JPH11251141A - Laminating film and element comprising high exchange-combination magnetic field - Google Patents

Laminating film and element comprising high exchange-combination magnetic field

Info

Publication number
JPH11251141A
JPH11251141A JP10052090A JP5209098A JPH11251141A JP H11251141 A JPH11251141 A JP H11251141A JP 10052090 A JP10052090 A JP 10052090A JP 5209098 A JP5209098 A JP 5209098A JP H11251141 A JPH11251141 A JP H11251141A
Authority
JP
Japan
Prior art keywords
layer
underlayer
magnetic field
ferromagnetic
magnetics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10052090A
Other languages
Japanese (ja)
Inventor
Shuji Tanogami
修二 田ノ上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP10052090A priority Critical patent/JPH11251141A/en
Publication of JPH11251141A publication Critical patent/JPH11251141A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3268Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Power Engineering (AREA)
  • Magnetic Heads (AREA)
  • Thin Magnetic Films (AREA)
  • Hall/Mr Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a laminating film, wherein stronger exchange-combination magnetic field used for magnetization control of a ferry-magnetics layer of thin-film type MR element and spin-valve element is stably obtained, and the spin-valve element using the laminating structure. SOLUTION: A laminating film wherein a base material layer, wherein the value of a surface roughness Ra is 90-110% of the value of inter-lattice surface distance of a (111) surface of a ferro-magnetics body, a ferro-magnetics layer, and an antiferromagnetics layer are sequentially laminated, is provided, and on a base material layer wherein the value of surface roughness Ra is 90-110% of inter-lattice surface distance of (111) surface of ferro-magnetics of a first ferro-magnetics layer, the first ferro-magnetics layer, a non-magnetics layer, a second ferro-magnetics layer, and the anti-ferromagnetics layer are sequentially laminated to constitute a magnetoresistance element.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、磁気ディスク装
置、磁気エンコーダ装置等の磁気ヘッドに用いられる、
磁気抵抗効果を利用した素子に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic disk drive, a magnetic encoder, and other magnetic heads.
The present invention relates to an element utilizing the magnetoresistance effect.

【0002】[0002]

【従来の技術】大量の情報を高速で記録し読出しできる
磁気記録装置に、ハードディスクがある。パーソナルコ
ンピュータなどに使用されるハードディスクにおける記
録密度は、1年で約60%づつ増えており、今後もその傾
向は続くと予想されている。このハードディスクの磁気
媒体に記録された情報を読み出すヘッドの素子として、
磁気抵抗効果素子が多く使用されるようになった。
2. Description of the Related Art A hard disk is a magnetic recording device capable of recording and reading a large amount of information at high speed. The recording density of hard disks used in personal computers and the like has increased by about 60% in one year, and this trend is expected to continue in the future. As an element of a head for reading information recorded on a magnetic medium of this hard disk,
Magnetoresistance effect elements have come to be used frequently.

【0003】磁気抵抗効果とは、導電性の磁性体に磁場
を印加すると電気抵抗が変化する効果であり、この効果
を持つ素子を利用して磁場変化を検出し、磁気媒体に記
録された情報を読みとる。この磁気抵抗効果素子として
は強磁性体の電流の方向と磁化軸とのなす角度による抵
抗変化を検出する従来のMR(magnetoresistance)素
子と、近年開発された非磁性導電体層が二つの強磁性体
層に挟まれその一方の強磁性体層の外側に反強磁性体層
が接した膜構造を持つ大きな磁気抵抗効果を示す、スピ
ンバルブ素子とがある。これらの素子は、磁気媒体の移
動速度の影響を受けず、小型化が可能であり、磁気媒体
に線密度をきわめて高くして記録された情報を、容易に
識別して取り出すことができる利点がある。
[0003] The magnetoresistance effect is an effect in which the electric resistance changes when a magnetic field is applied to a conductive magnetic material. A change in the magnetic field is detected using an element having this effect, and information recorded on a magnetic medium is read. Read. The magnetoresistive effect element includes a conventional MR (magnetoresistance) element that detects a resistance change due to an angle between a current direction of a ferromagnetic substance and a magnetization axis, and a recently developed nonmagnetic conductive layer composed of two ferromagnetic layers. There is a spin valve element which has a film structure in which an antiferromagnetic layer is in contact with the outside of one ferromagnetic layer sandwiched between body layers and which exhibits a large magnetoresistance effect. These elements have the advantage that they are not affected by the moving speed of the magnetic medium, can be miniaturized, and can easily identify and retrieve information recorded on the magnetic medium with a very high linear density. is there.

【0004】これら薄膜型のMR素子やスピンバルブ素
子では、磁気記録媒体の磁場変化による強磁性体薄膜の
磁化を利用するが、磁化の際のバルクハウゼンノイズ抑
制を目的としたバイアス磁場印加や一方の強磁性体層の
磁化方向固定など、磁化方向制御のため反強磁性体膜の
接合による界面の交換結合磁場が用いられる。その場
合、MR素子やスピンバルブ素子の磁気抵抗効果を適切
に引き出し、安定して作動させるには、交換結合磁場の
強さを十分大きくすることが極めて重要になる。
In these thin film type MR elements and spin valve elements, the magnetization of a ferromagnetic thin film due to a change in the magnetic field of a magnetic recording medium is used. However, a bias magnetic field is applied to suppress Barkhausen noise during magnetization. In order to control the magnetization direction, for example, to fix the magnetization direction of the ferromagnetic layer, an exchange coupling magnetic field at the interface formed by joining the antiferromagnetic films is used. In that case, it is extremely important to sufficiently increase the strength of the exchange coupling magnetic field in order to properly extract the magnetoresistance effect of the MR element or the spin valve element and to operate the element stably.

