JP2738295B2 - Magnetoresistive film and method of manufacturing the same - Google Patents

Magnetoresistive film and method of manufacturing the same

Info

Publication number
JP2738295B2
JP2738295B2 JP6082906A JP8290694A JP2738295B2 JP 2738295 B2 JP2738295 B2 JP 2738295B2 JP 6082906 A JP6082906 A JP 6082906A JP 8290694 A JP8290694 A JP 8290694A JP 2738295 B2 JP2738295 B2 JP 2738295B2
Authority
JP
Japan
Prior art keywords
film
thin film
magnetic field
magnetic
magnetoresistive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP6082906A
Other languages
Japanese (ja)
Other versions
JPH0794326A (en
Inventor
英文 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP6082906A priority Critical patent/JP2738295B2/en
Publication of JPH0794326A publication Critical patent/JPH0794326A/en
Application granted granted Critical
Publication of JP2738295B2 publication Critical patent/JP2738295B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3268Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn
    • H01F10/3281Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn only by use of asymmetry of the magnetic film pair itself, i.e. so-called pseudospin valve [PSV] structure, e.g. NiFe/Cu/Co

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、磁気媒体等において磁
界強度を信号として読み取るための磁気抵抗効果素子に
用いる磁気抵抗効果膜に関し、特に、小さい外部磁場で
抵抗変化率が大きい磁気抵抗効果膜およびその製造方法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetoresistive film for use in a magnetoresistive element for reading a magnetic field intensity as a signal in a magnetic medium or the like, and more particularly to a magnetoresistive film having a large resistance change rate with a small external magnetic field. And a method of manufacturing the same.

【0002】[0002]

【従来の技術】近年、磁気センサーの高感度化および磁
気記録における高密度化が進められており、これに伴っ
て磁気抵抗効果型磁気センサー(以下、MRセンサーと
いう)および磁気抵抗効果型磁気ヘッド(以下、MRヘ
ッドという)の開発が盛んに行われている。MRセンサ
ー,MRヘッドは、同様に磁性材料からなる読み取りセ
ンサー部の抵抗変化によって外部磁界信号を読み出す
が、これらはいずれも記録媒体との相対速度が再生出力
に依存しないことから、MRセンサーでは高感度が、M
Rヘッドでは高密度磁気記録においても高い出力が得ら
れるという特長がある。
2. Description of the Related Art In recent years, the sensitivity of magnetic sensors has been increased and the density of magnetic recording has been increased. Accordingly, a magnetoresistive magnetic sensor (hereinafter referred to as an MR sensor) and a magnetoresistive magnetic head have been developed. (Hereinafter referred to as MR head) is being actively developed. Similarly, the MR sensor and the MR head read an external magnetic field signal by a change in resistance of a reading sensor portion made of a magnetic material. However, since the relative speed with respect to the recording medium does not depend on the reproduction output, the MR sensor and the MR head have a high reading. Sensitivity is M
The R head has a feature that a high output can be obtained even in high-density magnetic recording.

【0003】また最近では、非磁性薄膜を介して積層さ
れた少なくとも2層の磁性薄膜を有して成り、一方の軟
磁性薄膜に反強磁性薄膜を隣接して設けることで交換結
合磁界を与え、非磁性薄膜を介して隣接した他方の軟磁
性薄膜と異なる外部磁界で磁化回転させることで抵抗変
化させる磁気抵抗効果膜がある(フィジカル レビュー
B(Phys.Rev.B)第43巻,1297頁,1
991年)。
[0003] In recent years, exchange sintered by made with a magnetic thin film of at least two layers are laminated through a non-magnetic thin film provided adjacent the antiferromagnetic thin film on one of the soft magnetic thin film
There is a magnetoresistive film that changes resistance by applying a combined magnetic field and rotating the magnetization by an external magnetic field different from that of the adjacent soft magnetic thin film via the nonmagnetic thin film (Physical Review B (Phys. Rev. B) No. 43). Volume, 1297 pages, 1
991).

【0004】[0004]

【発明が解決しようとする課題】しかしながら、従来の
磁気抵抗効果素子においても、小さい外部磁場で動作す
るとは言え、実用的な磁気センサーや磁気ヘッドとして
使用する場合には、磁気抵抗効果膜の上下に横バイアス
層を設けたり、外部からバイアス磁界を印加する必要が
ある。
However, although the conventional magnetoresistive element can be operated with a small external magnetic field, when used as a practical magnetic sensor or magnetic head, the magnetoresistive effect element can be moved up and down. It is necessary to provide a lateral bias layer or to apply a bias magnetic field from the outside.

【0005】本発明の目的は、横バイアス機構が不要
で、かつゼロ磁場前後で抵抗変化する人工格子膜による
磁気抵抗効果膜およびその製造方法を提供することにあ
る。
An object of the present invention is to provide a magnetoresistive film made of an artificial lattice film which does not require a lateral bias mechanism and whose resistance changes around zero magnetic field, and a method of manufacturing the same.

【0006】[0006]

【課題を解決するための手段】本発明は、基板上に非磁
性薄膜を介して積層した複数の磁性薄膜からなり、非磁
性薄膜を介して隣接する一方の軟磁性薄膜に反強磁性薄
膜が隣接して設けてあり、この反強磁性薄膜の交換結合
磁界をHr 、他方の軟磁性薄膜の保磁力をHC2、外部
磁場印加方向の異方性磁界をHK2としたとき、HC2<H
K2<Hr であることを特徴とする磁気抵抗効果膜であ
る。
The present invention comprises a plurality of magnetic thin films laminated on a substrate via a non-magnetic thin film, and an antiferromagnetic thin film is provided on one of the adjacent soft magnetic thin films via the non-magnetic thin film. The exchange coupling magnetic field of the antiferromagnetic thin film is H r , the coercive force of the other soft magnetic thin film is H C2 , and the anisotropic magnetic field in the direction of applying an external magnetic field is H K2 . When H C2 <H
A magnetoresistive film which is a K2 <H r.

