generally 20-6
0nm程度であり、NiCoO層の膜厚としては、0. Is about 0 nm, the film thickness of the NiCoO layer, 0.
5〜2nm程度である。 It is about 5~2nm. 本発明に従う第2の局面の磁気抵抗効果膜は、反強磁性層、強磁性層、非磁性導電層及び強磁性層をこの順序で備える磁気抵抗効果膜であり、 Magnetoresistive film of the second aspect according to the present invention, the antiferromagnetic layer, a ferromagnetic layer, a magnetoresistive film comprising a nonmagnetic conductive layer and the ferromagnetic layer in this order,
反強磁性層がNiCoO層であることを特徴としている。 It is characterized in that antiferromagnetic layer is NiCoO layer.

【0008】NiCoO層の膜厚としては、一般に20 [0008] The thickness of the NiCoO layer is generally 20
〜60nm程度である。 It is about ~60nm. 本発明において用いられる強磁性層は、キュリー温度が素子使用温度を超えた温度である強磁性体から形成された層であれば特に限定されるものではない。 Ferromagnetic layer used in the present invention is not limited in particular as long as the layer the Curie temperature is formed of a ferromagnetic material is a temperature above the device operating temperature. 具体的には、NiFe層とCo層の積層膜や、NiFe層、Co層、これらの合金等からなる強磁性層などが挙げられる。 Specifically, and laminated films of NiFe layer and Co layer, NiFe layer, a Co layer, and a ferromagnetic layer consisting of an alloy and the like. 強磁性層の膜厚は、一般に、1 Thickness of the ferromagnetic layer is generally 1
〜10nm程度である。 It is about ~10nm.

【0009】本発明において用いられる非磁性導電層としては、少なくとも室温において非磁性であり、導電性に優れたものであれば特に限定されるものではなく、例えばCu層、Ag層などが用いられる。 [0009] As the non-magnetic conductive layer used in the present invention is a non-magnetic at least room temperature, but the present invention is not particularly limited as long as it has excellent conductivity, for example, Cu layer, Ag layer, or the like is used . 非磁性導電層の厚みとしては、一般的には、1〜5nm程度である。 The thickness of the nonmagnetic conductive layer, it is generally from about 1 to 5 nm.

【0010】本発明の磁気抵抗効果膜は、一般に基板上に形成されるが、基板の材質は非磁性であれば特に限定されるものではなく、例えば、Si、TiC、Al 2 [0010] magnetoresistive film of the present invention generally are formed on a substrate, the material of the substrate is not particularly limited as long as it is nonmagnetic, for example, Si, TiC, Al 2 O
3 、ガラスなどの基板が用いられる。 3, a substrate such as glass is used.

【0011】 [0011]

【発明の実施の形態】 実施例1図1に示すような、本発明の第1の局面に従う磁気抵抗効果膜を作製した。 DETAILED DESCRIPTION OF THE INVENTION, as shown in Example 1 1, was produced magnetoresistive film according to the first aspect of the present invention. 図1を参照して、ガラス基板1の上に、NiO層2、及びNiCoO層3が積層されている。 Referring to FIG. 1, on a glass substrate 1, NiO layer 2, and NiCoO layer 3 is laminated. これらのNiO層2及びNiCoO層3により、反強磁性層が構成されている。 These NiO layer 2 and NiCoO layer 3, the antiferromagnetic layer is formed. このような反強磁性層の上に、NiFe層4、及びCo層5が積層されている。 On such antiferromagnetic layer, NiFe layer 4, and Co layer 5 are laminated. これらのNiFe層4及びCo層5により強磁性層が構成されている。 Ferromagnetic layer is composed of these NiFe layer 4 and Co layer 5. このような強磁性層の上に、非磁性導電層としてのCu層6が積層されている。 On such ferromagnetic layer, Cu layer 6 as the non-magnetic conductive layer are laminated. Cu層6の上に、 On top of the Cu layer 6,
強磁性層であるCo層7及びNiFe層8が積層されている。 Co layer 7 and the NiFe layer 8 which is a ferromagnetic layer are laminated.