【0005】交換結合磁場の強さを大きくする方法は、
これまで様々な検討がなされ、結晶構造やその特定の配
向が効果があるとされている。例えば特開平6-314617号
公報には、強磁性体の膜に接してMn系合金の、組成が
100-ZMnZ(ここでNはCu、Ru、Rh、Re、A
g、Au、Os、Irのうちから選ばれた少なくとも1
種で、24≦Z≦75)で結晶構造が正方晶である反強磁性
体膜を積層形成させると、良好な交換結合性が得られる
とする発明が開示されている。また、強磁性体のNiF
e(Ni80Fe20:添字は原子濃度%)層と反強磁性体
のFeMn(Fe50Mn50)層との間に交換結合磁場を
得ようとする場合、NiFeの結晶の{111}面が表面と
平行に配向した面上にFeMn層を成膜すれば、強力な
反強磁性を示すγ-Fe-Mnが得られやすいことも知ら
れている。
A method for increasing the strength of the exchange coupling magnetic field is as follows.
Various studies have been made so far, and it is said that the crystal structure and its specific orientation are effective. For example, Japanese Patent Application Laid-Open No. 6-314617 discloses that a composition of a Mn-based alloy in contact with a ferromagnetic film is N 100-Z Mn Z (where N is Cu, Ru, Rh, Re, A
at least one selected from g, Au, Os, and Ir
There is disclosed an invention in which a good exchange coupling property can be obtained by forming a stack of antiferromagnetic films having a tetragonal crystal structure with 24 ≦ Z ≦ 75. Also, the ferromagnetic material NiF
In order to obtain an exchange coupling magnetic field between the e (Ni 80 Fe 20 : subscript atomic concentration%) layer and the antiferromagnetic FeMn (Fe 50 Mn 50 ) layer, the {111} plane of the NiFe crystal is used. It is also known that γ-Fe-Mn exhibiting strong antiferromagnetism can be easily obtained if a FeMn layer is formed on a plane oriented parallel to the surface.

【0006】磁気抵抗効果素子は、ガラス、Si、Al
TiCなどの基板上に形成させるが、直接Ni-Feや
Co-Feなどの強磁性体薄膜を成膜すると、基板と強
磁性体の間の界面エネルギー差が大きいため、金属原子
の配列が不均一になって均質な膜が得られなくなること
がある。そこで通常は、基板の影響緩和のため、Ti、
Zr、Hf、V、Nb、Ta、Cr、Mo、およびWな
どの金属膜を下地層として基板上に成膜し、その上に強
磁性体層を成膜することがおこなわれている。Si基板
の上に下地層、それからNiFe、Cu、NiFeおよ
びFeMnの順に成膜させた構成を有する積層薄膜、す
なわちスピンバルブ膜において、Si基板上の下地層に
面心立方格子(fcc)、体心立方格子(bcc)または稠密
六方格子(fcc)の各結晶系の金属を用いて比較した結
果、下地層によって積層薄膜の結晶配向が異なり、薄膜
が強い{111}面集合組織を持つとき、強い交換結合磁場
が得られるという報告もある(R.Nakatani他、Jpn.J.Ap
pl.Phys.,vol.33(1994),pp.133-137)。
The magnetoresistive element is made of glass, Si, Al
Although it is formed on a substrate such as TiC, if a ferromagnetic thin film such as Ni-Fe or Co-Fe is formed directly, the interface energy difference between the substrate and the ferromagnetic material is large, so that the arrangement of metal atoms is not sufficient. In some cases, a uniform film cannot be obtained. Therefore, usually, Ti,
A metal film such as Zr, Hf, V, Nb, Ta, Cr, Mo, and W is formed as a base layer on a substrate, and a ferromagnetic layer is formed thereon. In a laminated thin film having a structure in which an underlayer is formed on a Si substrate and then NiFe, Cu, NiFe and FeMn, that is, a spin-valve film, a face-centered cubic lattice (fcc) As a result of comparison using metal of each crystal system of the centered cubic lattice (bcc) or dense hexagonal lattice (fcc), when the crystal orientation of the laminated thin film differs depending on the underlying layer, and the thin film has a strong {111} plane texture, There are reports that a strong exchange coupling magnetic field can be obtained (R. Nakatani et al., Jpn. J. Ap
pl.Phys., vol. 33 (1994), pp. 133-137).

【0007】しかしながら、積層膜の結晶方位以外に影
響する要因は、不明な点が多く、それらの要因を明らか
にして製造方法に適用すれば、より一層安定した強力な
交換結合磁場が得られる可能性がある。
However, there are many unknown factors that influence other than the crystal orientation of the laminated film. If the factors are clarified and applied to a manufacturing method, a more stable and strong exchange coupling magnetic field can be obtained. There is.

【0008】[0008]

【発明が解決しようとする課題】本発明の目的は、MR
素子やスピンバルブ素子の強磁性体層の磁化制御に用い
られる交換結合磁場を、より強力にかつ安定して得るこ
とにより、素子の性能を向上させることにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide an
An object of the present invention is to improve the performance of a device by obtaining a stronger and more stable exchange coupling magnetic field used for controlling the magnetization of the ferromagnetic layer of the device or the spin valve device.