【0007】本発明の磁気抵抗効果膜に用いる磁性体の
種類は特に制限されないが、具体的には、Fe,Co,
Mn,Cr,Dy,Er,Nd,Tb,Tm,Ge,G
d等が好ましい。また、これらの元素を含む合金や化合
物としては、例えば、Fe−Si,Fe−Ni, Fe−
Co,Fe−Gd,Ni−Fe−Co,Ni−Fe−M
o,Fe−Al−Si(センダスト),Fe−Y,Fe
−Mn,Cr−Sb,Co系アモルファス, Co−P
t,Fe−Al,Fe−C,Mn−Sb,Ni−Mn,
Co−O,Ni−O,Fe−O, Ni−F,フェライト
等が好ましい。
[0007] The type of magnetic material used for the magnetoresistive film of the present invention is not particularly limited, but specifically, Fe, Co,
Mn, Cr, Dy, Er, Nd, Tb, Tm, Ge, G
d and the like are preferable. Examples of alloys and compounds containing these elements include, for example, Fe-Si, Fe-Ni, Fe-
Co, Fe-Gd, Ni-Fe-Co, Ni-Fe-M
o, Fe-Al-Si (Sendust), Fe-Y, Fe
-Mn, Cr-Sb, Co-based amorphous, Co-P
t, Fe-Al, Fe-C, Mn-Sb, Ni-Mn,
Co-O, Ni-O, Fe-O, Ni-F, ferrite and the like are preferable.

【0008】本発明では、これらの磁性体から選択して
磁性薄膜を形成する。特に、反強磁性薄膜と隣接してい
ない磁性薄膜の異方性磁界HK2が保磁力HC2より大きい
材料を選択することにより実現できる。さらに、異方性
磁界は、膜厚を薄くすることによっても大きくできる。
例えば、NiFeを10オングストローム程度の厚さに
すると、異方性磁界HK2を保磁力HC2よりも大きくする
ことができる。
In the present invention, a magnetic thin film is formed by selecting from these magnetic materials. In particular, this can be realized by selecting a material in which the anisotropic magnetic field H K2 of the magnetic thin film not adjacent to the antiferromagnetic thin film is larger than the coercive force H C2 . Further, the anisotropic magnetic field can be increased by reducing the film thickness.
For example, when NiFe has a thickness of about 10 angstroms, the anisotropic magnetic field H K2 can be made larger than the coercive force H C2 .

【0009】また、一般的に磁性薄膜は、パターニング
してパターン幅を狭くすると、反磁界による形状異方性
d があらわれる。この形状異方性Hd は、パターン幅
Wに反比例し、パターン幅Wを狭くすると大きくなる。
人工格子磁性薄膜の場合も同様に形状異方性Hd があら
われる。この他に人工格子磁性薄膜の場合、磁性層と非
磁性層とが交互に積層されており、膜端で磁性層同士が
静磁結合している。この静磁結合の大きさもパターン幅
Wを狭めるに従って影響が大きくなる。実際には、これ
らの影響によりパターン幅Wを狭くすることで磁性層の
磁化反転する磁場領域がシフトし、異方性磁界HK2を保
磁力HC2よりも大きくすることができる。
Further, generally the magnetic thin film, when a narrow pattern width by patterning, shape anisotropy H d by demagnetizing field appears. The shape anisotropy H d is inversely proportional to the pattern width W, and increases as the pattern width W decreases.
In the case of the artificial lattice magnetic thin Similarly shape anisotropy H d appears. In addition, in the case of an artificial lattice magnetic thin film, magnetic layers and non-magnetic layers are alternately laminated, and the magnetic layers are magnetostatically coupled at the film ends. The effect of the magnetostatic coupling also increases as the pattern width W decreases. Actually, by reducing the pattern width W due to these effects, the magnetic field region of the magnetic layer where the magnetization is reversed is shifted, and the anisotropic magnetic field H K2 can be made larger than the coercive force H C2 .

【0010】この磁気抵抗効果膜をハードディスク装置
(HDD)等の磁界信号読取用MRヘッドとして用いる
場合には、MR素子部はエッチングにより微小寸法に形
成される。このとき、MR素子部のパターン幅Wとトラ
ック幅TW との比で定義されるアスペクト比(W/T
W )によっても磁性層の磁化反転する磁場領域がシフト
し、異方性磁界HK2を保磁力HC2よりも大きくすること
ができる。
When this magnetoresistive film is used as an MR head for reading a magnetic field signal in a hard disk drive (HDD) or the like, the MR element portion is formed to a very small size by etching. At this time, the aspect ratio (W / T) defined by the ratio between the pattern width W of the MR element portion and the track width T W.
W ) also shifts the magnetic field region of the magnetic layer where the magnetization is reversed, so that the anisotropic magnetic field H K2 can be made larger than the coercive force H C2 .

【0011】さらに、このような磁気抵抗効果膜は、磁
性薄膜の磁化容易軸が印加される信号磁界方向に対して
垂直方向になっており、印加信号磁界方向における磁性
薄膜の保磁力が、HC2<HK2<Hr になるように前記磁
性薄膜を磁場中成膜することにより作製できる。この成
膜は、蒸着法,スパッタリング法,分子線エピタキシー
法(MBE)等の方法で行う。また、基板としては、ガ
ラス,Si,MgO,GaAs,フェライト,CaTi
O等を用いることができる。
Further, in such a magnetoresistive film, the axis of easy magnetization of the magnetic thin film is perpendicular to the direction of the applied signal magnetic field, and the coercive force of the magnetic thin film in the applied signal magnetic field direction is H. C2 <the magnetic thin film such that H K2 <H r can be produced by film formation in a magnetic field. This film formation is performed by a method such as a vapor deposition method, a sputtering method, and a molecular beam epitaxy method (MBE). Further, as the substrate, glass, Si, MgO, GaAs, ferrite, CaTi
O or the like can be used.

