JPH0888424A - Multi-layer film magnetoresistance effect element and its manufacture - Google Patents

Multi-layer film magnetoresistance effect element and its manufacture

Info

Publication number
JPH0888424A
JPH0888424A JP6251320A JP25132094A JPH0888424A JP H0888424 A JPH0888424 A JP H0888424A JP 6251320 A JP6251320 A JP 6251320A JP 25132094 A JP25132094 A JP 25132094A JP H0888424 A JPH0888424 A JP H0888424A
Authority
JP
Japan
Prior art keywords
magnetic field
magnetic layer
film formation
magnetic
effect element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6251320A
Other languages
Japanese (ja)
Inventor
Hiroyasu Fujimori
啓安 藤森
Kesayoshi Saitou
今朝美 齊藤
Yasuhiko Yanagida
康彦 柳田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teikoku Tsushin Kogyo Co Ltd
Original Assignee
Teikoku Tsushin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teikoku Tsushin Kogyo Co Ltd filed Critical Teikoku Tsushin Kogyo Co Ltd
Priority to JP6251320A priority Critical patent/JPH0888424A/en
Publication of JPH0888424A publication Critical patent/JPH0888424A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Hall/Mr Elements (AREA)

Abstract

PURPOSE: To provide a multi-layer film magnetoresistance effect element wherein magnetic field sensitivity is sufficient and hysteresis is small. CONSTITUTION: Magnetic layers 45, 47, 49,... and non-magnetic layers 43, 43,... are alternately laminated by deposition and sputtering method, etc. When each of magnetic layers 45, 47, 49,... is film-formed, magnetization facilitating axis of magnetic layer is guided in the application direction of external magnetic field by applying external magnetic field. At this time, in the order of lamination of magnetic layers 45, 47, 49,..., magnetization facilitating axes are alternately guided in generally orthogonal direction.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、磁気抵抗効果を利用し
た、例えば磁気センサや磁気ヘッドなどに用いられる、
多層膜からなる磁気抵抗効果素子に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is used in, for example, a magnetic sensor or a magnetic head utilizing the magnetoresistive effect.
The present invention relates to a magnetoresistive element including a multilayer film.

【0002】[0002]

【従来技術】従来、強磁性磁気抵抗効果を利用して磁場
の変化を電気的に検出する磁性材料、例えばパーマロイ
合金薄膜等が磁気センサや磁気ヘッドとして用いられて
きた。
2. Description of the Related Art Heretofore, magnetic materials, such as permalloy alloy thin films, which electrically detect changes in magnetic field utilizing the ferromagnetic magnetoresistance effect have been used as magnetic sensors and magnetic heads.

【0003】そしてより高出力、高感度に磁場を検出す
る材料が求められてきている現在、1988年にフラン
スのBaibichらによってFe/Cr人工格子で巨大磁気
抵抗効果が発見された(Rhys.Rev.Lett.61(1988)247
2.)のに端を発し、金属多層膜人工格子等での材料開発
が盛んに行われている。
Nowadays, a material for detecting a magnetic field with higher output and higher sensitivity is required, and in 1988, a giant magnetoresistive effect was discovered in a Fe / Cr artificial lattice by Baibich et al. In France (Rhys. Rev. .Lett. 61 (1988) 247
Starting from 2.), material development for metal multi-layer artificial lattices, etc. is being actively conducted.

【0004】[0004]

【発明が解決しようとする課題】しかしながらこれまで
に得られている金属多層膜人工格子等の磁気抵抗効果素
子では、磁場感度が十分ではなく、しかもヒステリシス
があり、磁気抵抗効果素子の材料として問題があった。
However, the magnetoresistive effect element such as the metal multi-layered film artificial lattice obtained so far has insufficient magnetic field sensitivity and has hysteresis, which causes a problem as a material of the magnetoresistive effect element. was there.

【0005】本発明は上述の点に鑑みてなされたもので
ありその目的は、磁場感度が十分で、ヒステリシスが小
さい多層膜磁気抵抗効果素子を提供することにある。
The present invention has been made in view of the above points, and an object thereof is to provide a multilayer magnetoresistive element having sufficient magnetic field sensitivity and small hysteresis.

【0006】[0006]

【課題を解決するための手段】上記問題点を解決するた
め本願発明者は、巨大磁気抵抗効果を有する金属多層膜
人工格子等の多層膜磁気抵抗効果素子において、各磁性
層の磁化容易軸方向を制御することに着目した。
In order to solve the above problems, the inventor of the present application has found that in a multilayer magnetoresistive effect element such as a metal multilayer artificial lattice having a giant magnetoresistive effect, the direction of the easy axis of magnetization of each magnetic layer. We focused on controlling.

【0007】即ちまず磁性層と非磁性層を交互に積層す
る多層膜磁気抵抗効果素子の磁性層を成膜する際に、該
磁性層の膜面内方向において一方向のみに外部磁場を印
加することで、該磁性層の膜に印加磁場方向に沿った磁
化容易軸を誘導することとした。
That is, first, when forming a magnetic layer of a multilayer magnetoresistive effect element in which magnetic layers and nonmagnetic layers are alternately laminated, an external magnetic field is applied only in one direction in the in-plane direction of the magnetic layer. Thus, the easy axis of magnetization along the direction of the applied magnetic field is induced in the film of the magnetic layer.