【0012】図2及び図3は、図1に示す実施例1の磁気抵抗効果膜を製造する工程を示す断面図である。 [0012] Figures 2 and 3 are sectional views showing a process of manufacturing the magnetoresistive film of the first embodiment shown in FIG. 図2 Figure 2
(a)に示すように、ガラス基板1上にイオンビームスパッタリング法により、Ni 5050の組成のNiO層2 (A), the by ion beam sputtering on a glass substrate 1, Ni 50 O in the composition of 50 NiO layer 2
(膜厚50nm)を形成する。 To form a (thickness of 50nm). 次に、図2(b)に示すように、NiO層2の上に、イオンビームスパッタリング法により、(Ni 0.5 Co 0.55050の組成からなるNiCoO層3(膜厚1nm)を積層する。 Next, as shown in FIG. 2 (b), on the NiO layer 2 by ion beam sputtering, laminating (Ni 0.5 Co 0.5) 50 NiCoO layer 3 having the composition O 50 (thickness 1 nm) . 次に、図2(c)に示すように、NiCoO層3の上に、Ni 80 Next, as shown in FIG. 2 (c), on the NiCoO layer 3, Ni 80
Fe 20の組成からなるNiFe層4(膜厚6nm)をイオンビームスパッタリング法により積層する。 NiFe layer 4 having the composition of Fe 20 (film thickness 6 nm) is laminated by ion beam sputtering.

【0013】次に、図3(d)〜(f)に示すように、 [0013] Next, as shown in FIG. 3 (d) ~ (f),
Co層5(膜厚0.3nm)、Cu層6(膜厚2.5n Co layer 5 (film thickness 0.3 nm), Cu layer 6 (thickness 2.5n
m)、及びCo層7(膜厚0.3nm)をイオンビームスパッタリング法により順次積層する。 m), and Co layer 7 (film thickness 0.3 nm) are successively laminated by ion beam sputtering.

【0014】最後に、図1に示すように、Co層7の上に、Ni 80 Fe 20の組成のNiFe層8(膜厚6nm) [0014] Finally, as shown in FIG. 1, on the Co layer 7, NiFe layer 8 having the composition of Ni 80 Fe 20 (thickness 6 nm)
をイオンビームスパッタリング法により積層する。 The laminated by ion beam sputtering. 図4 Figure 4
は、以上のようにして得られた図1に示す本発明に従う磁気抵抗効果膜の外部磁界の変化に対するMR比の変化を示す図である。 Is a diagram showing changes in the MR ratio with respect to a change in the external magnetic field of the magnetoresistive film in accordance with the present invention shown in FIG. 1 obtained as described above. は、上記実施例1の磁気抵抗効果膜のMR比の変化を示している。 Shows the variation of the MR ratio of the magnetoresistive effect film of Example 1. は、比較の磁気抵抗効果膜のMR比の変化を示しており、反強磁性層としてN Shows the change of the MR ratio of the magnetoresistive film of the comparative, N as the antiferromagnetic layer
iO層(膜厚50nm)/CoO層(膜厚1nm)の積層膜を用い、その他の強磁性層、非磁性導電層及び強磁性層の構造は実施例1と同じである磁気抵抗効果膜(比較例1)のMR比の変化を示している。 A laminated film of iO layer (thickness 50 nm) / CoO layer (film thickness 1 nm), other ferromagnetic layer, the structure of the non-magnetic conductive layer and the ferromagnetic layer are the same as in Example 1 magnetoresistive film ( It shows the change in the MR ratio of Comparative example 1). または、同じく比較の磁気抵抗効果膜のMR比の変化を示しており、 Or, and also it shows the change in the MR ratio of the magnetoresistive film of the comparison,
反強磁性層としてNiO層(膜厚50nm)のみを用い、その他の強磁性層、非磁性導電層及び強磁性層の構造は実施例1と同じである磁気抵抗効果膜(比較例2) NiO layer as the antiferromagnetic layer used (thickness 50 nm) only, other ferromagnetic layer, the structure of the non-magnetic conductive layer and the ferromagnetic layer are the same as in Example 1 magnetoresistive film (Comparative Example 2)
のMR比の変化を示している。 It shows the change in the MR ratio.

【0015】図4から明らかなように、本発明に従う実施例1の磁気抵抗効果膜は最大のMR比として18%の値を示しており、従来よりも高いMR比を示すことがわかる。 As is apparent from FIG. 4, the magnetoresistance effect film of Example 1 according to the present invention shows a value of 18% as the maximum MR ratio, it can be seen that a higher MR ratio than conventional.

