JP2910409B2 - Magnetoresistance effect element - Google Patents

Magnetoresistance effect element

Info

Publication number
JP2910409B2
JP2910409B2 JP4134977A JP13497792A JP2910409B2 JP 2910409 B2 JP2910409 B2 JP 2910409B2 JP 4134977 A JP4134977 A JP 4134977A JP 13497792 A JP13497792 A JP 13497792A JP 2910409 B2 JP2910409 B2 JP 2910409B2
Authority
JP
Japan
Prior art keywords
magnetic
thin film
substrate
ferromagnetic
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4134977A
Other languages
Japanese (ja)
Other versions
JPH0669563A (en
Inventor
嘉啓 本村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP4134977A priority Critical patent/JP2910409B2/en
Publication of JPH0669563A publication Critical patent/JPH0669563A/en
Application granted granted Critical
Publication of JP2910409B2 publication Critical patent/JP2910409B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、巨大磁気抵抗効果材料
を用いた磁気抵抗効果素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetoresistance effect element using a giant magnetoresistance effect material.

【0002】[0002]

【従来の技術】強磁性磁気抵抗効果を応用した磁電素子
は、小さい磁界強度に対しても感度が良く、また磁束応
答型であるので低速磁界変化でも精度の高い測定が可能
で、また薄膜技術を用いて小さいサイズに作製出来る等
の利点を持ち、磁界センサや、磁気ヘッド等に広く利用
されている。従来このような磁気抵抗効果素子にはNi
Fe合金やNiCo合金の強磁性薄膜が用いられてお
り、いわゆる異方性磁気抵抗効果を利用している。これ
らの磁気抵抗効果素子においては、通常強磁性薄膜の磁
化容易軸は検出磁界方向と垂直方向に設定されている。
従来の異方性磁気抵抗効果を利用した磁性薄膜の磁気抵
抗変化率は2〜5%であり、さらに磁気抵抗変化率の大
きい磁性薄膜が求められてきた。
2. Description of the Related Art A magnetoelectric element utilizing the ferromagnetic magnetoresistance effect has good sensitivity to a small magnetic field strength, and is of a magnetic flux response type, so that highly accurate measurement can be performed even at a low-speed magnetic field change. It is advantageous in that it can be manufactured in a small size by using a magnetic field sensor, and is widely used for a magnetic field sensor, a magnetic head, and the like. Conventionally, such a magnetoresistive effect element has Ni
A ferromagnetic thin film of an Fe alloy or a NiCo alloy is used, and a so-called anisotropic magnetoresistance effect is used. In these magnetoresistive elements, the axis of easy magnetization of the ferromagnetic thin film is usually set in the direction perpendicular to the direction of the detection magnetic field.
The rate of change in magnetoresistance of a conventional magnetic thin film utilizing the anisotropic magnetoresistance effect is 2 to 5%, and a magnetic thin film having a larger rate of change in magnetoresistance has been demanded.

【0003】最近、NiFe薄膜とCo薄膜を交互に積
層し、各積層磁性薄膜層間に非磁性薄膜層を介在させた
磁性多層膜において、室温で10%程度の大きな磁気抵
抗変化率が得られることが発見された(山本他、第14
回日本応用磁気学会学術講演会)。
Recently, a magnetic multilayer film in which a NiFe thin film and a Co thin film are alternately stacked, and a non-magnetic thin film layer is interposed between the stacked magnetic thin films, can obtain a large magnetoresistance change rate of about 10% at room temperature. (Yamamoto et al., 14th
Annual Meeting of the Japan Society of Applied Magnetics).

【0004】[0004]

【発明が解決しようとする課題】しかし、これらのいわ
ゆる巨大磁気抵抗効果材料を用いた磁気抵抗効果素子に
おいては、強磁性薄膜の磁化容易軸を検出磁界方向と平
行に設定しなければ大きな出力が得られないといった問
題点があった。
However, in such a magnetoresistive element using a so-called giant magnetoresistive material, a large output is required unless the easy axis of magnetization of the ferromagnetic thin film is set parallel to the direction of the detection magnetic field. There was a problem that it could not be obtained.