【0008】その際、多層膜を形成する下地の基板に近
い方の磁性層から順に、第1,第2,・・・と定義した
場合の、奇数番目の磁性層を成膜する際と、偶数番目の
磁性層を成膜する際とで、外部磁場の印加方向を約90
°変えて成膜した。これによっていわゆる直交二軸の磁
化容易軸を交互に誘導した多層膜が得られる。
At that time, when the odd-numbered magnetic layers are formed, which are defined as the first magnetic layer, the second magnetic layer, and so on, in order from the magnetic layer closer to the underlying substrate on which the multilayer film is formed, When the even-numbered magnetic layer is formed, the external magnetic field is applied in about 90
Deposition was changed. As a result, a multi-layer film in which so-called perpendicular easy axes of magnetization are alternately induced is obtained.

【0009】この多層膜から、磁場感度が高くしかもヒ
ステリシスが非常に小さいという特性が得られた。この
特性は、磁性層厚が大きい多層膜において特に顕著に現
われた。
From this multilayer film, the characteristics of high magnetic field sensitivity and very small hysteresis were obtained. This characteristic is particularly remarkable in a multilayer film having a large magnetic layer thickness.

【0010】このときの磁性層は、磁性元素の種類には
特に限定されないが、Ni、Fe、Coのいずれか一種
類から成る単体膜、若しくは二種類以上の元素から成る
合金膜が好ましい。
The magnetic layer at this time is not particularly limited to the kind of magnetic element, but a single film made of any one of Ni, Fe and Co or an alloy film made of two or more kinds of elements is preferable.

【0011】一方非磁性層は、非磁性元素の種類には特
に限定されないが、Cu、Ag、Auのいずれか一種類
から成る単体膜、若しくは二種類以上の元素から成る合
金膜が好ましい。
On the other hand, the non-magnetic layer is not particularly limited to the kind of non-magnetic element, but is preferably a single film made of any one of Cu, Ag and Au or an alloy film made of two or more kinds of elements.

【0012】磁性層と非磁性層を1組とした場合の積層
回数は、磁気抵抗効果を考えた場合、できるだけ大きい
方が有利であるが、界面状態や膜構造を均一に保ったま
ま積層回数を増やすことは非常に困難であるので、現実
には、積層回数を2回から70回ぐらいの範囲にするの
が好ましい。
The number of laminations when the magnetic layer and the non-magnetic layer are set as one is advantageous as large as possible in view of the magnetoresistive effect, but the number of laminations can be kept while maintaining the interface state and the film structure uniform. Since it is very difficult to increase the number of layers, it is actually preferable to set the number of laminations to a range of 2 to 70 times.

【0013】また本発明の多層膜を成膜する方法は、特
に制限されないが、イオンビームスパッタ法、RFマグ
ネトロンスパッタ法、電子ビーム蒸着法、分子線エピタ
キシー法等が好ましい。
The method for forming the multilayer film of the present invention is not particularly limited, but an ion beam sputtering method, an RF magnetron sputtering method, an electron beam evaporation method, a molecular beam epitaxy method and the like are preferable.

【0014】多層膜を形成する下地の基板は、結晶質と
非晶質のいずれでも構わない。
The underlying substrate on which the multilayer film is formed may be either crystalline or amorphous.

【0015】多層膜の成膜中に印加する外部磁場の印加
方法は、特に制限されないが、出力磁場に関する熱的安
定性の良い永久磁石を用いるのが好ましく、また印加磁
場の大きさに関しては、採用する磁性層の磁気特性等に
より適宜変更する必要があるが、10(Oe)以上が好
ましい。
The method of applying the external magnetic field applied during the formation of the multilayer film is not particularly limited, but it is preferable to use a permanent magnet having good thermal stability with respect to the output magnetic field, and regarding the magnitude of the applied magnetic field, It is necessary to change it appropriately depending on the magnetic characteristics of the magnetic layer employed, but 10 (Oe) or more is preferable.

【0016】[0016]

【作用】上記の如く構成することにより、数十Oe程度
の小さな外部磁場を印加するだけで、数パーセントから
数十パーセントの大きな抵抗変化率を示す、磁場感度が
十分な多層膜磁気抵抗素子が得られた。しかもその磁気
抵抗曲線上においてマイナーループとメジャーループで
の磁場感度にほとんど差が現われなかった。従って、外
部磁場を高感度で再現性良く検出するMRセンサ等を提
供することができる。
With the above-described structure, a multilayer magnetoresistive element having a sufficient magnetic field sensitivity and exhibiting a large rate of change in resistance of several percent to several tens of percent can be obtained by simply applying an external magnetic field as small as several tens Oe. Was obtained. Moreover, there was almost no difference in magnetic field sensitivity between the minor loop and the major loop on the magnetoresistance curve. Therefore, it is possible to provide an MR sensor or the like that detects an external magnetic field with high sensitivity and good reproducibility.

【0017】[0017]

【実施例】以下、本発明の実施例を図面に基づいて詳細
に説明する。
Embodiments of the present invention will now be described in detail with reference to the drawings.

【0018】〔実施例1〕多層膜磁気抵抗効果素子の成
膜には、イオンビームスパッタ装置を用いた。
Example 1 An ion beam sputtering apparatus was used to form a multilayer magnetoresistive effect element.

【0019】ここで図1は、このイオンビームスパッタ
装置のチャンバー内の状態を示す概略構成図である。同
図に示すように、イオンビームスパッタ装置のチャンバ
ー内には、イオンソース10と、ターゲット20と、基
板ホルダー30とが設置されている。
Here, FIG. 1 is a schematic configuration diagram showing a state in the chamber of the ion beam sputtering apparatus. As shown in the figure, an ion source 10, a target 20, and a substrate holder 30 are installed in the chamber of the ion beam sputtering apparatus.