【0016】 実施例2本発明の第2の局面に従う磁気抵抗効果膜として、図5 [0016] As magnetoresistive film according to the second aspect of the second embodiment the present invention, FIG. 5
に示すような構造を有する磁気抵抗効果膜を作製した。 The magnetoresistance effect film having a structure as shown in to prepare.
図5に示すように、ガラス基板1上にNiCoO層3を積層し、この上に順次NiFe層4、Co層5、Cu層6、Co層7、及びNiFe層8をイオンビームスパッタリング法により形成し積層した。 As shown in FIG. 5 form, a NiCoO layer 3 on the glass substrate 1 are laminated sequentially NiFe layer 4 on the, Co layer 5, Cu layer 6, Co layer 7, and the NiFe layer 8 by ion beam sputtering It was laminated. なお、各層の組成及び膜厚は、図1に示す実施例1と同様である。 Each layer of the composition and thickness are the same as the first embodiment shown in FIG.

【0017】図6は、図5に示す実施例2の磁気抵抗効果膜の外部磁界の変化に対するMR比の変化を示す図である。 [0017] FIG. 6 is a diagram showing changes in the MR ratio with respect to a change in the external magnetic field of the magnetoresistive film of the second embodiment shown in FIG. は、実施例2のMR比の変化を示しており、 Shows the change in MR ratio in Example 2,
及びは、それぞれ図4に示す及びと同様である。 And are similar to Oyobi shown in FIG. 4, respectively.
図6に示すように、本発明に従う実施例2の磁気抵抗効果膜も、最大MR比として16%の値を示しており、従来よりも高いMR比を示すことがわかる。 As shown in FIG. 6, the magnetoresistive film of Example 2 according to the present invention also shows a value of 16% as a maximum MR ratio, it can be seen that a higher MR ratio than conventional.

【0018】本発明に従う磁気抵抗効果膜が、従来より高いMR比を示す詳細な理由については明らかでないが、従来の磁気抵抗効果膜で反強磁性層に用いられているCoOは、そのネール点が289K(約16℃)であり、これより高い室温で十分な反強磁性を示しにくいのに対し、本発明において反強磁性層に用いているNiC The magnetoresistive film according to the present invention, is not clear detailed reasons showing a higher MR ratio conventionally, the CoO used in the antiferromagnetic layer in the conventional magnetoresistive film, the Neel NiC There is 289K (about 16 ° C.), with respect to hard to exhibit sufficient antiferromagnetic at room temperature higher than this, which is used for the antiferromagnetic layer in the present invention
oOのネール点は378K(約105℃)であるため、 For Neel point oO is 378K (about 105 ° C.),
室温においても十分な反強磁性を示し、ネール点が50 Also showed a sufficient anti-ferromagnetic at room temperature, the Neel point 50
7K(約234℃)であるNiOと同様に十分なピン止め効果を発揮し、その結果として高いMR比を示すものと考えられる。 7K exhibit sufficient pinning effect as with NiO (about 234 ° C.), would indicate a high MR ratio as a result.

【0019】また、本発明の第1の局面では、NiOの上に直接NiFeなどの強磁性層を積層する場合に比べ、NiCoO層を介在させることにより、格子整合性がよくなり、積層膜の結晶性が改善され、高いMR比が得られるものと考えられる。 [0019] In the first aspect of the present invention, compared with the case of laminating the ferromagnetic layers such as direct NiFe on the NiO, by interposing the NiCoO layer, the better the lattice matching, the multilayer film crystallinity is improved is believed that higher MR ratio is obtained.

【0020】本発明の磁気抵抗効果膜は、上記実施例1 The magnetoresistive film of the present invention, the first embodiment
及び2の組成及び膜厚等に限定されるものではない。 And it is not limited to two in composition and thickness and the like. また本発明における反強磁性層は、強磁性層に対しピン止め効果を発揮し得る反強磁性を示す組成及び膜厚等であれば、上記実施例1及び2の組成及び膜厚等に限定されるものではない。 The antiferromagnetic layer in the present invention, if the composition and thickness such exhibits antiferromagnetism capable of exhibiting the pinning effect of the ferromagnetic layers, limited to the composition of Example 1 and 2 and the film thickness, etc. not intended to be.