【0009】[0009]

【課題を解決するための手段】本発明者は上記の磁気抵
抗効果素子に関し、強磁性体層に接する反強磁性体層に
よる交換結合磁場の強さHex におよぼす要因につい
て、種々検討をおこなった。その結果、同じ構成の素子
であっても下地層の状態がHex に大きく影響している
ことがわかったが、強磁性体層の結晶方位調査から、下
地層に起因する結晶配向に対し、その金属の結晶構造以
外の要因がより強く影響していると考えられた。そこで
さらに調査を進めた結果、下地層の表面粗さの効果を見
出したのである。
Means for Solving the Problems The present inventor has made various studies on the above-mentioned magnetoresistive effect element with respect to the factor affecting the strength Hex of the exchange coupling magnetic field by the antiferromagnetic layer in contact with the ferromagnetic layer. . As a result, it was found that the state of the underlayer greatly affected Hex even in an element having the same configuration. However, the crystal orientation of the ferromagnetic layer showed that the Factors other than the crystal structure of the metal were considered to have a stronger effect. Therefore, as a result of further investigation, the effect of the surface roughness of the underlayer was found.

【0010】ガラス基板上に厚さを変えた下地層を成膜
し、その上にNiFe、さらにMnFeと成膜して、振
動試料型磁力計(VSM)でHex を求めると、下地層
の厚さによりHexが変化する。そこで下地層厚さを種々
変えてその影響を調べた結果、厚さは直接Hexに影響を
およぼしてはいないことがわかった。ところが、下地層
の表面粗さをAFM(Atomic Force Microscope)で測
定し、その値とその上に成膜して得られた素子のHexと
を対比してみると、良好な相関があることを見出した。
すなわち、表面粗さをAFMによる中心面平均粗さRa
で表せば、Raの値がその上に成膜される強磁性体結晶
の、{111}面の格子面間距離にほぼ等しいとき、Hex が
最も大きくなるのである。
[0010] An underlayer having a varied thickness is formed on a glass substrate, NiFe and MnFe are further formed thereon, and Hex is obtained by a vibrating sample magnetometer (VSM). Hex changes accordingly. Therefore, as a result of examining the effect by changing the thickness of the underlayer variously, it was found that the thickness did not directly affect Hex. However, when the surface roughness of the underlayer was measured by an AFM (Atomic Force Microscope) and the value was compared with the Hex of the device obtained by forming a film thereon, it was found that there was a good correlation. I found it.
That is, the surface roughness is determined by AFM center plane average roughness Ra.
When the value of Ra is substantially equal to the distance between lattice planes of the {111} plane of the ferromagnetic crystal formed thereon, Hex becomes the largest.

【0011】この下地層の表面粗さは、成膜時の膜厚を
変えることによっても制御が可能であるが、所要の厚さ
に成膜後イオンミリングや逆スパッタなどの方法によ
り、このような粗さにしても、同じ効果が得られる。
Although the surface roughness of the underlayer can be controlled by changing the film thickness at the time of film formation, such a film can be controlled to a required thickness by a method such as ion milling or reverse sputtering after film formation. The same effect can be obtained even if the roughness is high.

【0012】さらに、基板の上に下地層、強磁性体層、
および反強磁性体層が順次積層された形のMR素子だけ
でなく、下地層、第一の強磁性体層、非磁性体層、第二
の強磁性体層、および反強磁性体層が順次積層された多
層積層によるスピンバルブ素子においても、下地層の表
面粗さは第二の強磁性体層と反強磁性体層とによって作
られる交換結合磁場強さHex の増大に有効であった。
ところが基板上に下地層、反強磁性体層、および強磁性
体層が順次積層された下地層に接する層が反強磁性体で
ある素子にすると、下地層の表面粗さが上記の効果をも
たらす場合と同じRa の値であっても、Hex 増大の効
果は得られなかった。
Further, an underlayer, a ferromagnetic layer,
Not only the MR element in which the antiferromagnetic layer and the antiferromagnetic layer are sequentially stacked, but also the underlayer, the first ferromagnetic layer, the nonmagnetic layer, the second ferromagnetic layer, and the antiferromagnetic layer. The surface roughness of the underlayer was also effective in increasing the exchange coupling magnetic field strength Hex formed by the second ferromagnetic layer and the antiferromagnetic layer also in the spin valve element of the multilayer stack in which the layers were sequentially stacked. .
However, if the element in contact with the underlayer, which is an underlayer, an antiferromagnetic layer, and a ferromagnetic layer sequentially laminated on the substrate, is an antiferromagnetic material, the surface roughness of the underlayer will reduce the above-mentioned effect. The effect of increasing Hex was not obtained even with the same value of Ra as when it brought.