【0020】ここでターゲット20としては磁性層用の
NiFeCo合金が用いられている。
Here, as the target 20, a NiFeCo alloy for the magnetic layer is used.

【0021】また基板ホルダー30は、ケース31内に
ステッピングモータ33を収納し、該ステッピングモー
タ33の回転軸にステージ35を固定し、さらにケース
31の一端面のステージ35の両側にそれぞれSmo
の永久磁石37,39を固定して構成されている。従っ
て磁界は常に永久磁石37からステージ35を通過して
永久磁石39に向かう方向に印加される。そしてステー
ジ35上には、多層膜を形成する下地となるガラス基板
41が固定されている。
The substrate holder 30 houses a stepping motor 33 in a case 31, a stage 35 is fixed to a rotation shaft of the stepping motor 33, and S m C is provided on one end surface of the case 31 on both sides of the stage 35. The o- system permanent magnets 37 and 39 are fixed. Therefore, the magnetic field is always applied in the direction from the permanent magnet 37 to the permanent magnet 39 through the stage 35. Then, on the stage 35, a glass substrate 41 serving as a base for forming a multilayer film is fixed.

【0022】またこの基板ホルダー30は、その全体が
矢印A方向に回動して、他の図示しない非磁性層成膜用
のターゲット(具体的にはCuを用いる)とイオンソー
スの方向を向く機構を具備している。
The entire substrate holder 30 rotates in the direction of arrow A, and faces the other target (specifically Cu is used) for forming a nonmagnetic layer (not shown) and the ion source. It has a mechanism.

【0023】そしてイオンソース10からターゲット2
0に向けてイオンを発射してターゲット20から粒子を
叩き出し、これをガラス基板41上に成膜し、これによ
って第1番目の磁性層を形成するが、この成膜の際、永
久磁石37,39によって磁場が印加されているので、
該磁性層には印加磁場方向に向かって磁化容易軸が誘導
される。
Then, from the ion source 10 to the target 2
Ions are emitted toward 0 to knock out particles from the target 20 to form a film on the glass substrate 41, thereby forming the first magnetic layer. During this film formation, the permanent magnet 37 is used. , 39, the magnetic field is applied,
An easy axis of magnetization is induced in the magnetic layer in the direction of the applied magnetic field.

【0024】ここで磁化容易軸とは、作製された成膜に
磁場を印加した際、その方向に容易に磁化される軸のこ
とを言う。
Here, the easy axis of magnetization means an axis which is easily magnetized in the direction when a magnetic field is applied to the formed film.

【0025】次にこの基板ホルダー30全体を矢印A方
向に回動して、図示しないイオンソースとターゲット
(Cu)によって、前記第1番目の磁性層の上にCu層
からなる非磁性層を形成する。
Next, the entire substrate holder 30 is rotated in the direction of arrow A to form a non-magnetic layer consisting of a Cu layer on the first magnetic layer by an ion source and a target (Cu) not shown. To do.

【0026】次に基板ホルダー30を元の位置(図1に
示す位置)に戻し、且つステッピングモータ33を駆動
してステージ35を90°回動する。そしてこの状態
で、再びスパッタによって前記非磁性層の上に第2番目
の磁性層を形成する。このとき、ステージ35は90°
回動しているので、第2番目の磁性層には第1番目の磁
性層と直交する方向に磁化容易軸が誘導される。
Next, the substrate holder 30 is returned to the original position (the position shown in FIG. 1), and the stepping motor 33 is driven to rotate the stage 35 by 90 °. Then, in this state, the second magnetic layer is formed again on the non-magnetic layer by sputtering. At this time, the stage 35 is 90 °
Since it rotates, the easy axis of magnetization is induced in the second magnetic layer in a direction orthogonal to the first magnetic layer.

【0027】次に同様に基板ホルダー30を矢印A方向
に回動して第2番目の磁性層の上に非磁性層を形成した
後、再び基板ホルダー30を元の位置に戻し、且つステ
ッピングモータ33を駆動してステージ35を元の位置
に回動して戻し、第3番目の磁性層を形成する。
Similarly, the substrate holder 30 is similarly rotated in the direction of arrow A to form a non-magnetic layer on the second magnetic layer, and then the substrate holder 30 is returned to its original position and the stepping motor is used. 33 is driven to rotate the stage 35 back to the original position to form the third magnetic layer.

【0028】この操作を繰り返すことによって、図2に
示すように、ガラス基板41上に非磁性層43を挟ん
で、積層順に磁化容易軸を交互にほぼ直交する方向に誘
導せしめられた磁性層45,47,49が形成されてい
く。
By repeating this operation, as shown in FIG. 2, the nonmagnetic layer 43 is sandwiched on the glass substrate 41, and the magnetic easy axis is alternately guided in the stacking order in the directions substantially orthogonal to each other. , 47, 49 are formed.

【0029】 オン電流が60mAであり、磁性層の合金組成は、Ni
63Fe12Co25(at%)であり、またスパッタレート
は、NiFeCo合金が1.1Å/sec 、及びCuが
1.8Å/sec である。
[0029] The on-current is 60 mA, and the alloy composition of the magnetic layer is Ni.
63 Fe 12 Co 25 (at%), and the sputter rate is 1.1 Å / sec for NiFeCo alloy and 1.8 Å / sec for Cu.

