JPH01300504A - Magnetic multilayered film - Google Patents

Magnetic multilayered film

Info

Publication number
JPH01300504A
JPH01300504A JP13032888A JP13032888A JPH01300504A JP H01300504 A JPH01300504 A JP H01300504A JP 13032888 A JP13032888 A JP 13032888A JP 13032888 A JP13032888 A JP 13032888A JP H01300504 A JPH01300504 A JP H01300504A
Authority
JP
Japan
Prior art keywords
magnetic
film
layers
layer
films
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13032888A
Other languages
Japanese (ja)
Other versions
JP2696120B2 (en
Inventor
Masakatsu Senda
正勝 千田
Yasuhiro Nagai
靖浩 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP63130328A priority Critical patent/JP2696120B2/en
Publication of JPH01300504A publication Critical patent/JPH01300504A/en
Application granted granted Critical
Publication of JP2696120B2 publication Critical patent/JP2696120B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Magnetic Heads (AREA)
  • Power Engineering (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To obtain magnetic films of a simple structure comprising a simple material by alternately laminating a plurality each of magnetic film layers substantially comprising a single element and non-magnetic layers on a substrate. CONSTITUTION:The basic constitution of magnetic multilayered films comprises the following parts: Fe layers 1, non-magnetic layers 2 and a substrate 3 comprising Al-Ti-C ceramics, Zn ferrite and the like. The Fe layers 1 and the non- magnetic layers 2 are altermately formed on the substrate 3 by, e.g., a sputtering method. The magnetic characteristics are required as a magnetic film for a thin-film magnetic head oriented toward high line recording density and high track density. The magnetic characteristics sufficiently satisfy all the characteristics such as magnetstriction in the vicinity of zero, low coercive force, high permeability, high saturation magnetic flux density and a magnetic domain controllability. In this way, the material and the structure are simplified, and the high-performance thin-film magnetic head can be formed at high yied rate.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、磁気記録装置用磁気ヘットの磁極に通した磁
性多層膜に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a magnetic multilayer film passed through the magnetic pole of a magnetic head for a magnetic recording device.

[従来の技術] 磁気記録装置の線記録密度を高くするためには、ヘッド
用磁性膜しては、■高保磁力媒体を充分磁化できるよう
、飽和磁束密度が高いこと、■良好な再生効率を得るた
めに、保磁力が低くかつ透磁率が高いこと、■応力に伴
う磁気特性の変化を抑制するため、磁歪定数が零付近で
あること。
[Prior Art] In order to increase the linear recording density of a magnetic recording device, the magnetic film for the head must: 1) have a high saturation magnetic flux density to sufficiently magnetize a high coercive force medium, and 2) have good reproduction efficiency. In order to obtain this, the coercive force must be low and the magnetic permeability must be high, and (1) the magnetostriction constant must be close to zero in order to suppress changes in magnetic properties due to stress.

が、必要とされる。is required.

従来、ヘッド用磁性膜としては、NiFe合金が使用さ
れており、また近年、NiFe合金に代わる高飽和磁束
密度磁性膜として、CoZrに僅かのReを含む合金(
あるいは、CoZ rに僅かのNbを含む合金)。
Conventionally, NiFe alloys have been used as magnetic films for heads, and in recent years, alloys containing a small amount of Re in CoZr (
Alternatively, an alloy containing a small amount of Nb in CoZ r).

FeとNiとの積層膜(J、^ppJZ 、Phys、
、 63.1136(1988))、FeとCoとの積
層膜(AppA 、Phys、Lett、。
Laminated film of Fe and Ni (J, ^ppJZ, Phys,
, 63.1136 (1988)), a laminated film of Fe and Co (AppA, Phys, Lett.

672 (1988) ) 、僅かに、Cを含むFeと
NiFeとの積層膜(IEEE Trams、Magn
、 、MAG−23、2746(1988) )が開発
されている。これらの磁性膜では、FeあるいはC。
672 (1988)), a laminated film of Fe and NiFe containing a slight amount of C (IEEE Trams, Magn
, MAG-23, 2746 (1988)) has been developed. In these magnetic films, Fe or C is used.