【0012】各磁性薄膜の膜厚の上限は、200オング
ストロームである。一方、磁性薄膜の厚さの下限は特に
ないが、4オングストローム以下ではキュリー点が室温
より低くなり実用性がなくなる。また、磁性薄膜の厚さ
を4オングストローム以上にすれば、膜厚を均一に保つ
ことが容易で、かつ膜厚も良好となり、飽和磁化の大き
さが小さくなりすぎることもない。さらに、磁性薄膜の
膜厚を200オングストローム以上としても効果は落ち
ないが、膜厚の増加に伴って効果が増大することもな
く、膜の作製上無駄が多くなり不経済である。
The upper limit of the thickness of each magnetic thin film is 200 angstroms. On the other hand, there is no particular lower limit on the thickness of the magnetic thin film. Further, when the thickness of the magnetic thin film is 4 Å or more, it is easy to keep the film thickness uniform, the film thickness becomes good, and the magnitude of the saturation magnetization does not become too small. Further, even if the thickness of the magnetic thin film is 200 Å or more, the effect does not decrease. However, the effect does not increase with an increase in the film thickness, and waste of the film is increased, which is uneconomical.

【0013】なお、磁気抵抗効果素子中に存在する磁性
薄膜の磁気特性を直接測定することは不可能なため、通
常、次のようにして測定する。
Since it is impossible to directly measure the magnetic properties of the magnetic thin film existing in the magnetoresistive element, it is usually measured as follows.

【0014】まず、測定すべき磁性薄膜を、磁性薄膜の
合計厚さが200〜400オングストローム程度になる
まで非磁性薄膜と交互に蒸着して測定用試料を作製し、
これについて磁気特性を測定する。この場合、磁性薄膜
の厚さ、非磁性薄膜の厚さおよび非磁性薄膜の組成は、
磁気抵抗効果測定素子におけるものと同じにする。
First, a magnetic thin film to be measured is alternately deposited with a non-magnetic thin film until the total thickness of the magnetic thin film becomes about 200 to 400 angstroms to prepare a measurement sample.
The magnetic properties are measured for this. In this case, the thickness of the magnetic thin film, the thickness of the non-magnetic thin film and the composition of the non-magnetic thin film are as follows:
The same as that in the magnetoresistance effect measuring element is used.

【0015】非磁性薄膜は、保磁力の異なる磁性薄膜の
膜間の磁気相互作用を弱める役割をはたす材料であり、
その種類には特に制限はなく、各種金属ないし半金属非
磁性体および非金属非磁性体から適宜選択すればよい。
The non-magnetic thin film is a material that plays a role in weakening magnetic interaction between films of magnetic thin films having different coercive forces.
The type is not particularly limited, and may be appropriately selected from various metals or semimetal non-magnetic materials and non-metal non-magnetic materials.

【0016】例えば、金属非磁性体としては、Au,A
g,Cu,Pt,Al,Mg,Mo,Zn,Nb,T
a,V,Hf,Sb,Zr,Ga,Ti,Sn,Pb等
およびこれらの合金が好ましく、また、半金属非磁性体
としては、SiO2 ,SiO,SiN,Al23 ,Z
nO,MgO,TiN等およびこれらに別の元素を添加
したものが好ましい。
For example, as the metal non-magnetic material, Au, A
g, Cu, Pt, Al, Mg, Mo, Zn, Nb, T
a, V, Hf, Sb, Zr, Ga, Ti, Sn, Pb, and the like, and alloys thereof are preferable. As the non-metallic nonmagnetic material, SiO 2 , SiO, SiN, Al 2 O 3 , Z
nO, MgO, TiN, etc. and those obtained by adding another element to them are preferable.

【0017】また、非磁性薄膜の厚さは、200オング
ストローム以下が望ましい。一般に非磁性薄膜の膜厚が
200オングストロームを超えると、非磁性薄膜により
抵抗が決定されてしまい、スピンに依存する散乱効果が
相対的に小さくなり、その結果、磁気抵抗変化率が小さ
くなってしまう。一方、非磁性薄膜の厚さが4オングス
トローム以下になると、磁性薄膜間の磁気相互作用が大
きくなりすぎ、また、磁気的な直接接触状態(ピンホー
ル)の発生が避けられないことから、両磁性薄膜の磁化
方向が相異なる状態が生じにくくなる。
The thickness of the non-magnetic thin film is desirably 200 Å or less. In general, when the thickness of the non-magnetic thin film exceeds 200 angstroms, the resistance is determined by the non-magnetic thin film, and the spin-dependent scattering effect becomes relatively small. As a result, the magnetoresistance change rate becomes small. . On the other hand, if the thickness of the non-magnetic thin film is less than 4 angstroms, the magnetic interaction between the magnetic thin films becomes too large, and the occurrence of a magnetic direct contact state (pinhole) is inevitable. A state in which the magnetization directions of the thin films are different from each other is less likely to occur.

【0018】磁性薄膜および非磁性薄膜の膜厚は、透過
型電子顕微鏡,走査型電子顕微鏡,オージェ電子分光分
析等により測定することができる。また、これらの薄膜
の結晶構造は、X線回折や高速電子線回折等により確認
することができる。
The thicknesses of the magnetic thin film and the non-magnetic thin film can be measured by a transmission electron microscope, a scanning electron microscope, Auger electron spectroscopy, or the like. The crystal structures of these thin films can be confirmed by X-ray diffraction, high-speed electron beam diffraction, or the like.