【0005】[0005]

【課題を解決するための手段】本発明の磁気抵抗効果素
子は、基板上に保磁力の異なる2種類の強磁性薄膜層を
交互に積層し、各積層磁性薄膜層間に非磁性薄膜層を介
在させた構造からなる磁性多層膜を用いた磁気抵抗効果
素子において、前記基板上に検出磁界方向と平行な溝を
設けることを特徴とする。
The magnetoresistive element of the present invention comprises two types of ferromagnetic thin film layers having different coercive forces alternately stacked on a substrate, and a nonmagnetic thin film layer interposed between the stacked magnetic thin film layers. In a magnetoresistive effect element using a magnetic multilayer film having the above-mentioned structure, a groove is provided on the substrate in parallel with a direction of a detection magnetic field.

【0006】以下、図面を参照して本発明を説明する。
図1は本発明の磁気抵抗効果素子の一例を示す構造図で
ある。基板1上に強磁性膜層2と強磁性薄膜層2よりも
保磁力の小さい強磁性薄膜層3を交互に積層し、各積層
磁性薄膜層間に非磁性薄膜層4を介在させる。さらに、
これらの多層膜に電極を取り付けて磁気抵抗効果素子と
する。
Hereinafter, the present invention will be described with reference to the drawings.
FIG. 1 is a structural diagram showing an example of the magnetoresistance effect element of the present invention. A ferromagnetic film layer 2 and a ferromagnetic thin film layer 3 having a smaller coercive force than the ferromagnetic thin film layer 2 are alternately stacked on a substrate 1, and a non-magnetic thin film layer 4 is interposed between the stacked magnetic thin film layers. further,
Electrodes are attached to these multilayer films to form a magnetoresistive element.

【0007】図1では基板1上に磁性層2から積層を開
始し最後が磁性層3で終わる構成になっているが、本発
明の効果は磁性層2と3の積層順序には依らない。ま
た、磁性層の結晶構造、磁気特性を改善するために、基
体上にAu、Cu、Ag、PtCr等の非磁性材料から
なる下地層を設けても良い。
In FIG. 1, the lamination starts from the magnetic layer 2 on the substrate 1 and ends at the magnetic layer 3, but the effect of the present invention does not depend on the lamination order of the magnetic layers 2 and 3. In order to improve the crystal structure and magnetic properties of the magnetic layer, a base layer made of a nonmagnetic material such as Au, Cu, Ag, or PtCr may be provided on the base.

【0008】本発明に係わる基板1の材料にはガラス、
Si、Al2 3 、TiC、SiC、Al2 3 とTi
Cとの焼結体、フェライト等を用いることが出来る。磁
性薄膜層2の材料には種々の強磁性材料を用いることが
出来るが、Co、CoPt、CoCr、CoCrPt、
NiCoまたはこれらを主成分とする合金等の硬磁性材
料が適している。また、磁性薄膜層3には種々の強磁性
材料を用いることが出来るが、軟磁気特性に優れたNi
Fe、FeAlSi、窒化鉄、CoZr等のCo基アモ
ルファス合金、あるいはこれらに添加物を加えたものが
特に適している。これら磁性層の厚さは200A(オン
グストローム)以下、好ましくは100A以下とする。
厚さが前記範囲を越えても本発明の効果に向上はみられ
ず、生産性を低下させる。なお、磁性薄膜の厚さの下限
は特にないが、厚さを4A以上とすれば膜厚を均一に保
つことが容易となり、膜質も良好となる。
The material of the substrate 1 according to the present invention is glass,
Si, Al 2 O 3 , TiC, SiC, Al 2 O 3 and Ti
A sintered body with C, ferrite, or the like can be used. Various ferromagnetic materials can be used for the material of the magnetic thin film layer 2, but Co, CoPt, CoCr, CoCrPt,
A hard magnetic material such as NiCo or an alloy containing these as a main component is suitable. Various ferromagnetic materials can be used for the magnetic thin film layer 3;
A Co-based amorphous alloy such as Fe, FeAlSi, iron nitride, and CoZr, or a material obtained by adding an additive thereto is particularly suitable. The thickness of these magnetic layers is 200 A (angstrom) or less, preferably 100 A or less.
If the thickness exceeds the above range, the effect of the present invention is not improved, and the productivity is reduced. Although there is no particular lower limit on the thickness of the magnetic thin film, if the thickness is 4 A or more, it is easy to keep the film thickness uniform, and the film quality becomes good.