を主成分とするため、高い飽和磁束密度を可能とするが
、磁歪を茎付近とするためには、異種元素の添加、およ
び逆符号の磁歪をもつ磁性層との積層化といった複雑な
操作が必要であった。また、これらの磁性膜では、アモ
ルファス化、あるいは、他の磁性膜との積層化により、
保磁力の低下を実現しているため、材料および膜構造の
点から非常に複雑であるという欠点があった。
is the main component, making it possible to achieve a high saturation magnetic flux density. However, in order to make the magnetostriction near the stem, complex operations such as adding different elements and laminating magnetic layers with magnetostriction of opposite sign are required. It was necessary. In addition, these magnetic films can be made amorphous or laminated with other magnetic films.
Since this method achieves a reduction in coercive force, it has the disadvantage of being extremely complex in terms of materials and film structure.

一方、トラック密度を高くするためには、ヘッドの狭ト
ラツク化が必要であるが、磁極先端部に発生する磁区の
ため、狭トラツク化すると再生効率が急減する。これを
解決する方法として、上述した合金層あるいは複合層か
らなる磁性層を非磁性層を介して積層させ、磁性層間の
静磁結合により、磁区制御を行い、再生効率の急減を抑
制する方法が有効である。またこの方法を用いると、磁
性層が非磁性層により分離されるため、高周波領域での
渦電流損失を抑制することも可能である。
On the other hand, in order to increase the track density, it is necessary to narrow the tracks of the head, but because of the magnetic domains generated at the tips of the magnetic poles, when the tracks become narrow, the reproduction efficiency drops sharply. One way to solve this problem is to stack the magnetic layers made of the alloy layer or composite layer mentioned above with a non-magnetic layer in between, and control the magnetic domains through magnetostatic coupling between the magnetic layers, thereby suppressing the rapid decrease in regeneration efficiency. It is valid. Furthermore, when this method is used, since the magnetic layer is separated by the nonmagnetic layer, it is also possible to suppress eddy current loss in the high frequency region.

しかしさらに、高トラツク密度化をはかるためには、磁
性膜を非磁性膜を介して積層させた多層構造にする必要
があるため、従来のヘッド用磁性膜は、さらに構造上、
複雑なものとなっていた。
However, in order to further increase the track density, it is necessary to have a multilayer structure in which magnetic films are laminated with non-magnetic films interposed in between.
It was complicated.

[発明が解決しようとする課題] 上述したように、従来の磁気ヘット用磁性膜では、磁性
膜を磁歪零付近および低保磁力にするため、異種元素の
添加、異種磁性膜との積層化、アモルファス化など、材
料および構造の面で複雑な操作が行われていた。また、
高トラツク密度化をはかるためには、上記の磁性膜をさ
らに非磁性膜を介して積層する必要があるため、従来の
磁気ヘッド用磁性膜は、材料上、および構造上、非常に
複雑な膜であった。
[Problems to be Solved by the Invention] As described above, in the conventional magnetic film for a magnetic head, in order to make the magnetic film near zero magnetostriction and low coercive force, different elements are added, laminated with different kinds of magnetic films, Complex material and structural manipulations were carried out, including amorphization. Also,
In order to achieve high track density, it is necessary to further layer the above-mentioned magnetic films with non-magnetic films interposed in between. Therefore, conventional magnetic films for magnetic heads are extremely complex films in terms of materials and structure. Met.

本発明の目的は、従来開発された、薄膜磁気ヘッド用磁
性膜において問題であった構造上、材料上の複雑さを解
決した簡単な構造、材料からなる高線記録密度および高
トラツク密度磁気ヘッド用磁性膜を提供することにある
An object of the present invention is to solve the problems of structural and material complexity in conventionally developed magnetic films for thin film magnetic heads, and to solve the problems of high linear recording density and high track density magnetic heads made of simple structures and materials. The purpose of the present invention is to provide a magnetic film for use.