【0030】また上記条件により成膜した多層膜は、実
際には、ガラス基板上にバッファー層としてNi63Fe
12Co25を50Å積層した後、Ni63Fe12Co25(t
1Å)、Cu(t2Å)の順に交互に20周期分積層し、
最後にNi63Fe12Co25(t1Å)を積層したもので
ある。以下この多層膜を次のように表記する。
The multilayer film formed under the above conditions is actually a Ni 63 Fe buffer layer on the glass substrate.
After laminating 50 Co of 12 Co 25 , Ni 63 Fe 12 Co 25 (t
1 Å) and Cu (t 2 Å) are alternately laminated in this order for 20 cycles,
Finally, Ni 63 Fe 12 Co 25 (t 1 Å) is laminated. Hereinafter, this multilayer film is described as follows.

【0031】Ni63Fe12Co25(t1Å)〔Cu(t2
Å)/Ni63Fe12Co25(t1Å)〕20//Ni63
12Co25(50Å) 但し、8≦t1≦30、8≦t2≦75 である。
Ni 63 Fe 12 Co 25 (t 1 Å) [Cu (t 2
Å) / Ni 63 Fe 12 Co 25 (t 1 Å)] 20 // Ni 63 F
e 12 Co 25 (50 Å) However, 8 ≦ t 1 ≦ 30 and 8 ≦ t 2 ≦ 75.

【0032】この実施例においては、上記のように成膜
の際の永久磁石37,39による印加磁場(約200
(Oe))の方向を制御して多層膜磁気抵抗効果素子を
作製したが、本願発明者は以下この多層膜磁気抵抗効果
素子を「直交二軸異方性成膜」と呼び、一方磁場を全く
印加せずに同様に成膜した多層膜磁気抵抗効果素子を、
以下「通常成膜」と呼んで区別し、両者の諸特性を比較
した。
In this embodiment, the magnetic field applied by the permanent magnets 37 and 39 (about 200
A multilayer magnetoresistive effect element was produced by controlling the (Oe)) direction, and the present inventor hereinafter refers to this multilayer magnetoresistive effect element as "orthogonal biaxial anisotropic film formation", while applying a magnetic field at all. Without the multilayer film magnetoresistive effect element
Hereinafter, they are called "normal film formation" for distinction, and various characteristics of both are compared.

【0033】まず直交二軸異方性成膜と通常成膜のX
線小角回折パターンについて測定したが、両者の間に大
きな違いはなく、積層周期に対応した1次ピークが見ら
れ、両者共同様の周期構造を有していることが確認され
た。
First, X in the orthogonal biaxial anisotropic film formation and the normal film formation
The measurement was performed on the small-angle linear diffraction pattern, but there was no big difference between the two, and a primary peak corresponding to the stacking period was observed, and both were confirmed to have the same periodic structure.

【0034】またX線中角回折パターンについても、
図3に示すとおり、両者の間にあまり違いはなく、人工
格子の(111)に対応する強い回折線と、弱くてブロ
ードな(200)回折線が見えた。
Regarding the X-ray medium angle diffraction pattern,
As shown in FIG. 3, there was not much difference between the two, and a strong diffraction line corresponding to (111) of the artificial lattice and a weak and broad (200) diffraction line were seen.

【0035】次に図4は、磁性層の厚みを10Åで固
定して、非磁性層の厚みを8<t2<75(Å)の範囲
で変えて成膜した直交二軸異方性成膜と通常成膜各々
の、磁場による飽和時の電気抵抗率ρ、磁気抵抗による
変化分Δρ、及び磁気抵抗変化率MR ratio を測定し
て示す図である。
Next, FIG. 4 shows an orthogonal biaxial anisotropic film formation in which the thickness of the magnetic layer is fixed at 10Å and the thickness of the nonmagnetic layer is changed within the range of 8 <t 2 <75 (Å). It is a figure which shows and measures the electrical resistivity ρ at the time of saturation by a magnetic field, the variation Δρ due to the magnetic resistance, and the magnetoresistance change rate MR ratio of each normal film formation.

【0036】同図に示すように、電気抵抗率ρに関して
は、全般的に直交二軸異方性成膜の方が通常成膜よりも
多少大きくなった。
As shown in the figure, the electrical resistivity ρ was generally slightly higher in the orthogonal biaxial anisotropic film formation than in the normal film formation.

【0037】磁気抵抗による変化分Δρと、磁気抵抗変
化率MR ratioに関しては、巨大磁気抵抗効果を有する
金属多層膜磁気抵抗効果素子の特長である非磁性層厚に
依存した振動現象が、直交二軸異方性成膜と通常成膜の
いずれについても同様に確認された。
Regarding the variation Δρ due to the magnetoresistance and the magnetoresistance change rate MR ratio, the vibration phenomenon depending on the non-magnetic layer thickness, which is a feature of the metal multilayer magnetoresistive effect element having a giant magnetoresistive effect, is orthogonal. The same was confirmed for both the axial anisotropic film formation and the normal film formation.

【0038】図5はこの振動現象の第1ピークと第2
ピークに特に注目し、直交二軸異方性成膜と通常成膜の
特性の違いを磁場感度(ΔMR/ΔH)について比較し
た結果を示す図である。
FIG. 5 shows the first peak and the second peak of this vibration phenomenon.
FIG. 13 is a diagram showing the results of comparing the difference in characteristics between orthogonal biaxial anisotropic film formation and normal film formation with respect to magnetic field sensitivity (ΔMR / ΔH), paying particular attention to the peak.