【0013】下地層の適当な表面粗さが、このようにそ
の上に成膜した強磁性体層と反強磁性体層との間の交換
結合磁場の強さを大きくする理由は、必ずしも明らかで
はない。しかし一つの推測としては次のようなことが考
えられる。スパッタ法で堆積させた強磁性体薄膜は通常
fcc構造で、堆積する面に平行に{111}面が配向する傾向
にある。ここで下地層面の粗さが、Raの値で丁度その
強磁性体の{111}面間隔に等しいとき、表面へまず初め
に到達した強磁性体原子が凹部を埋める形で付着し、そ
の原子の分布状態が次に付着する原子の{111}面形成の
ための配列を容易にし、さらに、堆積が進むと強磁性体
膜の表面は全面ほぼ完全に{111}面配向したものとな
る。そうするとその上に成膜される反強磁性体も{111}
面配向したfcc構造の膜となり、境界面に強力な交換結
合磁場が形成される。また、スピンバルブ素子の場合、
第一の強磁性体層が十分な{111}面配向していると、そ
の上の非磁性体層、さらに第二の強磁性体層もいずれも
{111}面配向して堆積し、反強磁性体層を積層させる面
は完全に近い{111}面配向を持つものになる。その結
果、前述のR.Nakatani他のJpn.J.Appl.Phys.の報告にも
示されているように、強い交換結合磁場がもたらされ
る。これに対し、下地層面の粗さがRaの値として{111}
面間隔よりずれるとき、付着原子の分布がその後に堆積
する原子の{111}面配向には好ましくなく、堆積が進ん
でもその影響が残って全面が完全に近い{111}面配向と
いう状態には到達せず、強い交換結合磁場が得られない
のであろう。また、下地層の上に反強磁性体層を直接成
膜すると、例えばFeMnではfcc構造の膜にならず、
その上に強磁性体を成膜しても強力なHexは得られな
い。
The reason why the appropriate surface roughness of the underlayer increases the strength of the exchange coupling magnetic field between the ferromagnetic layer and the antiferromagnetic layer thus formed thereon is not necessarily obvious. is not. However, one guess is as follows. Ferromagnetic thin films deposited by sputtering are usually
In the fcc structure, the {111} plane tends to be oriented parallel to the plane on which it is deposited. Here, when the roughness of the underlayer surface is exactly equal to the {111} plane interval of the ferromagnetic material at the value of Ra, the ferromagnetic material atoms that have arrived at the surface first adhere to the surface in such a way as to fill the concave portions. Distribution facilitates the arrangement of the atoms to be deposited next to form the {111} plane, and as the deposition proceeds, the entire surface of the ferromagnetic film is almost completely oriented in the {111} plane. Then the antiferromagnetic material deposited on it will also be {111}
The resulting film has a plane-oriented fcc structure, and a strong exchange coupling magnetic field is formed at the interface. In the case of a spin valve element,
If the first ferromagnetic layer is sufficiently oriented in the {111} plane, both the nonmagnetic layer above it and the second ferromagnetic layer
The surface on which the {111} plane is deposited and the antiferromagnetic layer is stacked has a nearly perfect {111} plane orientation. The result is a strong exchange-coupling magnetic field, as also shown in the report by R. Nakatani et al. Of Jpn. J. Appl. Phys. On the other hand, the roughness of the underlayer surface is {111} as the value of Ra.
When the distance is shifted from the plane spacing, the distribution of the attached atoms is not preferable for the {111} plane orientation of the subsequently deposited atoms. It will not reach, and a strong exchange coupling magnetic field will not be obtained. When an antiferromagnetic layer is formed directly on the underlayer, for example, FeMn does not form a film having an fcc structure.
Even if a ferromagnetic material is formed thereon, strong Hex cannot be obtained.

【0014】この下地層の表面の粗さについて、その限
界をさらに検討し、本発明を完成させた。すなわち本発
明の要旨は次の通りである。
The present invention was completed by further examining the limits of the surface roughness of the underlayer. That is, the gist of the present invention is as follows.

【0015】(1) 基板の上に下地層、強磁性体層、およ
び反強磁性体層が順次積層された構成を有する積層膜で
あって、下地層の表面粗さRa の値が強磁性体の{111}
面の格子面間距離の値の90〜110%であることを特徴と
する積層膜。
(1) A laminated film having a configuration in which an underlayer, a ferromagnetic layer, and an antiferromagnetic layer are sequentially laminated on a substrate, wherein the surface roughness Ra of the underlayer is ferromagnetic. {111} of the body
A laminated film characterized by being 90 to 110% of the value of the distance between lattice planes of the plane.

【0016】(2) 基板の上に下地層、第一の強磁性体
層、非磁性体層、第二の強磁性体層、および反強磁性体
層が順次積層された構成を有する磁気抵抗素子であっ
て、下地層の表面粗さRa の値が、これと接する第一の
強磁性体層強磁性体の{111}面格子面間距離の90〜110%
であることを特徴とする磁気抵抗素子。
(2) A magnetoresistive device having a structure in which an underlayer, a first ferromagnetic layer, a nonmagnetic layer, a second ferromagnetic layer, and an antiferromagnetic layer are sequentially stacked on a substrate. In the device, the value of the surface roughness Ra of the underlayer is 90 to 110% of the distance between the {111} plane lattice planes of the first ferromagnetic layer in contact with the underlayer.
A magnetoresistive element, characterized in that:

【0017】[0017]

【発明の実施の形態】本発明を実施する場合、下地層
は、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、
Wなど、通常用いられる金属膜であればよく、とくに限
定はしない。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In practicing the present invention, the underlayer is made of Ti, Zr, Hf, V, Nb, Ta, Cr, Mo,
Any commonly used metal film such as W may be used, and there is no particular limitation.

【0018】しかし、その表面は、Ra で表される中心
面平均粗さの値が、その後の成膜積層工程にて反強磁性
体層をその上に成膜して交換結合磁場を形成させる強磁
性体の、{111}面格子面間距離の90〜110%であることと
する。これは、下地層のAFMなどによる表面粗さの測
定値Ra が、強磁性体の{111}面格子面間距離にほぼ等
しいとき、得られる交換結合磁場の強さHex が最も大
きくなり、この{111}面間距離の値より10%未満の小さ
い値、または10%を超える大きい値になるといずれもH
ex が小さくなるからである。
However, the surface has a center plane average roughness value represented by Ra, and an anti-ferromagnetic material layer is formed thereon to form an exchange coupling magnetic field in a subsequent film forming and laminating step. It is assumed that the distance between the {111} plane lattice planes of the ferromagnetic material is 90 to 110%. This is because when the measured value of the surface roughness Ra of the underlayer by AFM or the like is substantially equal to the distance between the {111} plane lattice planes of the ferromagnetic material, the strength Hex of the obtained exchange coupling magnetic field becomes largest. If the value is less than 10% or less than 10%, it becomes H
This is because ex becomes smaller.