【0019】本発明の磁気抵抗効果膜は、人工格子膜の
繰り返し積層回数Nに関して特に制限はなく、目的とす
る磁気抵抗変化率等に応じて適宜選定すればよいが、積
層数が増加するに従って、磁気抵抗変化率も増加する
が、生産性が悪くなる。また、繰り返し積層回数Nが大
きくなりすぎると、素子全体の抵抗値が低くなり実用上
の不便が生じることから、通常、繰り返し積層回数Nを
50以下とするのが好ましい。
The number of repetitive laminations N of the artificial lattice film of the magnetoresistive film of the present invention is not particularly limited, and may be appropriately selected according to a desired magnetoresistance change rate. However, the rate of change in magnetoresistance also increases, but productivity decreases. Further, if the number N of repeated laminations is too large, the resistance value of the entire element becomes low and practical inconvenience occurs. Therefore, the number N of repeated laminations is usually preferably 50 or less.

【0020】なお、最上層の磁性薄膜の表面には、保護
のための窒化珪素や酸化珪素等の酸化防止膜を設けても
よく、あるいは電極を引き出すための金属導電層を設け
てもよい。
The surface of the uppermost magnetic thin film may be provided with an antioxidant film such as silicon nitride or silicon oxide for protection, or a metal conductive layer for leading out electrodes.

【0021】[0021]

【作用】本発明の磁気抵抗効果膜では、非磁性薄膜を介
して一方の軟磁性薄膜に隣接して反強磁性薄膜が成膜さ
れ、交換結合磁界が働いていることが必須である。その
理由は、本発明の原理が隣合った磁性薄膜の磁化の向き
が互いに逆向きに向いたとき、最大の抵抗値を示すこと
にあるからである。すなわち、本発明の磁気抵抗効果膜
は、図1で示すように、外部磁場Hの強さが、軟磁性薄
膜5(図3参照)の保磁力HC2と反強磁性薄膜の交換結
磁界Hr との間(HC2<H<Hr)であるとき、隣り
合った軟磁性薄膜の磁化の方向が互いに逆向きになり、
磁気抵抗効果膜の抵抗値が増大する。
In the magnetoresistive film of the present invention, it is essential that an antiferromagnetic thin film is formed adjacent to one soft magnetic thin film via a nonmagnetic thin film, and that an exchange coupling magnetic field works. The reason is that the principle of the present invention is to exhibit the maximum resistance value when the magnetization directions of adjacent magnetic thin films are opposite to each other. That is, in the magnetoresistive film of the present invention, as shown in FIG. 1, the strength of the external magnetic field H is such that the coercive force H C2 of the soft magnetic thin film 5 (see FIG. 3) and the exchange coupling of the antiferromagnetic thin film.
When it is between the combined magnetic field H r (H C2 <H <H r ), the directions of magnetization of the adjacent soft magnetic thin films are opposite to each other,
The resistance value of the magnetoresistive film increases.

【0022】また、印加される信号磁界方向の異方性磁
界HK2が軟磁性薄膜の保磁力HC2よりも大きいことが必
須である。しかしながら、保磁力HC2交換結合磁界H
r よりも大きくなると、磁化の向きの反平行状態が得
られず、充分な抵抗変化が得られなくなって、好ましく
ない。
Further, it is essential that the anisotropic magnetic field H K2 in the direction of the applied signal magnetic field is larger than the coercive force H C2 of the soft magnetic thin film. However, the coercive force H C2 is the exchange coupling magnetic field H
If it is larger than r , an antiparallel state of the magnetization direction cannot be obtained, and a sufficient resistance change cannot be obtained, which is not preferable.

【0023】次に、外部磁場,保磁力および磁化の方向
の関係について説明する。上述したように、反強磁性薄
膜の交換結合磁界をHr 、軟磁性薄膜5の保磁力をH
C2、印加される信号磁界方向の異方性磁界をHK2とし
(ただし、0<HC2<HK2<Hr)、まず最初に、外部
磁場HをH<−HK2となるように印加しておく(図1参
照)。この[領域A]では、図3に示す軟磁性薄膜3お
よび軟磁性薄膜5の磁化方向は、外部磁場Hと同じ−
(負)方向に揃って向いている。なお、図1に示す矢印
3およびに矢印5は、図3に示す軟磁性薄膜3および軟
磁性薄膜5の磁化方向をそれぞれ表わすものとする。
Next, the relationship among the external magnetic field, the coercive force, and the direction of magnetization will be described. As described above, the exchange coupling magnetic field of the antiferromagnetic thin film is H r , and the coercive force of the soft magnetic thin film 5 is H r .
C2 , the anisotropic magnetic field in the direction of the applied signal magnetic field is H K2 (where 0 <H C2 <H K2 <H r ). First, the external magnetic field H is applied so that H <−H K2. (See FIG. 1). In this [region A], the magnetization directions of the soft magnetic thin film 3 and the soft magnetic thin film 5 shown in FIG.
They are aligned in the (negative) direction. Note that arrows 3 and 5 shown in FIG. 1 represent the magnetization directions of the soft magnetic thin film 3 and the soft magnetic thin film 5 shown in FIG. 3, respectively.

【0024】ここで、外部磁場を弱めていくと、−HK2
<H<HK2の[領域B]では、軟磁性薄膜5の磁化は連
続的に回転し始め、続いて、HK2<H<Hr の[領域
C]では、軟磁性薄膜5が完全に磁化反転し終わり、軟
磁性薄膜3および軟磁性薄膜5の磁化方向は互いに逆向
きになる。さらに、外部磁場を大きくしたHr <Hの
[領域D]では、軟磁性薄膜3の磁化も反転し、軟磁性
薄膜3および軟磁性薄膜5の磁化方向は+(正)方向に
揃って向く。
Here, when the external magnetic field is weakened, -H K2
In [region B] of <H <H K2 , the magnetization of the soft magnetic thin film 5 starts to rotate continuously. Subsequently, in [region C] of H K2 <H <H r , the soft magnetic thin film 5 is completely rotated. Upon completion of the magnetization reversal, the magnetization directions of the soft magnetic thin film 3 and the soft magnetic thin film 5 become opposite to each other. Further, in the [region D] of H r <H where the external magnetic field is increased, the magnetization of the soft magnetic thin film 3 is also reversed, and the magnetization directions of the soft magnetic thin film 3 and the soft magnetic thin film 5 are aligned in the + (positive) direction. .