【0039】同図に示すように第1ピークと第2ピーク
共に、直交二軸異方性成膜の方が、通常成膜を上回るこ
とが確認された。
As shown in the figure, it was confirmed that the orthogonal biaxial anisotropic film formation exceeded the normal film formation for both the first peak and the second peak.

【0040】続いて、図6,図7は、非磁性層である
Cuの厚さを第2ピークの値で固定し、磁性層厚Xを大
きくしていった場合の磁気抵抗曲線の形状を比較して示
す図であり、図6が通常成膜、図7が直交二軸異方性成
膜の曲線を示している。
Next, FIGS. 6 and 7 show the shape of the magnetoresistive curve when the thickness of Cu which is the non-magnetic layer is fixed at the value of the second peak and the magnetic layer thickness X is increased. It is a figure shown in comparison, FIG. 6 has shown the curve of normal film formation, and FIG. 7 has shown the curve of orthogonal biaxial anisotropic film formation.

【0041】図中に、各磁性層厚Xに対する、0〜30
0(Oe)の磁場変化に対する磁気抵抗変化率をMR r
atio で示している。
In the figure, 0 to 30 for each magnetic layer thickness X
The rate of change in magnetoresistance with respect to a change in the magnetic field of 0 (Oe) is MR r
It is indicated by atio.

【0042】一般的に金属多層膜磁気抵抗効果素子にお
いて非磁性層厚を一定にして磁性層を大きくした場合、
層間結合エネルギーが一定のままでゼーマンエネルギー
の効果が大きくなり、その結果として飽和磁場が小さく
なる。この時、同時に磁性層を大きくした影響がシャン
ト効果として現われ、磁気抵抗変化率が小さくなってし
まう。
Generally, in a metal multilayer magnetoresistive element, when the nonmagnetic layer thickness is made constant and the magnetic layer is enlarged,
The effect of Zeeman energy increases while the interlayer coupling energy remains constant, resulting in a smaller saturation field. At this time, the effect of enlarging the magnetic layer simultaneously appears as a shunt effect, and the rate of change in magnetoresistance becomes small.

【0043】しかし、飽和磁場の低下と磁気抵抗変化率
の低下のバランスをとれば、磁場感度の向上が期待でき
る。図6,図7共に磁性層厚を大きくしたことによる傾
向がみられ、各磁性層厚での最大磁場感度について両者
の比較をした表を以下に示す。 磁性層厚 通常成膜 直交二軸異方性成膜 10Å 0.09 0.11 16Å 0.13 0.15 23Å 0.22 0.25 (単位:%/Oe)
However, if the reduction of the saturation magnetic field and the reduction of the magnetoresistance change rate are balanced, the improvement of magnetic field sensitivity can be expected. 6 and 7 show the tendency due to the increase in the magnetic layer thickness, and the following table shows a comparison of the maximum magnetic field sensitivity at each magnetic layer thickness. Magnetic layer thickness Normal film formation Orthogonal biaxial anisotropic film formation 10Å 0.09 0.11 16Å 0.13 0.15 23Å 0.22 0.25 (unit:% / Oe)

【0044】この表から、磁性層厚の増加に伴い、磁場
感度が向上していることがわかる。
From this table, it can be seen that the magnetic field sensitivity is improved as the thickness of the magnetic layer is increased.

【0045】特に本願発明にかかる直交二軸異方性成膜
において磁場感度が0.11(%/Oe)から0.25
(%/Oe)まで向上した。しかも図6の通常成膜でみ
られる、磁性層厚が大きくなるに従って保磁力が大きく
なってしまう傾向(磁場が増加する際と減少する際の曲
線のずれに現われる)が図7の直交二軸異方性成膜では
みられなかった。
Particularly, in the orthogonal biaxial anisotropic film formation according to the present invention, the magnetic field sensitivity is 0.11 (% / Oe) to 0.25.
(% / Oe). Moreover, the tendency that the coercive force increases as the thickness of the magnetic layer increases (which appears in the difference between the curves when the magnetic field increases and when the magnetic field decreases), which is seen in the normal film formation of FIG. It was not seen in anisotropic film formation.

【0046】保磁力が大きい膜では、その磁気抵抗曲線
にヒステリシスが生じ、磁気抵抗曲線のメジャーループ
上で測定される磁場感度に対し、ヒステリシスに起因す
るマイナーループ上で測定される磁場感度は一般的に小
さくなってしまう。
In a film having a large coercive force, hysteresis occurs in the magnetic resistance curve, and the magnetic field sensitivity measured on the minor loop due to hysteresis is generally compared with the magnetic field sensitivity measured on the major loop of the magnetic resistance curve. Becomes smaller.

【0047】以上のように本願発明にかかる直交二軸異
方性成膜においては、ヒステリシスが小さくなり、この
ヒステリシスによる磁場感度の低下が生じない。
As described above, in the orthogonal biaxial anisotropic film formation according to the present invention, the hysteresis becomes small, and the hysteresis does not reduce the magnetic field sensitivity.

【0048】また磁気抵抗曲線にマイナーループが大
きく現われるようであれば、外部磁場を異なる二つの範
囲で増減させたときには、それぞれに対応したマイナー
ループが二つ現われて一つの外部磁場に対する磁気抵抗
値が二つ以上になってしまう。
If a minor loop appears largely in the magnetic resistance curve, when the external magnetic field is increased or decreased in two different ranges, two minor loops corresponding to the respective external magnetic fields appear and the magnetic resistance value for one external magnetic field is increased. Will be more than one.