【0019】下地層の表面粗さは、その金属膜の厚さに
より変化するので、膜厚を変えることによっても制御す
ることができる。これは、通常のスパッタ等で金属を堆
積させる場合、極く薄い初期の段階ではアモルファス状
の膜となり、基板の表面に追随するなどして平滑である
が、少し堆積が進むとアモルファス状から結晶組織に変
化するため、結晶粒や粒界形成に基づく表面凹凸が現れ
る。しかしさらに堆積が進めば、その凹凸が埋められま
た平滑化する。この凹凸が大きくなり表面粗さが変化す
るためには膜厚が約50 以上必要であり、200 を超え
るとまた平滑になってくる。
Since the surface roughness of the underlayer changes depending on the thickness of the metal film, it can be controlled by changing the film thickness. This is because when a metal is deposited by ordinary sputtering or the like, it becomes an amorphous film at the very thin initial stage and is smooth, for example, following the surface of the substrate. Since the structure changes, surface irregularities based on the formation of crystal grains and grain boundaries appear. However, as the deposition proceeds further, the irregularities are filled and smoothed. In order for the unevenness to increase and the surface roughness to change, the film thickness needs to be about 50 or more, and when it exceeds 200, it becomes smooth again.

【0020】ただし、下地層の厚さはHexには直接関係
しないので、所要の厚さにした後、イオンミリングや逆
スパッタなどの方法により表面粗さを調整し、そのRa
の値を上記の範囲内にしてもよい。
However, since the thickness of the underlayer is not directly related to Hex, the thickness of the underlayer is adjusted to a required thickness, and the surface roughness is adjusted by a method such as ion milling or reverse sputtering to obtain a Ra.
May be within the above range.

【0021】本発明は、磁気抵抗素子がMR素子でもス
ピンバルブ素子でも、そこで用いられる交換結合磁場を
強力かつ安定化させることができる。ただし、下地層の
上に直接成膜される層は、強磁性体層である必要があ
り、下地層に反強磁性体層、その上に強磁性体層という
順序で得られた交換結合磁場では、下地層の表面粗さの
Ra 値を上記の範囲としても、十分なHex の増大効果
は得られない。MR素子の場合は、下地層の上に強磁性
体層、それから反強磁性体層と成膜すればよい。スピン
バルブ素子の場合、非磁性体層を挟んで二つの強磁性体
層があるが、この二つの層は同じ強磁性体でもよいし、
異なる強磁性体であってもよい。異なる強磁性体の場
合、下地層の表面粗さのRa 値は、これに接する第一の
層の強磁性体{111}面間距離の90〜110%でなければなら
ない。この範囲を外れると、積層膜全体が{111}面配向
した状態が得られなくなるからである。第二の層の強磁
性体の{111}面間距離は、この範囲を外れていても十分
なHex を得ることができるが、おなじ範囲内にあるこ
とが望ましい。
According to the present invention, whether the magnetoresistive element is an MR element or a spin valve element, the exchange coupling magnetic field used therein can be strong and stabilized. However, the layer directly formed on the underlayer must be a ferromagnetic layer, and the exchange coupling magnetic field obtained in this order is an antiferromagnetic layer on the underlayer, and a ferromagnetic layer on it. However, even if the Ra value of the surface roughness of the underlayer is in the above range, a sufficient effect of increasing Hex cannot be obtained. In the case of an MR element, a ferromagnetic layer and an antiferromagnetic layer may be formed on the underlayer. In the case of a spin valve element, there are two ferromagnetic layers sandwiching a non-magnetic layer, but these two layers may be the same ferromagnetic substance,
Different ferromagnetic materials may be used. In the case of different ferromagnetic materials, the Ra value of the surface roughness of the underlayer must be 90 to 110% of the distance between the ferromagnetic {111} planes of the first layer in contact therewith. If the thickness is out of this range, a state in which the entire laminated film is {111} -oriented cannot be obtained. Even if the distance between the {111} planes of the ferromagnetic material in the second layer is out of this range, a sufficient Hex can be obtained, but it is preferable that the distance be in the same range.

【0022】[0022]

【実施例】〔実施例1〕ガラス基板上に、表1に示すよ
うな厚さの種々異なるTaの下地層を、RFスパッタ法
により成膜した。表1には、その下地層の表面粗さをA
FMを用いて測定した結果もあわせて示す。この場合、
基準面積は0.5μm角とした。これらの下地層の上に厚さ
200 のNiFe(Ni80Fe20)層、さらに厚さ200
のFeMn(Fe50Mn50)を成膜して、交換結合磁場
を有するMR素子をそれぞれ作製した。これらの素子に
ついて、磁気抵抗測定装置によりMR曲線を描かせ、そ
れからHex を求めた。
EXAMPLES Example 1 Underlayers of various thicknesses of Ta as shown in Table 1 were formed on a glass substrate by RF sputtering. Table 1 shows the surface roughness of the underlayer as A
The results measured using FM are also shown. in this case,
The reference area was 0.5 μm square. Thickness on these underlayers
200 NiFe (Ni 80 Fe 20 ) layers, 200
Of FeMn (Fe 50 Mn 50 ) was formed to produce MR elements having an exchange coupling magnetic field. With respect to these devices, an MR curve was drawn by a magnetoresistive measuring device, and Hex was obtained from the curves.