[課題を解決するための手段1 このような目的を達成するために、本発明は、基板上に
実質的に単一元素からなる磁性膜層と、非磁性膜層とが
交互にそれぞれ複数層積層されてなることを特徴とする
[Means for Solving the Problems 1] In order to achieve such an object, the present invention provides a structure in which a plurality of magnetic film layers and non-magnetic film layers made of substantially a single element are alternately formed on a substrate. It is characterized by being laminated.

[作 用] 本発明の磁性多層膜は、磁気ヘッド用磁性膜として必要
な磁気特性を全て有し、その構成は、磁性層には実質的
に単一元素からなる磁性層のみを使用するため、従来の
磁気ヘッド用磁性膜と比較すると、材料面および構造面
で簡単である。従って、高線記録密度および高トラツク
密度用薄膜磁気ヘッドに応用した場合、従来の磁性膜の
ヘッドに比べ、歩留りよく、高性能ヘラが実現できる。
[Function] The magnetic multilayer film of the present invention has all the magnetic properties necessary for a magnetic film for a magnetic head, and its configuration is such that the magnetic layer uses only a magnetic layer made of substantially a single element. , compared with conventional magnetic films for magnetic heads, it is simpler in terms of materials and structure. Therefore, when applied to a thin film magnetic head for high linear recording density and high track density, a high performance spatula can be realized with a higher yield than conventional magnetic film heads.

[実施例] 以下に図面を参照して本発明の詳細な説明する。[Example] The present invention will be described in detail below with reference to the drawings.

第1図に、本発明の磁性多層膜の基本構成例を示す。1
.はFe層、2.は非磁性層、3.は層−Ti−C系セ
ラミックス、Zn−フェライトなどからなる基板である
。この構造は、基板上に例えばスパッタ法によってFe
層と非磁性層を交互に形成することによって得られる。
FIG. 1 shows an example of the basic configuration of the magnetic multilayer film of the present invention. 1
.. is an Fe layer, 2. 3. is a non-magnetic layer; is a substrate made of a layer of Ti-C ceramics, Zn-ferrite, or the like. This structure is made by depositing Fe onto the substrate by sputtering, for example.
It is obtained by alternately forming layers and non-magnetic layers.

第2図はFeおよびFe/Sin、膜のX線回折プロフ
ァイルである。図(A)は厚さ1μmのFe膜、図(B
) 〜(D)はそれぞれ厚さ100n’m、lOnmお
よび5nmのFe膜と厚さ5nmのSin、膜を堆積し
たFe/5in2膜の回折プロファイルを示す。積層の
場合の層数はFe層、Sin2層とも100層である。
FIG. 2 shows the X-ray diffraction profiles of Fe and Fe/Sin films. Figure (A) is a Fe film with a thickness of 1 μm, Figure (B)
) to (D) show the diffraction profiles of Fe films with thicknesses of 100 nm, 1 Onm, and 5 nm, and a Fe/5in2 film deposited with a Sin film of 5 nm thickness, respectively. In the case of lamination, the number of layers is 100 for both the Fe layer and the Sin2 layer.

Fe膜は(110)面に強く配向しているが、Fe/S
in、膜では、Fe層膜厚の減少に伴い、(110)強
度が小さくなり、回折線の幅も拡がっているのがわかる
The Fe film is strongly oriented in the (110) plane, but Fe/S
It can be seen that in the in, film, as the thickness of the Fe layer decreases, the (110) intensity decreases and the width of the diffraction line increases.

第3図は、Fe/Sin2積層膜における(200) 
ピークと(110)ピークの強度比とFe層膜厚の関係
を示す図である。Fe層の厚さの減少に伴い、(200
)強度は増加する。(200)面の磁歪定数は正である
ことから、Fe層の厚さの変化に伴い、膜の磁歪定数も
変化することが期待される。
Figure 3 shows (200) in the Fe/Sin2 stacked film.
FIG. 3 is a diagram showing the relationship between the intensity ratio of the peak and the (110) peak and the thickness of the Fe layer. With the decrease of the thickness of the Fe layer, (200
) strength increases. Since the magnetostriction constant of the (200) plane is positive, it is expected that the magnetostriction constant of the film changes as the thickness of the Fe layer changes.