【0049】図8に、Ni63Fe12Co25(5Å)〔C
u(24Å)/Ni63Fe12Co25(23Å)〕20//
Ni63Fe12Co25(50Å)の試料を用いた磁気抵抗
曲線上におけるマイナーループの比較を示す。試料に対
して外部磁場を0(Oe)から−20(Oe)まで下げ
てから、−10(Oe)と−20(Oe)の範囲を4回
増減させて、その後−300(Oe)まで下げる方法で
測定を行った。
FIG. 8 shows that Ni 63 Fe 12 Co 25 (5Å) [C
u (24Å) / Ni 63 Fe 12 Co 25 (23Å)] 20 //
Shows a comparison of the minor loops on the magnetoresistance curve using samples of Ni 63 Fe 12 Co 25 (50Å ). The external magnetic field for the sample is lowered from 0 (Oe) to -20 (Oe), then the range of -10 (Oe) and -20 (Oe) is increased or decreased 4 times, and then lowered to -300 (Oe). The measurement was performed by the method.

【0050】図8より、通常成膜の方はマイナーループ
が顕著に現われているが、本発明にかかる直交二軸異方
性成膜の方はマイナーループがほとんどメジャーループ
上にあり、外部磁場と磁気抵抗値がほぼ一対一に対応す
ることが確認された。
As shown in FIG. 8, the minor loop is more prominent in the normal film formation, but in the orthogonal biaxial anisotropic film formation according to the present invention, the minor loop is almost on the major loop, and the external magnetic field and the magnetic field are large. It was confirmed that the resistance values corresponded almost one-to-one.

【0051】〔実施例2〕実施例2においては、成膜中
の外部磁場の印加方法を変えて実施例1と同様な成膜条
件を用い、Ni63Fe12Co18(16Å)〔Cu(22
Å)/Ni63Fe12Co2520の試料を作製してその特
性の違いを比較した。
[Example 2] In Example 2, the method of applying an external magnetic field during film formation was changed and the same film forming conditions as in Example 1 were used, and Ni 63 Fe 12 Co 18 (16Å) [Cu ( 22
Å) / Ni 63 Fe 12 Co 25 ] 20 sample was prepared and the difference in the characteristics was compared.

【0052】即ち、成膜中の外部磁場の印加方法には三
種類あり、一つは実施例1のように直交二軸異方性成膜
の方法であり、二つ目は磁性層を積層する毎に膜面内に
て同一回転方向に45°ずつ外部磁場の印加方向を変え
ていく方法(以下この方法により作製される多層膜磁気
抵抗効果素子を「45度複合異方性成膜」と呼ぶ)であ
り、三つ目は磁性層を積層する毎に外部磁場の印加方向
を180°ずつ変えていく方法(以下この方法により作
製される多層膜磁気抵抗効果素子を「一軸異方性成膜」
と呼ぶ)である。
That is, there are three types of methods of applying an external magnetic field during film formation, one is the method of orthogonal biaxial anisotropic film formation as in Example 1, and the second is the method of laminating magnetic layers. By changing the direction of application of the external magnetic field by 45 ° in the same rotation direction in the film plane (hereinafter, the multilayer magnetoresistive effect element manufactured by this method is referred to as "45 degree composite anisotropic film formation"). The third method is to change the application direction of the external magnetic field by 180 ° each time the magnetic layers are laminated (hereinafter, the multi-layered magnetoresistive element manufactured by this method is referred to as "uniaxial anisotropic film formation").
Is called).

【0053】図9,図10,図11の順で、45度複合
異方性成膜,一軸異方性成膜,直交二軸異方性成膜それ
ぞれの磁気抵抗曲線の結果を示している。これらの図に
おいて、実線は印加電流と外部磁場が平行の場合、破線
は印加電流と外部磁場が垂直の場合を示している。
The results of the magnetic resistance curves of the 45-degree composite anisotropic film formation, the uniaxial anisotropic film formation, and the orthogonal biaxial anisotropic film formation are shown in the order of FIGS. 9, 10 and 11. In these figures, the solid line shows the case where the applied current and the external magnetic field are parallel, and the broken line shows the case where the applied current and the external magnetic field are vertical.

【0054】これらの図より、0(Oe)から300
(Oe)の範囲における磁気抵抗変化率MR ratioにつ
いては三者間にはほとんど差が見られなかったが、0
(Oe)から40(Oe)の範囲における最大磁場感度
を調べると、以下のようになった。 45度複合異方性成膜・・・・・0.14(%/Oe) 一軸異方性成膜 ・・・・・0.20(%/Oe) 直交二軸異方性成膜 ・・・・・0.19(%/Oe)
From these figures, 0 (Oe) to 300
Regarding the MR ratio MR ratio in the range of (Oe), there was almost no difference between the three, but 0
When the maximum magnetic field sensitivity in the range of (Oe) to 40 (Oe) was examined, the results were as follows. 45-degree composite anisotropic film formation 0.14 (% / Oe) uniaxial anisotropic film formation 0.20 (% / Oe) orthogonal biaxial anisotropic film formation 0.19 (% / Oe)