【0009】また、本発明に係わる非磁性金属薄膜層4
は磁性薄膜層2と3の磁気相互作用を弱める役割をはた
す導電材料で、具体的にはAu、Cu、Ag、Pt、あ
るいはこれらに添加物を加えたものを用いることが出来
る。上記の2種類の強磁性材料と非磁性金属材料とを3
基の蒸発源を持つ真空蒸着装置、もしくは3基のターゲ
ットを持つスパッタリング装置で蒸発させ、3基の蒸発
源のシャッター交互に開閉したり、あるいは基板を3基
を蒸発源上を交互に通過させることによって、基板上に
3種類の材料を交互に積層させることが出来る。
Further, the non-magnetic metal thin film layer 4 according to the present invention
Is a conductive material that plays a role in weakening the magnetic interaction between the magnetic thin film layers 2 and 3, and specifically, Au, Cu, Ag, Pt, or a material to which an additive is added can be used. The above two types of ferromagnetic material and non-magnetic metal material
Evaporate with a vacuum evaporation apparatus having three evaporation sources or a sputtering apparatus having three targets, and alternately open and close the shutters of three evaporation sources, or alternately pass three substrates over the evaporation sources. This makes it possible to alternately laminate three types of materials on the substrate.

【0010】本発明の磁気抵抗効果素子では、上記基板
表面に機械研磨、化学研磨、またはフォトリソグラフィ
ー技術を用いた微細加工等によって、MR素子の検出磁
界方向と平行な溝を設けることによって、極めて大きな
磁気抵抗変化が得られる。
In the magnetoresistive element of the present invention, a groove parallel to the direction of the magnetic field detected by the MR element is provided on the surface of the substrate by mechanical polishing, chemical polishing, or fine processing using photolithography. A large change in magnetoresistance is obtained.

【0011】[0011]

【作用】本発明の磁気抵抗効果素子の作用を以下に説明
する。従来の異方性磁気抵抗効果材料を用いた磁気抵抗
効果素子においては、強磁性層の磁化がセンス電流方向
と平行の時に抵抗が最大となり、検出磁界によって磁化
方向が90°回転した時に抵抗が最小となる。即ち、磁
化方向が90°回転した時に最大の抵抗変化が得られ
る。このため、通常強磁性層の磁化容易軸は検出磁界方
向と垂直に設定される。
The operation of the magnetoresistance effect element of the present invention will be described below. In a conventional magnetoresistive element using an anisotropic magnetoresistive material, the resistance becomes maximum when the magnetization of the ferromagnetic layer is parallel to the sense current direction, and the resistance is increased when the magnetization direction is rotated by 90 ° by the detection magnetic field. Will be minimal. That is, the maximum resistance change is obtained when the magnetization direction is rotated by 90 °. Therefore, the axis of easy magnetization of the ferromagnetic layer is normally set perpendicular to the direction of the detected magnetic field.

【0012】一方、巨大磁気抵抗効果材料を用いた磁気
抵抗効果素子においては、2種類の強磁性層の磁化方向
が反平行の時に抵抗が最大となり、検出磁界によって2
種類の強磁性層の磁化方向が平行となった時に抵抗が最
小となる。即ち、2種類の強磁性層の内、軟磁気特性を
有する方の磁化方向が180°回転した時に最大の抵抗
変化が得られる。このため、素子として最大の抵抗変化
を得るためには強磁性層の磁化容易軸は検出磁界方向と
平行に設定されなければならない。本発明の磁気抵抗効
果素子においては、基板表面に検出磁界方向と平行な溝
を設けることにより、強磁性層の磁化容易軸を検出磁界
方向と平行にすることが可能である。
On the other hand, in a magnetoresistive element using a giant magnetoresistive material, the resistance becomes maximum when the magnetization directions of the two types of ferromagnetic layers are antiparallel.
The resistance becomes minimum when the magnetization directions of the ferromagnetic layers become parallel. That is, the maximum resistance change is obtained when the magnetization direction of the one having the soft magnetic property of the two types of ferromagnetic layers is rotated by 180 °. Therefore, in order to obtain the maximum resistance change as an element, the easy axis of magnetization of the ferromagnetic layer must be set in parallel with the direction of the detection magnetic field. In the magnetoresistive element of the present invention, the easy axis of magnetization of the ferromagnetic layer can be made parallel to the direction of the detection magnetic field by providing a groove parallel to the direction of the detection magnetic field on the substrate surface.