第4図は、Fe/SiO□膜中のFe層の結晶粒径とF
e層の厚さの関係を示す図である。結晶粒径は、X線回
折の半値幅から見積った。Fe層の膜厚の減少に伴い、
結晶粒径は小さくなる。
Figure 4 shows the crystal grain size of the Fe layer in the Fe/SiO□ film and the F
It is a figure which shows the relationship of the thickness of e layer. The crystal grain size was estimated from the half width of X-ray diffraction. As the thickness of the Fe layer decreases,
The grain size becomes smaller.

第5図は、第1図の構成で、非磁性層がC,Si。FIG. 5 shows the configuration shown in FIG. 1, with the nonmagnetic layer made of C and Si.

Sin□、Cu、 Au 、03.T1の場合の磁歪定
数とFe層の膜厚との関係図を示す図である。非磁性層
の膜厚は、CuはInm、 5iO7−I+は2.5n
m 、それ以外はいずれも5nmである。層数はいずれ
も100層ずつである。Fe膜の磁歪は2〜4X10−
6であるが、これらの磁性多層膜では、Fe膜厚の減少
に伴い、磁歪は正方向に変化し、Fe/CではFe層の
膜厚約5on+m以下、その他の積層膜ではFe層の膜
厚約10no+以下で磁歪τ付近が実現している。これ
ら磁歪定数の変化の原因としては、■第3図に見られる
ようなFe膜層の結晶配向の変化(Fe/5in2. 
Fe/Cu 。
Sin□, Cu, Au, 03. FIG. 3 is a diagram showing a relationship between the magnetostriction constant and the thickness of the Fe layer in the case of T1. The thickness of the nonmagnetic layer is Inm for Cu and 2.5n for 5iO7-I+.
m, and all others are 5 nm. The number of layers is 100 in each case. The magnetostriction of Fe film is 2~4X10-
6, but in these magnetic multilayer films, the magnetostriction changes in the positive direction as the Fe film thickness decreases; in Fe/C, the Fe layer thickness is approximately 5 on+m or less, and in other multilayer films, the Fe layer thickness decreases. Magnetostriction near τ is achieved with a thickness of about 10no+ or less. The cause of these changes in the magnetostriction constants is (1) Changes in the crystal orientation of the Fe film layer (Fe/5in2.
Fe/Cu.

Fe層 A It 203)、■Fe層と非磁性層との
境界に形成される正磁歪の合金層との磁歪のバランス(
Fe/C。
Fe layer A It 203), ■Magnetostriction balance with a positive magnetostrictive alloy layer formed at the boundary between the Fe layer and the nonmagnetic layer (
Fe/C.

Fe/Sj 、Fe/Ti)が考えられる。Fe/Sj, Fe/Ti) can be considered.

第6図および第7図は、保磁力とFe層の膜厚との関係
を示す図である。試料は、第5図と同様である。Fe膜
の保磁力は10エルステッド以上あるのに対し、これら
の磁性多層膜では、保磁力は低下しているのがわかる。
FIGS. 6 and 7 are diagrams showing the relationship between coercive force and the thickness of the Fe layer. The sample is the same as in FIG. It can be seen that while the coercive force of the Fe film is 10 Oe or more, the coercive force of these magnetic multilayer films is reduced.

保磁力低下の原因としては、第4図に示した結晶粒の微
細化に伴う結晶磁気異方性の低下、および第5図に示し
た磁歪定数の絶対値の低下が考えられる。
Possible causes of the decrease in coercive force include a decrease in magnetocrystalline anisotropy due to grain refinement as shown in FIG. 4, and a decrease in the absolute value of the magnetostriction constant as shown in FIG. 5.