【0021】 [0021]

【発明の効果】本発明に従う磁気抵抗効果膜は、従来より高いMR比を示すものであり、例えばMRヘッドに用いることにより、ヘッドの再生出力を高めることができ、従来よりも高い記録密度を実現することができる。 Magnetoresistive film according to the present invention are those showing higher than conventional MR ratio, for example, by using the MR head, it is possible to increase the reproduction output of the head, a higher recording density than conventional it can be realized.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】本発明の第1の局面に従う実施例の磁気抵抗効果膜を示す断面図。 Sectional view showing a magnetoresistive film according to an embodiment the first aspect of the present invention; FIG.

【図2】図1に示す実施例を製造する工程を示す断面図。 2 is a cross-sectional view illustrating a process of manufacturing the embodiment shown in FIG.

【図3】図1に示す実施例を製造する工程を示す断面図。 3 is a cross-sectional view showing a step of manufacturing the embodiment shown in FIG.

【図4】図1に示す実施例の磁気抵抗効果膜の外部磁界に対するMR比の変化を示す図。 4 is a diagram showing a change in MR ratio with respect to the external magnetic field of the magnetoresistive film of the embodiment shown in FIG.

【図5】本発明の第2の局面に従う実施例の磁気抵抗効果膜を示す断面図。 Sectional view showing a magnetoresistive film embodiment in accordance with the second aspect of the present invention; FIG.

【図6】図5に示す実施例の磁気抵抗効果膜の外部磁界に対するMR比の変化を示す図。 6 shows a variation of the MR ratio with respect to the external magnetic field of the magnetoresistive film of the embodiment shown in FIG.

【符号の説明】 DESCRIPTION OF SYMBOLS

1…ガラス基板 2…NiO層 3…NiCoO層 4,8…NiFe層 5,7…Co層 6…Cu層 1 ... glass substrate 2 ... NiO layer 3 ... NiCoO layer 4, 8 ... NiFe layer 5, 7 ... Co layer 6 ... Cu layer

Claims (4)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】 反強磁性層、強磁性層、非磁性導電層及び強磁性層をこの順序で備える磁気抵抗効果膜において、 前記反強磁性層がNiO層とNiCoO層の積層膜であり、NiCoO層が前記強磁性層側に設けられていることを特徴とする磁気抵抗効果膜。 1. A antiferromagnetic layer, a ferromagnetic layer, the magnetoresistive film comprising a nonmagnetic conductive layer and the ferromagnetic layer in this order, wherein the antiferromagnetic layer is a laminated film of NiO layer and NiCoO layer, magnetoresistive film, wherein a NiCoO layer is provided on the ferromagnetic layer side.
  2. 【請求項2】 反強磁性層、強磁性層、非磁性導電層及び強磁性層をこの順序で備える磁気抵抗効果膜において、 前記反強磁性層がNiCoO層であることを特徴とする磁気抵抗効果膜。 Wherein the antiferromagnetic layer, a ferromagnetic layer, the magnetoresistive film comprising a nonmagnetic conductive layer and the ferromagnetic layer in this order, magnetoresistance said antiferromagnetic layer is characterized in that it is a NiCoO layer effect film.
  3. 【請求項3】 前記強磁性層がNiFe層とCo層の積層膜である請求項1または2に記載の磁気抵抗効果膜。 Wherein the magnetoresistance effect film according to claim 1 or 2 ferromagnetic layers is a laminated film of a NiFe layer and the Co layer.
  4. 【請求項4】 前記非磁性導電層がCu層である請求項1〜3のいずれか1項に記載の磁気抵抗効果膜。 Wherein said magnetoresistive film according to claim 1, nonmagnetic conductive layer is a Cu layer.
JP18758996A 1996-07-17 1996-07-17 The magneto-resistance effect film Pending JPH1032119A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18758996A JPH1032119A (en) 1996-07-17 1996-07-17 The magneto-resistance effect film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18758996A JPH1032119A (en) 1996-07-17 1996-07-17 The magneto-resistance effect film

Publications (1)

Publication Number Publication Date
JPH1032119A true true JPH1032119A (en) 1998-02-03

Family

ID=16208761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18758996A Pending JPH1032119A (en) 1996-07-17 1996-07-17 The magneto-resistance effect film

Country Status (1)

Country Link
JP (1) JPH1032119A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6178073B1 (en) 1997-12-01 2001-01-23 Nec Corporation Magneto-resistance effect element with a fixing layer formed from a superlattice of at least two different materials and production method of the same
US6295187B1 (en) 1999-06-29 2001-09-25 International Business Machines Corporation Spin valve sensor with stable antiparallel pinned layer structure exchange coupled to a nickel oxide pinning layer
US6836392B2 (en) * 2001-04-24 2004-12-28 Hitachi Global Storage Technologies Netherlands, B.V. Stability-enhancing underlayer for exchange-coupled magnetic structures, magnetoresistive sensors, and magnetic disk drive systems