【0055】つまり、一軸異方性成膜と直交二軸異方性
成膜が比較的高い磁場感度を示した。しかし、一軸異方
性成膜の方は、図10からわかるように、ヒステリシス
が大きく、印加電流と外部磁場の印加方向の角度によっ
て磁気抵抗曲線の形が変化してしまう欠点が確認され
た。一方本発明にかかる直交二軸異方性成膜の場合は、
ヒステリシスが小さく、印加電流と外部磁場の印加方向
の角度に依存する磁気抵抗曲線の変化がみられなかっ
た。つまり本願発明のように磁化容易軸を交互に直交さ
せることが、最も良い結果をもたらした。
That is, the uniaxial anisotropic film formation and the orthogonal biaxial anisotropic film formation exhibited relatively high magnetic field sensitivity. However, as can be seen from FIG. 10, the uniaxial anisotropic film formation has a large hysteresis, and it has been confirmed that the shape of the magnetoresistance curve changes depending on the angle between the applied current and the application direction of the external magnetic field. On the other hand, in the case of the orthogonal biaxial anisotropic film formation according to the present invention,
Hysteresis was small, and there was no change in the magnetoresistance curve depending on the angle between the applied current and the applied direction of the external magnetic field. That is, the best result was obtained by making the easy magnetization axes orthogonal to each other as in the present invention.

【0056】[0056]

【発明の効果】以上詳細に説明したように本発明によれ
ば、小さな外部磁場を印加するだけで大きな抵抗変化率
を示す磁場感度が十分な多層膜磁気抵抗効果素子が得ら
れ、しかもその磁気抵抗曲線上においてマイナーループ
とメジャーループでの磁場感度にほとんど差が現われな
いという優れた効果を奏する。
As described above in detail, according to the present invention, a multilayer magnetoresistive effect element having a sufficient magnetic field sensitivity and exhibiting a large resistance change rate can be obtained by applying a small external magnetic field, and the magnetic field The excellent effect that there is almost no difference in the magnetic field sensitivity between the minor loop and the major loop on the resistance curve.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明にかかる多層膜磁気抵抗効果素子を製作
するイオンビームスパッタ装置のチャンバー内の状態を
示す概略構成図である。
FIG. 1 is a schematic configuration diagram showing a state inside a chamber of an ion beam sputtering apparatus for manufacturing a multilayer magnetoresistive effect element according to the present invention.

【図2】本発明にかかる多層膜磁気抵抗効果素子の概略
構造を示す図である。
FIG. 2 is a diagram showing a schematic structure of a multilayer magnetoresistive effect element according to the present invention.

【図3】直交二軸異方性成膜と通常成膜各々のX線中角
回折パターンを示す図である。
FIG. 3 is a diagram showing X-ray mid-angle diffraction patterns of orthogonal biaxial anisotropic film formation and normal film formation, respectively.

【図4】直交二軸異方性成膜と通常成膜各々の、磁場に
よる飽和時の電気抵抗率ρ、磁気抵抗による変化分Δ
ρ、及び磁気抵抗変化率MR ratio を示す図である。
FIG. 4 shows electrical resistivity ρ at the time of saturation due to a magnetic field and change Δ due to magnetic resistance in each of orthogonal biaxial anisotropic film formation and normal film formation.
It is a figure which shows (rho) and magnetoresistance change rate MR ratio.

【図5】直交二軸異方性成膜と通常成膜各々の磁場感度
を示す図である。
FIG. 5 is a diagram showing magnetic field sensitivities of orthogonal biaxial anisotropic film formation and normal film formation.

【図6】通常成膜の磁気抵抗曲線を示す図である。FIG. 6 is a diagram showing a magnetoresistive curve for normal film formation.

【図7】直交二軸異方性成膜の磁気抵抗曲線を示す図で
ある。
FIG. 7 is a diagram showing a magnetoresistive curve of an orthogonal biaxial anisotropic film formation.

【図8】通常成膜と直交二軸異方性成膜の磁気抵抗曲線
上におけるマイナーループの比較を示す図である。
FIG. 8 is a diagram showing a comparison of a minor loop on a magnetoresistive curve between normal film formation and orthogonal biaxial anisotropic film formation.

【図9】45度複合異方性成膜の磁気抵抗曲線を示す図
である。
FIG. 9 is a diagram showing a magnetoresistance curve of a 45-degree composite anisotropic film formation.

【図10】一軸異方性成膜の磁気抵抗曲線を示す図であ
る。
FIG. 10 is a diagram showing a magnetoresistance curve of uniaxial anisotropic film formation.

【図11】直交二軸異方性成膜の磁気抵抗曲線を示す図
である。
FIG. 11 is a diagram showing a magnetoresistive curve of an orthogonal biaxial anisotropic film formation.

【符号の説明】[Explanation of symbols]