【0023】[0023]

【表1】 [Table 1]

【0024】表1に交換結合磁場の強さHex の測定結
果も合わせて示す。これから下地層の表面粗さRa とH
ex の測定結果との関係を見ると、図1に示す結果とな
る。強磁性体のNiFeは、面心立方晶でその{111}面
格子面間距離は2.04 である。この図1において、Hex
が大きく向上するRa の範囲は1.83〜2.25 であり、
{111}面格子面間距離の90〜110%であることがわかる。
Table 1 also shows the measurement results of the strength Hex of the exchange coupling magnetic field. From now on, the surface roughness Ra of the underlayer and H
FIG. 1 shows the relationship between ex and the measurement result. The ferromagnetic material NiFe is face-centered cubic, and its {111} -plane lattice plane distance is 2.04. In FIG. 1, Hex
The range of Ra at which is greatly improved is 1.83 to 2.25,
It can be seen that the distance between the {111} plane lattice planes is 90 to 110%.

【0025】〔実施例2〕ガラス基板上に、Zr下地層
をRFスパッタ法により、0、30、50、80、100、140、1
80および220 の厚さにそれぞれ成膜した。これらの表
面粗さをAFMを用いて測定した結果は、それぞれ1.5
6、1.76、1.86、1.98、2.05、1.82、1.62および1.49
であった。これら下地層の上にスピンバルブ素子となる
60 -CoFe、25 -Cu、35 -CoFe、および250
-NiMnを順次成膜し、1000エルステッドの一方向
磁場中で 250℃、 3時間の熱処理をおこなった。なお、
このCoFeはCo90Fe10である。得られた素子はそ
れぞれ磁気抵抗測定装置にてMR曲線を描かせ、それに
よりHex を求めた。
[Example 2] A Zr underlayer was formed on a glass substrate by RF sputtering to form 0, 30, 50, 80, 100, 140, 1
Films were formed to a thickness of 80 and 220, respectively. The results of measuring these surface roughnesses using AFM were 1.5
6, 1.76, 1.86, 1.98, 2.05, 1.82, 1.62 and 1.49
Met. Spin valve elements on these underlayers
60-CoFe, 25-Cu, 35-CoFe, and 250
-NiMn was sequentially formed and heat-treated at 250 ° C. for 3 hours in a unidirectional magnetic field of 1000 Oersted. In addition,
This CoFe is Co 90 Fe 10 . For each of the obtained devices, an MR curve was drawn by a magnetic resistance measuring device, and Hex was determined.

【0026】図2に、得られた素子の下地層の表面粗さ
Ra と、Hex との関係を示す。面心立方晶であるCo
Feの{111}面格子面間距離は2.05 であり、この図か
らこの距離の90%以上、すなわち1.85 以上のRa 値に
なると、Hex が大幅に増大していることがわかる。
FIG. 2 shows the relationship between the surface roughness Ra of the underlayer of the obtained device and Hex. Co that is face-centered cubic
The distance between the {111} -plane lattice planes of Fe is 2.05, and it can be seen from this figure that when the Ra value becomes 90% or more of this distance, that is, when the Ra value becomes 1.85 or more, Hex greatly increases.

【0027】[0027]

【発明の効果】本発明によれば、薄膜型のMR素子やス
ピンバルブ素子の強磁性体層の磁化制御に用いられる交
換結合磁場を、より強力にかつ安定して得ることができ
るようになり、これを適用することにより、磁気ヘッド
に用いられる磁気抵抗型素子、とくにスピンバルブ素子
の性能を大きく向上させることができる。
According to the present invention, the exchange coupling magnetic field used for controlling the magnetization of the ferromagnetic layer of the thin film type MR element or spin valve element can be obtained more strongly and stably. By applying this, the performance of a magnetoresistive element used for a magnetic head, particularly a spin valve element, can be greatly improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】MR型磁気抵抗素子において、素子の下地層の
表面粗さRa と、交換結合磁場の強さHex との関係を
示す図である。
FIG. 1 is a diagram showing the relationship between the surface roughness Ra of an underlayer of an MR type magnetoresistive element and the strength Hex of an exchange coupling magnetic field.

【図2】スピンバルブ型磁気抵抗素子において、素子の
下地層の表面粗さRa と、交換結合磁場の強さHex と
の関係を示す図である。
FIG. 2 is a diagram showing the relationship between the surface roughness Ra of an underlayer of the element and the strength Hex of an exchange coupling magnetic field in a spin-valve magnetoresistive element.

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成10年8月7日[Submission date] August 7, 1998

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0019[Correction target item name] 0019

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0019】下地層の表面粗さは、その金属膜の厚さに
より変化するので、膜厚を変えることによっても制御す
ることができる。これは、通常のスパッタ等で金属を堆
積させる場合、極く薄い初期の段階ではアモルファス状
の膜となり、基板の表面に追随するなどして平滑である
が、少し堆積が進むとアモルファス状から結晶組織に変
化するため、結晶粒や粒界形成に基づく表面凹凸が現れ
る。しかしさらに堆積が進めば、その凹凸が埋められま
た平滑化する。この凹凸が大きくなり表面粗さが変化す
るためには膜厚が約50以上必要であり、200を超え
るとまた平滑になってくる。
Since the surface roughness of the underlayer changes depending on the thickness of the metal film, it can be controlled by changing the film thickness. This is because when a metal is deposited by ordinary sputtering or the like, it becomes an amorphous film at the very thin initial stage and is smooth, for example, following the surface of the substrate. Since the structure changes, surface irregularities based on the formation of crystal grains and grain boundaries appear. However, as the deposition proceeds further, the irregularities are filled and smoothed. In order to increase the irregularities and change the surface roughness, the film thickness needs to be about 50 mm or more, and if it exceeds 200 mm , it becomes smooth again.