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6178073B1 (en) 1997-12-01 2001-01-23 Nec Corporation Magneto-resistance effect element with a fixing layer formed from a superlattice of at least two different materials and production method of the same
US6295187B1 (en) 1999-06-29 2001-09-25 International Business Machines Corporation Spin valve sensor with stable antiparallel pinned layer structure exchange coupled to a nickel oxide pinning layer
US6751844B2 (en) 1999-06-29 2004-06-22 International Business Machines Corporation Method of making a spin valve sensor with stable antiparallel pinned layer structure exchange coupled to a nickel oxide pinning layer
US6836392B2 (en) * 2001-04-24 2004-12-28 Hitachi Global Storage Technologies Netherlands, B.V. Stability-enhancing underlayer for exchange-coupled magnetic structures, magnetoresistive sensors, and magnetic disk drive systems
US6992866B2 (en) 2001-04-24 2006-01-31 Hitachi Global Storage Technologies Netherlands B.V. Exchange-coupled magnetoresistive sensor with a coercive ferrite layer and an oxide underlayer having a spinal lattice structure
US7116532B2 (en) 2001-04-24 2006-10-03 Hitachi Global Storage Technologies Netherlands B.V. Stability-enhancing underlayer for exchange-coupled magnetic structures, magnetoresistive sensors, and magnetic disk drive systems

Similar Documents

Publication Publication Date Title
US5896252A (en) Multilayer spin valve magneto-resistive effect magnetic head with free magnetic layer including two sublayers and magnetic disk drive including same
US5986858A (en) Ferromagnetic tunnel-junction magnetic sensor utilizing a barrier layer having a metal layer carrying an oxide film
US6301088B1 (en) Magnetoresistance effect device and method of forming the same as well as magnetoresistance effect sensor and magnetic recording system
US5408377A (en) Magnetoresistive sensor with improved ferromagnetic sensing layer and magnetic recording system using the sensor
US6023395A (en) Magnetic tunnel junction magnetoresistive sensor with in-stack biasing
US6424507B1 (en) Spin valve magnetoresistive sensor for high temperature environment using iridium manganese
US6466418B1 (en) Bottom spin valves with continuous spacer exchange (or hard) bias
US6090498A (en) Magnetoresistance effect element and magnetoresistance device
US5766743A (en) Magnetoresistance effect film, a method of manufacturing the same, and magnetoresistance effect device
US6522507B1 (en) Single top spin valve heads for ultra-high recording density
US6331773B1 (en) Pinned synthetic anti-ferromagnet with oxidation protection layer
US6469878B1 (en) Data head and method using a single antiferromagnetic material to pin multiple magnetic layers with differing orientation
US6282069B1 (en) Magnetoresistive element having a first antiferromagnetic layer contacting a pinned magnetic layer and a second antiferromagnetic layer contacting a free magnetic layer
US7026063B2 (en) Spin-valve type magnetoresistance sensor and thin-film magnetic head
US6088195A (en) Magnetoresistance effect element
US20020036876A1 (en) Magnetoresistive element, method for manufacturing the same, and magnetic device using the same
US6258470B1 (en) Exchange coupling film, magnetoresistance effect device, magnetoresistance effective head and method for producing exchange coupling film
US6735058B2 (en) Current-perpendicular-to-plane read head with an amorphous magnetic bottom shield layer and an amorphous nonmagnetic bottom lead layer
US5688380A (en) Method of producing giant magnetoresistive material film and magnetic head
US6256222B1 (en) Magnetoresistance effect device, and magnetoresistaance effect type head, memory device, and amplifying device using the same
US5910344A (en) Method of manufacturing a magnetoresistive sensor
US6307708B1 (en) Exchange coupling film having a plurality of local magnetic regions, magnetic sensor having the exchange coupling film, and magnetic head having the same
US6770382B1 (en) GMR configuration with enhanced spin filtering
US6724585B2 (en) Magnetoresistive element and device utilizing magnetoresistance effect
US6101072A (en) Yoke type or flux guide type magnetoresistive head in which the yoke or flux guide is provided to the magnetic resistive element via an interposed soft magnetic layer