【0025】この磁気抵抗効果膜の抵抗は、軟磁性薄膜
3と軟磁性薄膜5との相対的な磁化方向によって変化
し、[領域B]でゼロ磁場前後で直線的に変化し、[領
域C]で最大の値(RMAX )を持つようになる。すなわ
ち、このような膜ではゼロ磁場前後で直線性のよい抵抗
変化を有するとともに、横バイアス機構の不要な磁気抵
抗効果膜が得られる。
The resistance of the magnetoresistive film changes depending on the relative magnetization direction of the soft magnetic thin film 3 and the soft magnetic thin film 5, and changes linearly around a zero magnetic field in [region B], and changes in [region C]. ] Has the maximum value (R MAX ). That is, with such a film, a magnetoresistive film having a linear change in resistance around zero magnetic field and requiring no lateral bias mechanism can be obtained.

【0026】[0026]

【実施例】次に、本発明について図面を参照して説明す
る。
Next, the present invention will be described with reference to the drawings.

【0027】図2は、本発明の一実施例である磁気抵抗
効果膜の構成を示す断面図である。本実施例の磁気抵抗
効果膜は、図2に示すように、金属薄膜6を形成したガ
ラス基板7上に人工格子膜1が形成されており、人工格
子膜1は、軟磁性薄膜M1 ,M2 ,……,Mn-1 ,Mn
と、隣接する2層の軟磁性薄膜の間に非磁性薄膜N1
2 ,……,Nn-2 ,Nn-1 と、反強磁性膜AMとを備
えている。そして、これらは磁性薄膜M1 ,非磁性薄膜
1 ,磁性薄膜M2 ,……,非磁性薄膜Nn-1,磁性薄
膜Mn ,反強磁性膜AMの順に積層される。
FIG. 2 is a sectional view showing the structure of a magnetoresistive film according to one embodiment of the present invention. Magnetoresistive film of the present embodiment, as shown in FIG. 2, the artificial lattice film 1 on the glass substrate 7 forming a metal thin film 6 is formed, an artificial lattice film 1, the soft magnetic thin film M 1, M 2 , ..., M n-1 , M n
And a non-magnetic thin film N 1 between two adjacent soft magnetic thin films,
N 2, ......, and N n-2, N n- 1, and an antiferromagnetic film AM. These are stacked in the order of a magnetic thin film M 1 , a non-magnetic thin film N 1 , a magnetic thin film M 2 ,..., A non-magnetic thin film N n−1 , a magnetic thin film M n , and an antiferromagnetic film AM.

【0028】次に、本発明の磁気抵抗効果膜の具体的な
実験結果について、図3を参照して説明する。図3は、
本発明の磁気抵抗効果膜の具体例の構成を示す側面図で
ある。 (実施例1)まず、基板としてガラス基板7を用い、こ
れを超高真空蒸着装置の中に入れ、10-9〜10-10
orrまで真空引きを行う。基板温度は室温に保持しガ
ラス基板7を回転させながら、金属薄膜6としてCr薄
膜を50オングストロームの厚さで形成し、次いで、以
下の組成から成る人工格子膜1を約0.3オングストロ
ーム/秒の成膜速度で成膜を行った。
Next, specific experimental results of the magnetoresistive film of the present invention will be described with reference to FIG. FIG.
It is a side view which shows the structure of the specific example of the magnetoresistive film of this invention. (Example 1) First, a glass substrate 7 was used as a substrate, placed in an ultra-high vacuum evaporation apparatus, and 10 -9 to 10 -10 t.
Vacuum to orr. The substrate temperature is kept at room temperature, while rotating the glass substrate 7, a Cr thin film is formed as the metal thin film 6 to a thickness of 50 angstroms, and then the artificial lattice film 1 having the following composition is formed at about 0.3 angstroms / sec. Film formation was performed at a film formation speed of.

【0029】人工格子膜1は、軟磁性薄膜5,非磁性薄
膜4,軟磁性薄膜3および反強磁性膜2の順に成膜され
ており、例えば、 Cr(50)/NiFe(20)/Cu(55) /NiFe(20)/FeMn(50) と表示されている場合は、ガラス基板7上に金属薄膜6
として50オングストローム厚のCr膜を形成した後、
20オングストローム厚のNi80%−Fe20%の軟
磁性薄膜5、55オングストローム厚のCuの非磁性薄
膜4、20オングストローム厚のNi80%−Fe20
%の軟磁性薄膜3、および50オングストローム厚のF
eMnの反強磁性薄膜2を順次蒸着することを意味して
いる。
The artificial lattice film 1 is formed of a soft magnetic thin film 5, a nonmagnetic thin film 4, a soft magnetic thin film 3, and an antiferromagnetic film 2 in the order of, for example, Cr (50) / NiFe (20) / Cu When (55) / NiFe (20) / FeMn (50) is displayed, the metal thin film 6
After forming a 50 Å thick Cr film as
20 angstrom thick Ni80% -Fe20% soft magnetic thin film 5, 55 angstrom thick nonmagnetic thin film 4, 20 angstrom thick Ni80% -Fe20
% Soft magnetic thin film 3 and 50 Å thick F
This means that the antiferromagnetic thin film 2 of eMn is sequentially deposited.