第8図は、514)1zでの比透磁率とFe層の膜ノブ
の関係を示す図である。試料は、第5図と同様である。
FIG. 8 is a diagram showing the relationship between the relative magnetic permeability at 514)1z and the membrane knob of the Fe layer. The sample is the same as in FIG.

Fe1liの比透磁率は100程度であるのに対し、こ
れらの磁性多層膜では、比透磁率は数百から1000以
上の大きな値を示し、その変化は、第6図および第7図
の保磁力の変化にほぼ対応している。
While the relative magnetic permeability of Fe1li is about 100, the relative magnetic permeability of these magnetic multilayer films exhibits a large value ranging from several hundreds to more than 1000, and the change is reflected in the coercive force shown in Figures 6 and 7. It almost corresponds to the changes in

第9図は、飽和磁束密度とFe層の膜厚の関係を示す図
である。試料は第5図と同様である。はとんどの磁性多
層膜において1から2テスラの高い飽和磁束密度が得ら
ねている。
FIG. 9 is a diagram showing the relationship between the saturation magnetic flux density and the thickness of the Fe layer. The sample is the same as in FIG. Most magnetic multilayer films cannot achieve a saturation magnetic flux density as high as 1 to 2 Tesla.

第10図は、磁気ヘッド磁極部に見られる磁区構造であ
る。同図(八)は従来の旧Fe合金、Co7r−Re(
またはCoZr−Nb)膜等で観察される磁区構造、同
図(B)および(C)は本発明による磁性多層膜の磁区
構造である。4は180度磁壁であり、矢印は誘導磁場
の方向を示す。本発明の磁性多層膜では、磁性層が非磁
性層を介して積層されているため、図(B)のような1
80度磁壁が横に伸びた磁区構造、あるいは図(C)の
ような単磁区構造となり、記録媒体との対向部には東−
の磁区しか存在tノないのでヘッドの再生効率向上効果
が期待できる。
FIG. 10 shows the magnetic domain structure seen in the magnetic pole part of the magnetic head. The same figure (8) shows the conventional old Fe alloy, Co7r-Re (
Figures (B) and (C) show the magnetic domain structure of a magnetic multilayer film according to the present invention. 4 is a 180 degree domain wall, and the arrow indicates the direction of the induced magnetic field. In the magnetic multilayer film of the present invention, since the magnetic layers are laminated with the nonmagnetic layer interposed in between,
A magnetic domain structure in which the 80-degree domain wall extends horizontally, or a single domain structure as shown in Figure (C) is formed, and the part facing the recording medium has an east
Since there are only 2 magnetic domains, an effect of improving the reproduction efficiency of the head can be expected.

多層膜の厚さ、層数はこの多層膜が適用されるヘッドの
寸法に応じて定めればよい。
The thickness and number of layers of the multilayer film may be determined depending on the dimensions of the head to which the multilayer film is applied.

なお、非磁性層として、上記に示したもの以外に、 ■へg、 Au、 In、 Mg、 Pb(PPと合金
化しないもの) ■ Afl、、  Cr、  Mo、  Ru、  R
h、  Ge、  Mn、  Nb、  Pd、  R
e。
In addition to the above-mentioned non-magnetic layers, ■ Au, In, Mg, Pb (which does not alloy with PP) ■ Afl, Cr, Mo, Ru, R
h, Ge, Mn, Nb, Pd, R
e.

Sb、 Ta、 V、 W、 Zr(Feど合金化する
もの)を用いた磁性多層膜においても、上記と同様、磁
歪零付近、低保磁力、高透磁率、高飽和磁束密度を有し
、かつ磁区の制御が可能である。
Similarly to the above, a magnetic multilayer film using Sb, Ta, V, W, Zr (alloyed with Fe, etc.) has near zero magnetostriction, low coercive force, high magnetic permeability, and high saturation magnetic flux density. Moreover, it is possible to control magnetic domains.