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0022[Correction target item name] 0022

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0022】[0022]

【実施例】〔実施例1〕ガラス基板上に、表1に示すよ
うな厚さの種々異なるTaの下地層を、RFスパッタ法
により成膜した。表1には、その下地層の表面粗さをA
FMを用いて測定した結果もあわせて示す。この場合、
基準面積は0.5μm角とした。これらの下地層の上に厚さ
200のNiFe(Ni80Fe20)層、さらに厚さ200
のFeMn(Fe50Mn50)を成膜して、交換結合磁場
を有するMR素子をそれぞれ作製した。これらの素子に
ついて、磁気抵抗測定装置によりMR曲線を描かせ、そ
れからHex を求めた。
EXAMPLES Example 1 Underlayers of various thicknesses of Ta as shown in Table 1 were formed on a glass substrate by RF sputtering. Table 1 shows the surface roughness of the underlayer as A
The results measured using FM are also shown. in this case,
The reference area was 0.5 μm square. Thickness on these underlayers
200 mm NiFe (Ni 80 Fe 20 ) layer, 200 mm thick
Of FeMn (Fe 50 Mn 50 ) was formed to produce MR elements having an exchange coupling magnetic field. With respect to these devices, an MR curve was drawn by a magnetoresistive measuring device, and Hex was obtained from the curves.

【手続補正3】[Procedure amendment 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0024[Correction target item name] 0024

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0024】表1に交換結合磁場の強さHex の測定結
果も合わせて示す。これから下地層の表面粗さRa とH
ex の測定結果との関係を見ると、図1に示す結果とな
る。強磁性体のNiFeは、面心立方晶でその{111}面
格子面間距離は2.04である。この図1において、Hex
が大きく向上するRa の範囲は1.83〜2.25であり、
{111}面格子面間距離の90〜110%であることがわかる。
Table 1 also shows the measurement results of the strength Hex of the exchange coupling magnetic field. From now on, the surface roughness Ra of the underlayer and H
FIG. 1 shows the relationship between ex and the measurement result. The ferromagnetic material NiFe is face-centered cubic and its {111} -plane lattice plane distance is 2.04 ° . In FIG. 1, Hex
Range of Ra which is significantly improved is from 1.83 to 2.25 Å,
It can be seen that the distance between the {111} plane lattice planes is 90 to 110%.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0025[Correction target item name] 0025

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0025】〔実施例2〕ガラス基板上に、Zr下地層
をRFスパッタ法により、0、30、50、80、100、140、1
80および220の厚さにそれぞれ成膜した。これらの表
面粗さをAFMを用いて測定した結果は、それぞれ1.5
6、1.76、1.86、1.98、2.05、1.82、1.62および1.49
であった。これら下地層の上にスピンバルブ素子となる
60-CoFe、25-Cu、35-CoFe、および250
-NiMnを順次成膜し、1000エルステッドの一方向
磁場中で 250℃、 3時間の熱処理をおこなった。なお、
このCoFeはCo90Fe10である。得られた素子はそ
れぞれ磁気抵抗測定装置にてMR曲線を描かせ、それに
よりHex を求めた。
Example 2 A Zr Underlayer on a Glass Substrate
By RF sputtering, 0, 30, 50, 80, 100, 140, 1
80 and 220Å, Respectively. These tables
The results of measuring the surface roughness using AFM were 1.5
6, 1.76, 1.86, 1.98, 2.05, 1.82, 1.62 and 1.49Å
Met. Spin valve elements on these underlayers
60Å-CoFe, 25Å-Cu, 35Å-CoFe, and 250
Å-NiMn deposited sequentially, one direction of 1000 Oersted
Heat treatment was performed at 250 ° C for 3 hours in a magnetic field. In addition,
This CoFe is Co90FeTenIt is. The obtained device is
Let them draw an MR curve with a magnetic resistance measurement device,
Hex was sought more.

【手続補正5】[Procedure amendment 5]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0026[Correction target item name] 0026

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0026】図2に、得られた素子の下地層の表面粗さ
Ra と、Hex との関係を示す。面心立方晶であるCo
Feの{111}面格子面間距離は2.05であり、この図か
らこの距離の90%以上、すなわち1.85以上のRa 値に
なると、Hex が大幅に増大していることがわかる。
FIG. 2 shows the relationship between the surface roughness Ra of the underlayer of the obtained device and Hex. Co that is face-centered cubic
The distance between the lattice planes of the {111} plane of Fe is 2.05 ° , and it can be seen from this figure that when the Ra value becomes 90% or more of this distance, that is, when the Ra value becomes 1.85 ° or more, Hex greatly increases.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】基板の上に下地層、強磁性体層、および反
強磁性体層が順次積層された構成を有する積層膜であっ
て、下地層の表面粗さRa の値が強磁性体の{111}面の
格子面間距離の値の90〜110%であることを特徴とする
積層膜。
1. A laminated film having a structure in which an underlayer, a ferromagnetic layer, and an antiferromagnetic layer are sequentially laminated on a substrate, wherein the surface roughness Ra of the underlayer is a ferromagnetic material. A laminated film characterized by being 90 to 110% of the value of the distance between lattice planes of the {111} plane.
【請求項2】基板の上に下地層、第一の強磁性体層、非
磁性体層、第二の強磁性体層、および反強磁性体層が順
次積層された構成を有する磁気抵抗素子であって、下地
層の表面粗さRa の値が、これと接する第一の強磁性体
層強磁性体の{111}面格子面間距離の90〜110%であるこ
とを特徴とする磁気抵抗素子。
2. A magnetoresistive element having a configuration in which an underlayer, a first ferromagnetic layer, a nonmagnetic layer, a second ferromagnetic layer, and an antiferromagnetic layer are sequentially stacked on a substrate. Wherein the value of the surface roughness Ra of the underlayer is 90 to 110% of the distance between the {111} plane lattice planes of the first ferromagnetic layer in contact with the underlayer. Resistance element.
JP10052090A 1998-03-04 1998-03-04 Laminating film and element comprising high exchange-combination magnetic field Pending JPH11251141A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10052090A JPH11251141A (en) 1998-03-04 1998-03-04 Laminating film and element comprising high exchange-combination magnetic field