【0030】また、磁化の測定は振動型磁力計により測
定するとともに、抵抗測定は試料から0.3×10mm
の形状の試料を作製し、外部磁界Hを面内に電流の向き
と垂直方向になるように印加しながら、−500〜50
0Oe(エルステッド)まで変化させたときの抵抗を4
端子法により測定し、その抵抗値から磁気抵抗変化率Δ
R/Rを求めた。この磁気抵抗変化率ΔR/Rは、最大
抵抗値をRMAX ,最小抵抗値をRMIN とし、次式により
計算した。
The magnetization was measured by a vibrating magnetometer, and the resistance was measured by 0.3 × 10 mm from the sample.
While applying an external magnetic field H in the plane so as to be perpendicular to the direction of the current, -500 to 50
The resistance when changing to 0 Oe (Oersted) is 4
Measured by the terminal method, the rate of change in magnetoresistance Δ
R / R was determined. The magnetoresistance change rate ΔR / R was calculated by the following equation, with the maximum resistance value being R MAX and the minimum resistance value being R MIN .

【0031】 [0031]

【0032】ここで、作製した人工格子膜は、 Cr(50)/NiFe(8)/Cu(55) /NiFe(20)/FeMn(50) Cr(50)/NiFe(10)/Cu(55) /NiFe(20)/FeMn(50) Cr(50)/NiFe(20)/Cu(55) /NiFe(20)/FeMn(50) Cr(50)/NiFe(25)/Cu(55) /NiFe(20)/FeMn(50) の4種類である。軟磁性のNiFe層が8〜15オング
ストローム厚にした人工格子膜では、NiFe層の異方
性磁界HK が保磁力HC より大きくなるような軟磁性層
が得られる。この人工格子膜のB−H曲線は、図1に示
すようになり、ゼロ磁場前後で直線性よく抵抗変化する
膜が得られた。
Here, the manufactured artificial lattice film is composed of Cr (50) / NiFe (8) / Cu (55) / NiFe (20) / FeMn (50) Cr (50) / NiFe (10) / Cu (55) / NiFe (20) / FeMn (50) Cr (50) / NiFe (20) / Cu (55) / NiFe (20) / FeMn (50) Cr (50) / NiFe (25) / Cu (55) / NiFe (20) / FeMn (50). In an artificial lattice film in which the soft magnetic NiFe layer has a thickness of 8 to 15 angstroms, a soft magnetic layer in which the anisotropic magnetic field H K of the NiFe layer is larger than the coercive force H C is obtained. The BH curve of this artificial lattice film was as shown in FIG. 1, and a film having a linearly changing resistance around a zero magnetic field was obtained.

【0033】また、NiFe層が25オングストローム
厚の試料では、NiFe 層の異方性磁界HK が保磁力H
C とほぼ同程度となり、ゼロ磁場前後で直線性よく抵抗
変化する膜は得られなかった (実施例2)実施例1の場合と同様に、以下の人工格子
膜を作成した。
Further, in the NiFe layer 25 angstrom sample, the anisotropy of the NiFe layer magnetic field H K is the coercive force H
C was almost the same, and a film having a linearly variable resistance before and after the zero magnetic field was not obtained. (Example 2) As in the case of Example 1, the following artificial lattice film was prepared.

【0034】 Cr(50)/NiFe(10)/Cu(22) /NiFe(20)/FeMn(50) そして、この上に電極を形成するためにAuを2400
オングストローム蒸着した。さらに、この人工格子膜上
にレジストを塗布し、さまざまのMRパターン幅を有す
るMRパターンにドライエッチング装置を用いて微細加
工を施した後、MRセンシング部のAu層を除去して抵
抗測定用試料とした。
Cr (50) / NiFe (10) / Cu (22) / NiFe (20) / FeMn (50) Then, Au is formed on this to form an electrode 2400
Angstrom was deposited. Further, a resist is applied on the artificial lattice film, and the MR patterns having various MR pattern widths are subjected to fine processing using a dry etching apparatus. Then, the Au layer of the MR sensing part is removed to obtain a resistance measurement sample. And

【0035】磁気抵抗測定した人工格子膜のセンシング
部の大きさは、 3×200 μm 5×200 μm 10×200 μm 20×200 μm の4種類である。MRパターン幅を30μm以下にした
人工格子膜では、膜の反磁界および人工格子膜の各磁性
層同士が静磁結合した影響でNiFe層の見かけの異方
性磁界HK が保磁力HC より大きくなる。この人工格子
膜のMR曲線はMRパターン幅に従い、直線的に抵抗変
化している領域が連続的にシフトしていることがわかっ
た。
The sizes of the sensing portions of the artificial lattice film whose magnetoresistance was measured are four types of 3 × 200 μm 5 × 200 μm 10 × 200 μm 20 × 200 μm. In an artificial lattice film having an MR pattern width of 30 μm or less, the apparent anisotropic magnetic field H K of the NiFe layer is larger than the coercive force H C due to the demagnetizing field of the film and the effect of the magnetostatic coupling between the magnetic layers of the artificial lattice film. growing. It was found that the MR curve of the artificial lattice film continuously shifted in the region where the resistance was linearly changed according to the MR pattern width.

【0036】特に、この試料では、MRパターン幅が5
μmのとき、ゼロ磁場前後で直線性よく抵抗変化する膜
が得られた。また、MRパターン幅が30μm以上の試
料では反磁界,静磁結合の影響が相対的に小さくなり、
ゼロ磁場前後で直線性よく抵抗変化する膜は得られなか
った。 (実施例3)NiFe膜は、磁場中で蒸着(成膜)する
ことにより一軸異方性がつくことが一般的に知られてい
る。この磁場中蒸着により一軸異方性を有するNiFe
膜の困難軸方向に外部磁場を印加すると、このNiFe
層のB−H曲線は、やはり異方性磁界HK が保磁力HC
よりも大きくなるような形状になる。従って、磁場中蒸
着により外部磁場印加方向が磁化困難軸となっているよ
うな人工格子膜でも、ゼロ磁場前後で直線性よく抵抗変
化する磁気抵抗効果膜が得られる。
In particular, in this sample, the MR pattern width is 5
At the time of μm, a film having a linearly changing resistance before and after the zero magnetic field was obtained. On the other hand, in a sample having an MR pattern width of 30 μm or more, the influence of the demagnetizing field and the magnetostatic coupling becomes relatively small.
A film with a linearly changing resistance before and after the zero magnetic field was not obtained. (Example 3) It is generally known that a NiFe film has uniaxial anisotropy by being deposited (formed) in a magnetic field. NiFe having uniaxial anisotropy by deposition in this magnetic field
When an external magnetic field is applied in the hard axis direction of the film, this NiFe
The BH curve of the layer also shows that the anisotropic magnetic field H K has a coercive force H C
The shape becomes larger than that. Therefore, even with an artificial lattice film in which the direction of application of the external magnetic field is a hard axis due to deposition in a magnetic field, a magnetoresistive film having a linearly variable resistance around a zero magnetic field can be obtained.