[発明の効果] 以上、説明したように、本発明による磁性多層膜は、磁
性層として実質的に単一元素からなる層のみを使用し、
これを非磁性層を介して積層させた多層構造からなって
いる。その磁気特性は、高線記録密度、および高トラツ
ク密度を目積した薄115!磁気ヘッド用磁性膜として
要求される、磁歪男付近、低保磁力、高透磁率、高飽和
磁束密度、および磁区制御性等の特性を全て充分に満足
している。そのため、従来開発されたヘッド用磁性膜と
比較すると、材料上、および、構造上、簡単であるから
、高性能薄膜磁気ヘッドを歩留りよく製造できるという
利点がある。
[Effects of the Invention] As explained above, the magnetic multilayer film according to the present invention uses only a layer substantially made of a single element as a magnetic layer,
It has a multilayer structure in which these are laminated with a nonmagnetic layer interposed in between. Its magnetic properties are as thin as 115 mm with high linear recording density and high track density! It sufficiently satisfies all of the characteristics required for a magnetic film for a magnetic head, such as near magnetostriction, low coercive force, high magnetic permeability, high saturation magnetic flux density, and magnetic domain controllability. Therefore, compared with conventionally developed magnetic films for heads, this method is simpler in terms of materials and structure, and has the advantage that high-performance thin-film magnetic heads can be manufactured with high yield.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の磁性多層薄膜の実施例の構成図、 第2図はFeおよびFe/5i02膜のX線回折図、第
3図は、Fe/5in2膜における(200)と(11
0)の強度比とFetl膜厚の関係を示す特性図、第4
図は、Fe/5iQ2膜におけるfeの結晶粒径とFe
H膜厚の関係を示す特性図、 第5図は、磁歪定数とFe層の膜厚の関係を示す特性図
、 第6図および第7図は、保磁力とFe層の膜厚の関係を
示す特性図、 第8図は、比透磁率とFe層の膜厚の関係を示す特性図
、 第9図は、飽和磁束密度とFe層の膜厚の関係を示す特
性図、 第10図は、磁気ヘッド磁極部に見られる磁区構造を示
す図である。 1・・・Fe層、 2・・・非磁性層、 3・・・基板、 4・・・180度磁壁。
Figure 1 is a block diagram of an embodiment of the magnetic multilayer thin film of the present invention, Figure 2 is an X-ray diffraction diagram of Fe and Fe/5i02 films, and Figure 3 is (200) and (11
0) characteristic diagram showing the relationship between the intensity ratio and the Fetl film thickness, 4th
The figure shows the crystal grain size of Fe and Fe in the Fe/5iQ2 film.
Figure 5 is a characteristic diagram showing the relationship between H film thickness, Figure 5 is a characteristic diagram showing the relationship between magnetostriction constant and Fe layer thickness, and Figures 6 and 7 are characteristics diagrams showing the relationship between coercive force and Fe layer thickness. FIG. 8 is a characteristic diagram showing the relationship between relative magnetic permeability and Fe layer thickness. FIG. 9 is a characteristic diagram showing the relationship between saturation magnetic flux density and Fe layer thickness. , is a diagram showing a magnetic domain structure seen in the magnetic pole part of a magnetic head. DESCRIPTION OF SYMBOLS 1...Fe layer, 2...Nonmagnetic layer, 3...Substrate, 4...180 degree domain wall.

Claims (1)

【特許請求の範囲】 1)基板上に実質的に単一元素からなる磁性膜層と、非
磁性膜層とが交互にそれぞれ複数層積層されてなること
を特徴とする磁性多層膜。 2)前記磁性膜層が膜厚を薄くすることによって(20
0)に配向したFe層であることを特徴とする請求項1
に記載の磁性多層膜。 3)前記磁性膜層と前記非磁性膜層との境界に、正磁歪
をもつ合金拡散層が形成されていることを特徴とする請
求項1または2に記載の磁性多層膜。
[Scope of Claims] 1) A magnetic multilayer film, characterized in that a plurality of magnetic film layers and non-magnetic film layers made of substantially a single element are alternately laminated on a substrate. 2) By reducing the thickness of the magnetic film layer (20
Claim 1 characterized in that the Fe layer is oriented in 0).
The magnetic multilayer film described in . 3) The magnetic multilayer film according to claim 1 or 2, wherein an alloy diffusion layer having positive magnetostriction is formed at the boundary between the magnetic film layer and the nonmagnetic film layer.
JP63130328A 1988-05-30 1988-05-30 Magnetic multilayer film Expired - Lifetime JP2696120B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63130328A JP2696120B2 (en) 1988-05-30 1988-05-30 Magnetic multilayer film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63130328A JP2696120B2 (en) 1988-05-30 1988-05-30 Magnetic multilayer film