43 非磁性層 45,47,49 磁性層 43 non-magnetic layer 45, 47, 49 magnetic layer

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 磁性層と非磁性層を交互に積層してなる
多層膜磁気抵抗効果素子において、 前記積層した各磁性層は、積層順に磁化容易軸を交互に
ほぼ直交する方向に誘導せしめられていることを特徴と
する多層膜磁気抵抗効果素子。
1. A multilayer magnetoresistive element comprising a magnetic layer and a non-magnetic layer alternately laminated, wherein each laminated magnetic layer is guided in a direction in which the easy axes of magnetization are alternately crossed in a direction substantially orthogonal to each other. A multi-layered magnetoresistive effect element.
【請求項2】 磁性層を成膜する工程と、非磁性層を成
膜する工程とを交互に行って、両層を積層せしめる多層
膜磁気抵抗効果素子の製造方法において、 前記磁性層を成膜する工程の際に、外部磁場を印加して
該外部磁場の印加方向に該磁性層の磁化容易軸を誘導せ
しめ、且つ奇数番目の磁性層を成膜する際の外部磁場の
印加方向と偶数番目の磁性層を成膜する際の外部磁場の
印加方向をほぼ直交せしめたことを特徴とする多層膜磁
気抵抗効果素子の製造方法。
2. A method for manufacturing a multilayer magnetoresistive effect element in which both steps of forming a magnetic layer and a nonmagnetic layer are alternately performed to stack both layers, wherein the magnetic layer is formed. In the film forming step, an external magnetic field is applied to induce the easy axis of magnetization of the magnetic layer in the application direction of the external magnetic field, and the application direction of the external magnetic field when forming the odd-numbered magnetic layer and the even direction A method of manufacturing a multilayer magnetoresistive effect element, characterized in that the directions of application of an external magnetic field at the time of forming the th magnetic layer are made substantially orthogonal to each other.
JP6251320A 1994-09-20 1994-09-20 Multi-layer film magnetoresistance effect element and its manufacture Pending JPH0888424A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6251320A JPH0888424A (en) 1994-09-20 1994-09-20 Multi-layer film magnetoresistance effect element and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6251320A JPH0888424A (en) 1994-09-20 1994-09-20 Multi-layer film magnetoresistance effect element and its manufacture

Publications (1)

Publication Number Publication Date
JPH0888424A true JPH0888424A (en) 1996-04-02

Family

ID=17221068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6251320A Pending JPH0888424A (en) 1994-09-20 1994-09-20 Multi-layer film magnetoresistance effect element and its manufacture

Country Status (1)

Country Link
JP (1) JPH0888424A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6124711A (en) * 1996-01-19 2000-09-26 Fujitsu Limited Magnetic sensor using tunnel resistance to detect an external magnetic field
JP2009138277A (en) * 2009-01-27 2009-06-25 Canon Anelva Corp Magnetron sputtering apparatus
JP2009158975A (en) * 2009-04-08 2009-07-16 Canon Anelva Corp Method of manufacturing magnetic medium and mram
JP2021086901A (en) * 2019-11-27 2021-06-03 公益財団法人電磁材料研究所 Ferromagnetic thin film laminate

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05175572A (en) * 1991-12-20 1993-07-13 Hitachi Ltd Magnetoresistance effect element, and magnetic head and recording/reproducing device using same
JPH07252650A (en) * 1994-03-10 1995-10-03 Sony Corp Production of magnetorresistance film
JPH07307501A (en) * 1992-10-19 1995-11-21 Philips Electron Nv Magnetic field sensor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05175572A (en) * 1991-12-20 1993-07-13 Hitachi Ltd Magnetoresistance effect element, and magnetic head and recording/reproducing device using same
JPH07307501A (en) * 1992-10-19 1995-11-21 Philips Electron Nv Magnetic field sensor
JPH07252650A (en) * 1994-03-10 1995-10-03 Sony Corp Production of magnetorresistance film

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6124711A (en) * 1996-01-19 2000-09-26 Fujitsu Limited Magnetic sensor using tunnel resistance to detect an external magnetic field
JP2009138277A (en) * 2009-01-27 2009-06-25 Canon Anelva Corp Magnetron sputtering apparatus
JP2009158975A (en) * 2009-04-08 2009-07-16 Canon Anelva Corp Method of manufacturing magnetic medium and mram
JP2021086901A (en) * 2019-11-27 2021-06-03 公益財団法人電磁材料研究所 Ferromagnetic thin film laminate

Similar Documents

Publication Publication Date Title
EP0504473B2 (en) Magnetic multilayer and magnetoresistance effect element
EP0485129B2 (en) Method of making a GMR device
US6282069B1 (en) Magnetoresistive element having a first antiferromagnetic layer contacting a pinned magnetic layer and a second antiferromagnetic layer contacting a free magnetic layer
JP2901501B2 (en) Magnetic multilayer film, method of manufacturing the same, and magnetoresistive element
GB1600098A (en) Magnetic thin film structure
JPH08279117A (en) Gigantic magnetoresistance effect material film and its production and magnetic head using the same
JPH1041132A (en) Magnetic resistance effect film
JPH10284768A (en) Magnetoresistive effect element
KR100266518B1 (en) Megnetoresistive Effect Film and Manufacturing Method Therefor
EP0624868B1 (en) Magnetoresistance effect elements and method of fabricating the same
JPH0888424A (en) Multi-layer film magnetoresistance effect element and its manufacture
JPH04280483A (en) Magnetic resistant effect material and manufacture thereof
JP3242279B2 (en) Giant magnetoresistive material film and method of adjusting magnetization of magnetoresistive material film
JP2957233B2 (en) Magnetic multilayer film
JPH0629589A (en) Magnetoresistance effect element
JPH04137572A (en) Magnetoresistance effect element and rotation detector
JP2910409B2 (en) Magnetoresistance effect element
JP2677018B2 (en) Magnetic multilayer film
JPH11329882A (en) Manufacture of exchange coupling film and magnetoresistive effect device
JPH08316033A (en) Magnetic laminate
JP3100714B2 (en) Magnetic laminate and magnetoresistive element
JPH10275722A (en) Switching coupling film, magnetoresistive effect element and magnetic head using the same
JPH0818117A (en) Magnetoresistive element
JPH0855313A (en) Magneto-resistance effect element and magneto-resistance effect type head
JPH06251941A (en) Magnetic laminated body and magnetoresistance effect element