【0037】具体的には、ガラス基板7の両側にSmC
o磁石を配置し、ガラス基板7と平行に数十Oe(エル
ステッド)程度の外部磁場が印加されているような状態
で人工格子膜の蒸着を行った。この試料のB−H曲線を
測定すると、蒸着中磁場印加方向がNiFe層の磁化容
易軸となり、異方性磁界HK は保磁力HC に比べてそれ
ほど大きくならない。しかしながら、蒸着中の磁場印加
方向と垂直方向が膜の磁化困難軸となっており、困難軸
方向に外部磁場を印加する場合には、この人工格子膜の
抵抗は、ゼロ磁場前後で直線性よく変化をすることがわ
かった。
More specifically, SmC
An o-magnet was arranged, and the artificial lattice film was deposited in a state where an external magnetic field of about several tens of Oe (Oersted) was applied in parallel with the glass substrate 7. When the BH curve of this sample is measured, the direction of application of the magnetic field during vapor deposition becomes the axis of easy magnetization of the NiFe layer, and the anisotropic magnetic field H K does not become much larger than the coercive force H C. However, the magnetization direction of the film is perpendicular to the direction in which the magnetic field is applied during deposition, and when an external magnetic field is applied in the direction of the hard axis, the resistance of the artificial lattice film has good linearity around the zero magnetic field. It turned out to change.

【0038】異方性磁界HK ,保磁力HC は軟磁性材
料の軟磁気特性,異方性係数によって変化する。NiF
eMo材はNiFe材よりも数段優れた軟磁気特性を示
す。保磁力HC はNiFe材よりもよくなり、NiF
eMo材では、異方性磁界HK は保磁力HC よりも大
きくなり、例えば、Cr(50)/NiFeMo(2
0)/Cu(55)/NiFe(20)/FeMn(5
0)から成る人工格子膜では、同様にゼロ磁場前後で抵
抗変化する横バイアス機構の不要な磁気抵抗効果膜が得
られることがわかる。
The anisotropic magnetic field H K and the coercive force H C change depending on the soft magnetic properties and the anisotropy coefficient of the soft magnetic material. NiF
The eMo material shows soft magnetic properties that are several steps better than the NiFe material. The coercive force H C is better than that of the NiFe material,
In the eMo material, the anisotropic magnetic field H K is larger than the coercive force H C , and is, for example, Cr (50) / NiFeMo (2
0) / Cu (55) / NiFe (20) / FeMn (5
It can be seen that a magnetoresistive film which does not require a lateral bias mechanism which similarly changes resistance around zero magnetic field can be obtained with the artificial lattice film composed of 0).

【0039】[0039]

【発明の効果】以上説明したように本発明によれば、
バイアス機構が不要で、かつゼロ磁場前後で抵抗変化す
る人工格子による磁気抵抗効果膜を得ることができる。
As described above, according to the present invention, the horizontal
It is possible to obtain a magnetoresistive film made of an artificial lattice that does not require a bias mechanism and changes its resistance around zero magnetic field.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の磁気抵抗効果膜の作用原理を説明する
図である。
FIG. 1 is a diagram illustrating the operation principle of a magnetoresistive film according to the present invention.

【図2】本発明の磁気抵抗効果膜の構成を示す側面図で
ある。
FIG. 2 is a side view showing a configuration of a magnetoresistive film of the present invention.

【図3】本発明の磁気抵抗効果膜の具体例の構成を示す
側面図である。
FIG. 3 is a side view showing a configuration of a specific example of a magnetoresistive film of the present invention.

【符号の説明】[Explanation of symbols]

1 人工格子膜 2,AM 反強磁性薄膜 3,5,M1 ,M2 ,…,Mn-1 ,Mn 軟磁性薄膜 4,N1 ,N2 ,…,Nn-2 ,Nn-1 非磁性薄膜 6 金属薄膜 7 ガラス基板1 superlattice 2, AM antiferromagnetic thin 3,5, M 1, M 2, ..., M n-1, M n soft magnetic thin film 4, N 1, N 2, ..., N n-2, N n -1 Non-magnetic thin film 6 Metal thin film 7 Glass substrate

フロントページの続き (51)Int.Cl.6 識別記号 FI H01L 43/12 G01R 33/06 R Continued on the front page (51) Int.Cl. 6 Identification code FI H01L 43/12 G01R 33/06 R