【0013】[0013]

【実施例】以下、本発明の実施例について説明する。ア
ルミナ砥粒を用い、一定方向に研磨し、深さ100A程
度の溝を設けたガラスを基板1とした。電子ビーム真空
蒸着法により、基板上に厚さ50AのCr下地層を成膜
し、この上に厚さ10AのCo層2と厚さ10AのNi
Fe層3を厚さ40AのCu層4を介して交互に連続的
に5回積層とした。基板温度は200℃とし、成膜速度
は0.1nm/秒とし、各蒸発源のシャッターの開閉時
間を変えて各層の膜厚を制御した。蒸着中の真空度は5
×10- 8 Torrであった。また、実施例と同じ方法
で、溝加工を施していないガラス基板上に磁性多層膜作
製し、比較例とした。
Embodiments of the present invention will be described below. The substrate 1 was polished in a fixed direction using alumina abrasive grains and provided with a groove having a depth of about 100A. A Cr underlayer having a thickness of 50 A is formed on a substrate by an electron beam vacuum evaporation method, and a Co layer 2 having a thickness of 10 A and a Ni layer having a thickness of 10 A are formed thereon.
The Fe layers 3 were alternately and continuously laminated five times via the Cu layer 4 having a thickness of 40A. The substrate temperature was 200 ° C., the film formation rate was 0.1 nm / sec, and the film thickness of each layer was controlled by changing the opening and closing time of the shutter of each evaporation source. The degree of vacuum during evaporation is 5
It was 8 Torr - × 10. Further, in the same manner as in the example, a magnetic multilayer film was formed on a glass substrate on which no groove processing was performed, and the result was used as a comparative example.

【0014】これらの多層膜の磁気抵抗効果を測定する
ため、多層膜上に、厚さ0.2μmのAuを蒸着法によ
り成膜し、フォトリソグラフィー技術とイオンエッチン
グ技術を用いて幅5μmの細線状にパータン化した。次
に、検出部分の長さ5μmのみAu層を化学エッチング
により除去して残りのAu膜を電極5とした。この時、
実施例については基板上の溝方向が細線パターンの幅方
向と平行となるように加工した。これらの試料に10m
Aの定電流を印加し、2端子法で抵抗ー磁界特性を測定
した。その結果を表1に示す。
In order to measure the magnetoresistance effect of these multilayer films, a Au film having a thickness of 0.2 μm is formed on the multilayer film by a vapor deposition method, and a fine wire having a width of 5 μm is formed using a photolithography technique and an ion etching technique. It was patterned. Next, only the 5 μm length of the detection portion was removed by chemical etching of the Au layer, and the remaining Au film was used as the electrode 5. At this time,
In the examples, processing was performed so that the groove direction on the substrate was parallel to the width direction of the fine line pattern. 10m to these samples
A constant current of A was applied, and the resistance-magnetic field characteristics were measured by the two-terminal method. Table 1 shows the results.

【0015】[0015]

【表1】 [Table 1]

【0016】表1の測定結果から明かなように、本発明
の磁気抵抗効果素子は基板上に溝を設けない場合に比較
して抵抗変化が大きく、磁気抵抗効果素子とした時に大
きな出力が得られる。
As is evident from the measurement results in Table 1, the magnetoresistance effect element of the present invention has a large resistance change compared to the case where no groove is provided on the substrate, and a large output is obtained when the magnetoresistance effect element is used. Can be

【0017】[0017]

【発明の効果】以上説明したように本発明の磁気抵抗効
果素子は基板上に保磁力の異なる2種類の強磁性薄膜層
を交互に積層し、各積層磁性薄膜層間に非磁性薄膜層を
介在させた構造からなる磁性多層膜を用いた磁気抵抗効
果素子において、前記基板上に検出磁界方向と平行な溝
を設けることを特徴とし、極めて大きな磁気抵抗変化が
得られ、高出力の磁気抵抗効果素子に好適である。
As described above, the magnetoresistive element of the present invention has two kinds of ferromagnetic thin films having different coercive forces alternately stacked on a substrate, and a nonmagnetic thin film layer is interposed between the stacked magnetic thin films. In a magnetoresistive effect element using a magnetic multilayer film having a structure having a structure in which a groove parallel to a direction of a detection magnetic field is provided on the substrate, an extremely large magnetoresistance change is obtained, and a high-output magnetoresistance effect is obtained. It is suitable for an element.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の磁気抵抗効果素子の一例を示す構造図
である。
FIG. 1 is a structural diagram showing one example of a magnetoresistance effect element of the present invention.