Publications (2)

Publication Number Publication Date
JPH01300504A true JPH01300504A (en) 1989-12-05
JP2696120B2 JP2696120B2 (en) 1998-01-14

Family

ID=15031729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63130328A Expired - Lifetime JP2696120B2 (en) 1988-05-30 1988-05-30 Magnetic multilayer film

Country Status (1)

Country Link
JP (1) JP2696120B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6358806A (en) * 1986-08-29 1988-03-14 Nec Home Electronics Ltd Multilayer magnetic material film for magnetic head
JPS6380509A (en) * 1986-09-24 1988-04-11 Hitachi Ltd Magnetic superlattice film and magnetic head using same
JPH01125909A (en) * 1987-11-11 1989-05-18 Hitachi Ltd Laminated magnetic thin film and magnetic head using same
JPH01238106A (en) * 1988-03-18 1989-09-22 Nec Corp Corrosion-resistant ferromagnetic thin-film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6358806A (en) * 1986-08-29 1988-03-14 Nec Home Electronics Ltd Multilayer magnetic material film for magnetic head
JPS6380509A (en) * 1986-09-24 1988-04-11 Hitachi Ltd Magnetic superlattice film and magnetic head using same
JPH01125909A (en) * 1987-11-11 1989-05-18 Hitachi Ltd Laminated magnetic thin film and magnetic head using same
JPH01238106A (en) * 1988-03-18 1989-09-22 Nec Corp Corrosion-resistant ferromagnetic thin-film

Also Published As

Publication number Publication date
JP2696120B2 (en) 1998-01-14

Similar Documents

Publication Publication Date Title
JPH05175571A (en) Magnetoresistance effect element
JPH06338410A (en) Soft magnetic multilayer film and magnetic head
US5663857A (en) Magnetic head
JP2780588B2 (en) Stacked magnetic head core
JPH0950612A (en) Magnetoresistive effect film, magnetoresistive effect element, magnetic head and magnetic recording and reproducing device
JPH01300504A (en) Magnetic multilayered film
JPH09293207A (en) Magnetic head
JP3130407B2 (en) Manufacturing method of magnetic film and thin film magnetic head
JPS63293707A (en) Multi-layered fe-co magnetic film and magnetic head
JPH104013A (en) Magnetoresistance effect element and manufacture thereof
JP2925257B2 (en) Ferromagnetic film, method of manufacturing the same, and magnetic head
JPH0282601A (en) Multilayer magnetic film
JPH0845035A (en) Thin film magnetic head
JPH0389502A (en) Magnetic multilayer film
JP2650890B2 (en) Multilayer magnetic film
JPH04359501A (en) Multilayer ferromagnetic substance
JP3461688B2 (en) Magnetic head and magnetic recording device using the same
JPH03263307A (en) Laminated layer soft magnetic thin film
JPH03132005A (en) Magnetic thin film and magnetic head using this film
JPH09330503A (en) Magnetic head
JP2995784B2 (en) Magnetic head
JPH03203008A (en) Production of laminated film of fe-si-al ferromagnetic alloy for magnetic head
JPH04362160A (en) Ferromagnetic material
JPS61153813A (en) Magnetic pole for thin film magnetic head
JPH0785451B2 (en) High permeability multilayer magnetic film

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070919

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080919

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080919

Year of fee payment: 11