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 基板上に非磁性薄膜を介して積層した複
数の磁性薄膜から成り、前記非磁性薄膜を介して隣接す
る一方の軟磁性薄膜に反強磁性薄膜が隣接して設け、こ
の反強磁性薄膜の交換結合磁界をHr 、他方の軟磁性
薄膜の保磁力をHC2、印加される信号磁界方向の異方性
磁界をHK2としたとき、HC2<HK2<Hrであることを
特徴とする磁気抵抗効果膜。
An antiferromagnetic thin film is provided adjacent to one of the soft magnetic thin films adjacent to the soft magnetic thin film via the nonmagnetic thin film. When the exchange coupling magnetic field of the ferromagnetic thin film is H r , the coercive force of the other soft magnetic thin film is H C2 , and the anisotropic magnetic field in the direction of the applied signal magnetic field is H K2 , H C2 <H K2 <H r A magnetoresistive effect film, characterized in that:
【請求項2】 請求項1記載の磁気抵抗効果膜のパター
ン幅が、30μm以下であることを特徴とする磁気抵抗
効果膜。
2. A magnetoresistive film according to claim 1, wherein the pattern width of the magnetoresistive film is 30 μm or less .
【請求項3】 請求項1または2記載の磁気抵抗効果膜
の磁気抵抗素子部の(パターン幅/トラック幅)で定義
されるアスペクト比が、0.1〜100であることを特
徴とする磁気抵抗効果膜。
3. The magnetic device according to claim 1, wherein an aspect ratio defined by (pattern width / track width) of the magnetoresistive element portion of the magnetoresistive film is 0.1 to 100. Resistive film.
【請求項4】 請求項1から3のいずれか1項記載の軟
磁性薄膜が、NiFe合金,NiFeMo合金もしくは
これらを主成分とする合金から成ることを特徴とする磁
気抵抗効果膜。
4. A magnetoresistive film, wherein the soft magnetic thin film according to claim 1 is made of a NiFe alloy, a NiFeMo alloy, or an alloy containing these as a main component.
【請求項5】 請求項1記載の磁気抵抗効果膜の製造方
法であって、磁性薄膜の磁化容易軸が印加される信号磁
界方向に対して垂直方向であり、かつ印加信号磁界方向
の磁性薄膜の各々の保磁力がHC2<HK2<Hr になる
ように前記磁性薄膜を磁場中成膜することを特徴とする
磁気抵抗効果膜の製造方法。
5. The method of manufacturing a magnetoresistive film according to claim 1, wherein the axis of easy magnetization of the magnetic thin film is perpendicular to the direction of the applied signal magnetic field and is in the direction of the applied signal magnetic field. Forming the magnetic thin film in a magnetic field such that the coercive force of each of the above is H C2 <H K2 <H r .
【請求項6】 請求項5記載の磁気抵抗効果膜の製造方
法において、前記磁性薄膜の各々の保磁力がHC2<HK2
<Hr になるようにパターン幅を30μm以下にエッ
チングすることを特徴とする磁気抵抗効果膜の製造方
法。
6. The method according to claim 5, wherein the coercive force of each of the magnetic thin films is H C2 <H K2.
<Method of manufacturing the magnetoresistive film, wherein etching the pattern width to 30μm or less so that H r.
JP6082906A 1993-05-13 1994-04-21 Magnetoresistive film and method of manufacturing the same Expired - Fee Related JP2738295B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6082906A JP2738295B2 (en) 1993-05-13 1994-04-21 Magnetoresistive film and method of manufacturing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11082693 1993-05-13
JP5-110826 1993-05-13
JP6082906A JP2738295B2 (en) 1993-05-13 1994-04-21 Magnetoresistive film and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH0794326A JPH0794326A (en) 1995-04-07
JP2738295B2 true JP2738295B2 (en) 1998-04-08

Family

ID=26423932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6082906A Expired - Fee Related JP2738295B2 (en) 1993-05-13 1994-04-21 Magnetoresistive film and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2738295B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2738312B2 (en) * 1994-09-08 1998-04-08 日本電気株式会社 Magnetoresistive film and method of manufacturing the same
JPH10188235A (en) * 1996-12-26 1998-07-21 Nec Corp Magneto-resistive film and its production
JPH10198927A (en) * 1997-01-08 1998-07-31 Nec Corp Magnetoresistance effect film and its production
CN114318445B (en) * 2021-12-24 2023-06-09 珠海多创科技有限公司 Composite magnetism-gathering film

Also Published As

Publication number Publication date
JPH0794326A (en) 1995-04-07

Similar Documents

Publication Publication Date Title
JP3088478B2 (en) Magnetoresistive element
KR100192192B1 (en) Magnetoresistance effect film, a method of manufacturing the same, and magnetoresistance effect device
JP2748876B2 (en) Magnetoresistive film
JP3207477B2 (en) Magnetoresistance effect element
JP2738312B2 (en) Magnetoresistive film and method of manufacturing the same
US6295186B1 (en) Spin-valve magnetoresistive Sensor including a first antiferromagnetic layer for increasing a coercive force and a second antiferromagnetic layer for imposing a longitudinal bias
JP2690623B2 (en) Magnetoresistance effect element
JP3890893B2 (en) Spin tunnel magnetoresistive film and element, magnetoresistive sensor using the same, magnetic device, and manufacturing method thereof
JP3411626B2 (en) Magnetic multilayer film, magnetoresistive effect element, and method of manufacturing the same
JP2901501B2 (en) Magnetic multilayer film, method of manufacturing the same, and magnetoresistive element
US20030016475A1 (en) Magnetoresistive element with oxide magnetic layers and metal magnetic films deposited thereon
JPH10198927A (en) Magnetoresistance effect film and its production
JP3088519B2 (en) Magnetoresistive element
JP2743806B2 (en) Magnetoresistive film and method of manufacturing the same
JPH10188235A (en) Magneto-resistive film and its production
JP2629583B2 (en) Magnetoresistive film and method of manufacturing the same
JP2924819B2 (en) Magnetoresistive film and method of manufacturing the same
JPH09205234A (en) Magnetoresistance effect element and magnetoresistance effect sensor
JP3247535B2 (en) Magnetoresistance effect element
JP2738295B2 (en) Magnetoresistive film and method of manufacturing the same
JP3575672B2 (en) Magnetoresistance effect film and magnetoresistance effect element
EP0578196B1 (en) Magnetoresistive elements and method of fabricating the same
JP3337732B2 (en) Magnetoresistance effect element
JP2674532B2 (en) Magnetoresistive magnetic head
JPH07182629A (en) Magnetic sensor

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19971216

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090116

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100116

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110116

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110116

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140116

Year of fee payment: 16

LAPS Cancellation because of no payment of annual fees