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10052090A JPH11251141A (en) 1998-03-04 1998-03-04 Laminating film and element comprising high exchange-combination magnetic field

Publications (1)

Publication Number Publication Date
JPH11251141A true JPH11251141A (en) 1999-09-17

Family

ID=12905143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10052090A Pending JPH11251141A (en) 1998-03-04 1998-03-04 Laminating film and element comprising high exchange-combination magnetic field

Country Status (1)

Country Link
JP (1) JPH11251141A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6570744B1 (en) 1999-05-26 2003-05-27 Tdk Corporation Magnetoresistance effect film and device
JPWO2018042732A1 (en) * 2016-08-29 2019-09-05 国立大学法人東北大学 Magnetic tunnel junction element and manufacturing method thereof
JP2020090433A (en) * 2015-02-12 2020-06-11 株式会社カネカ Graphite sheet, high thermal conductive heat dissipation substrate, and manufacturing method of graphite sheet

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6570744B1 (en) 1999-05-26 2003-05-27 Tdk Corporation Magnetoresistance effect film and device
US6781800B2 (en) 1999-05-26 2004-08-24 Tdk Corporation Magnetoresistance effect film and device
JP2020090433A (en) * 2015-02-12 2020-06-11 株式会社カネカ Graphite sheet, high thermal conductive heat dissipation substrate, and manufacturing method of graphite sheet
JPWO2018042732A1 (en) * 2016-08-29 2019-09-05 国立大学法人東北大学 Magnetic tunnel junction element and manufacturing method thereof
US10833256B2 (en) 2016-08-29 2020-11-10 Tohoku University Magnetic tunnel junction element and method for manufacturing same

Similar Documents

Publication Publication Date Title
US6313973B1 (en) Laminated magnetorestrictive element of an exchange coupling film, an antiferromagnetic film and a ferromagnetic film and a magnetic disk drive using same
US6295186B1 (en) Spin-valve magnetoresistive Sensor including a first antiferromagnetic layer for increasing a coercive force and a second antiferromagnetic layer for imposing a longitudinal bias
KR100308102B1 (en) Magnetoresistive device
US7375405B2 (en) Magnetoresistance effect element, magnetic head, and magnetic storage system using a giant magnetoresistance effect element
JP3890893B2 (en) Spin tunnel magnetoresistive film and element, magnetoresistive sensor using the same, magnetic device, and manufacturing method thereof
US6127053A (en) Spin valves with high uniaxial anisotropy reference and keeper layers
JP2778626B2 (en) Magnetoresistance effect film, method of manufacturing the same, and magnetoresistance effect element
JP3137580B2 (en) Magnetic multilayer film, magnetoresistive element and magnetic transducer
JP3735443B2 (en) Exchange coupling film, magnetoresistive effect element, magnetic head, and magnetic storage device using the same
US6117569A (en) Spin valves with antiferromagnetic exchange pinning and high uniaxial anisotropy reference and keeper layers
US6735058B2 (en) Current-perpendicular-to-plane read head with an amorphous magnetic bottom shield layer and an amorphous nonmagnetic bottom lead layer
US20080088987A1 (en) Exchange-coupled film, method for making exchange-coupled film, and magnetic sensing element including exchange-coupled film
US6833981B2 (en) Spin valve magnetic head with three underlayers
US9076467B2 (en) Current-perpendicular-to-the-plane (CPP) magnetoresistive sensor with multilayer reference layer including a crystalline CoFeX layer and a Heusler alloy layer
JPH11121832A (en) Spin bulb-type thin film element
JP3198265B2 (en) Magnetoresistance effect element
JP3247535B2 (en) Magnetoresistance effect element
JP4144831B2 (en) Magnetoresistive element and magnetic recording apparatus
JPH11251141A (en) Laminating film and element comprising high exchange-combination magnetic field
JP3488652B2 (en) Magnetoresistive film, method of manufacturing the same, and magnetic head using the same
JP3071781B2 (en) Exchange coupling film, magnetoresistive element using the exchange coupling film, and thin-film magnetic head using the magnetoresistive element
JP2000020926A (en) Magnetoresistance effect head
JP3255901B2 (en) Method for producing exchange coupling membrane
JP3274440B2 (en) Magneto-resistance effect element and thin-film magnetic head using the magneto-resistance effect element
JP3048571B2 (en) Exchange coupling film, magnetoresistive element using this exchange coupling film, and thin film magnetic head using the magnetoresistive element