【符号の説明】[Explanation of symbols]

1 基板 2 磁性薄膜層 3 磁性薄膜層 4 非磁性薄膜層 5 電極 DESCRIPTION OF SYMBOLS 1 Substrate 2 Magnetic thin film layer 3 Magnetic thin film layer 4 Nonmagnetic thin film layer 5 Electrode

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】基板に保磁力の異なる2種類の強磁性薄
膜層を交互に積層し、各積層磁性薄膜層間に非磁性薄膜
層を介在させた構造からなる磁性多層膜を用いた磁気抵
抗効果素子において、前記基板上に検出磁界方向と平行
な溝を設けることを特徴とする磁気抵抗効果素子。
1. A two kinds of ferromagnetic thin layers having different coercive forces are stacked alternately on the substrate, a magnetic resistance of a magnetic multilayer film comprising a structure obtained by interposing a non-magnetic thin film layer to each laminated magnetic thin film layers In the effect element, a groove parallel to a detection magnetic field direction is provided on the substrate.
JP4134977A 1992-05-27 1992-05-27 Magnetoresistance effect element Expired - Fee Related JP2910409B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4134977A JP2910409B2 (en) 1992-05-27 1992-05-27 Magnetoresistance effect element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4134977A JP2910409B2 (en) 1992-05-27 1992-05-27 Magnetoresistance effect element

Publications (2)

Publication Number Publication Date
JPH0669563A JPH0669563A (en) 1994-03-11
JP2910409B2 true JP2910409B2 (en) 1999-06-23

Family

ID=15141036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4134977A Expired - Fee Related JP2910409B2 (en) 1992-05-27 1992-05-27 Magnetoresistance effect element

Country Status (1)

Country Link
JP (1) JP2910409B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08130337A (en) * 1994-09-09 1996-05-21 Sanyo Electric Co Ltd Magnetoresistive element and manufacture thereof

Also Published As

Publication number Publication date
JPH0669563A (en) 1994-03-11

Similar Documents

Publication Publication Date Title
US6295186B1 (en) Spin-valve magnetoresistive Sensor including a first antiferromagnetic layer for increasing a coercive force and a second antiferromagnetic layer for imposing a longitudinal bias
US5206590A (en) Magnetoresistive sensor based on the spin valve effect
JP3890893B2 (en) Spin tunnel magnetoresistive film and element, magnetoresistive sensor using the same, magnetic device, and manufacturing method thereof
US6387550B1 (en) Giant magnetoresistive material film, method of producing the same and magnetic head using the same
JP3180027B2 (en) Spin valve magnetoresistive sensor and magnetic recording system using this sensor
US5764445A (en) Exchange biased magnetoresistive transducer
JP3198265B2 (en) Magnetoresistance effect element
JP2002151757A (en) Thin film magnetic element and its manufacturing method
US6740398B2 (en) Magnetic films including iridium, manganese and nitrogen
JP3247535B2 (en) Magnetoresistance effect element
JPH0729733A (en) Magnetoresistance effect film and manufacture thereof
JP2910409B2 (en) Magnetoresistance effect element
JPH08235540A (en) Multilayered magnetoresistance effect film and magnetic head
JPH0629589A (en) Magnetoresistance effect element
JP3872958B2 (en) Magnetoresistive element and manufacturing method thereof
JPH076329A (en) Magneto-resistance effect element and magnetic head using the same and magnetic recording and reproducing device
JP2738295B2 (en) Magnetoresistive film and method of manufacturing the same
JP3286244B2 (en) Magnetoresistive element, magnetic head and magnetic recording device using the same
JP2001111136A (en) Direction-of-magnetization controlled film and magnetoresistance effect-type sensor using the same
JP2677018B2 (en) Magnetic multilayer film
JPH11251141A (en) Laminating film and element comprising high exchange-combination magnetic field
JPH06200364A (en) Magnetic multilayer film and magneto-resistance effect element
JPH07307501A (en) Magnetic field sensor
JPH08241506A (en) Multilayered magnetoresistance effect film and magnetic head
JPH0888424A (en) Multi-layer film magnetoresistance effect element and its manufacture

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990309

LAPS Cancellation because of no payment of annual fees