JPH08204253A - Magnetoresistive effect film - Google Patents

Magnetoresistive effect film

Info

Publication number
JPH08204253A
JPH08204253A JP7011354A JP1135495A JPH08204253A JP H08204253 A JPH08204253 A JP H08204253A JP 7011354 A JP7011354 A JP 7011354A JP 1135495 A JP1135495 A JP 1135495A JP H08204253 A JPH08204253 A JP H08204253A
Authority
JP
Japan
Prior art keywords
thin film
film
magnetic
antiferromagnetic
magnetoresistive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7011354A
Other languages
Japanese (ja)
Other versions
JP2748876B2 (en
Inventor
Junichi Fujikata
潤一 藤方
Kazuhiko Hayashi
一彦 林
Hidefumi Yamamoto
英文 山本
Kunihiko Ishihara
邦彦 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP7011354A priority Critical patent/JP2748876B2/en
Priority to DE69637811T priority patent/DE69637811D1/en
Priority to EP96300598A priority patent/EP0724301B1/en
Priority to US08/593,689 priority patent/US5917400A/en
Publication of JPH08204253A publication Critical patent/JPH08204253A/en
Priority to US09/038,093 priority patent/US6063491A/en
Application granted granted Critical
Publication of JP2748876B2 publication Critical patent/JP2748876B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/90Magnetic feature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/11Magnetic recording head
    • Y10T428/1107Magnetoresistive
    • Y10T428/1121Multilayer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • Y10T428/264Up to 3 mils
    • Y10T428/2651 mil or less

Abstract

PURPOSE: To obtain a magnetoresistive effect film exhibiting a large linear variation of resistance in a weak external field while suppressing the hysteresis by specifying the super lattice forming an antiferromagnetic material and the ratio of the number of atoms between Ni and Co in the super lattice. CONSTITUTION: The magnetoresistive effect film comprises an artificial lattice film 8 formed on a substrate 5. The artificial lattice film 8 comprises a bccFe thin film 2 composed of Fe having bcc structure, a magnetic thin film 3, a nonmagnetic thin film 1, a magnetic thin film 4 and an antiferromagnetic thin film (or a permanent magnet thin film) 7 laminated sequentially on the substrate 5 through an antiferromagnetic thin film (or a permanent magnet thin film) 6. The antiferromagnetic material being employed in the antiferromagnetic thin film includes NiO, CoO, FeO, Fe2 O3 , CrO, MnO, Cr and the mixture thereof. Alternatively, a supper lattice structure where at least two selected from NiO, NiXCo1-x (x=0.1-0.9), and CoO are laminated alternately may be employed. The ratio of the number of Ni atoms to that of Co in the super lattice is set at 1.0 or above.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、磁気記録媒体等から磁
界強度を信号として読み取るための磁気抵抗効果素子に
用いる磁気抵抗効果膜に関し、さらに詳しくは、小さい
外部磁場で抵抗変化率が大きい磁気抵抗効果膜に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetoresistive film for use in a magnetoresistive effect element for reading magnetic field strength as a signal from a magnetic recording medium or the like, and more particularly to a magnetoresistive film having a large resistance change rate with a small external magnetic field. The present invention relates to a resistance effect film.

【0002】[0002]

【従来の技術】近年、磁気センサーの高感度化、および
磁気記録における高密度化が進められており、これに伴
い磁気抵抗効果型磁気センサー(以下、MRセンサーと
いう)および磁気抵抗効果型磁気ヘッド(以下、MRヘ
ッドという)の開発が盛んに進められている。MRセン
サーおよびMRヘッドも、磁性材料からなる読み取りセ
ンサー部の抵抗変化により外部磁界信号を読み出すが、
MRセンサーおよびMRヘッドは、磁気記録媒体との相
対速度が再生出力に依存しないことから、MRセンサー
では高感度が、MRヘッドでは高密度磁気記録において
も高い出力が得られるという長所がある。
2. Description of the Related Art In recent years, a magnetic sensor has been made higher in sensitivity and magnetic recording has been made higher in density, and accordingly, a magnetoresistive effect magnetic sensor (hereinafter referred to as an MR sensor) and a magnetoresistive effect magnetic head. Development of (hereinafter referred to as MR head) has been actively pursued. The MR sensor and MR head also read the external magnetic field signal due to the resistance change of the reading sensor section made of a magnetic material.
Since the relative speed of the MR sensor and the MR head with respect to the magnetic recording medium does not depend on the reproduction output, there is an advantage that the MR sensor can obtain high sensitivity and the MR head can obtain high output even in high density magnetic recording.

【0003】最近、非磁性薄膜を介して積層された少な
くとも2層の磁性薄膜を有し、一方の軟磁性薄膜に反強
磁性薄膜を隣接して設けることで抗磁力を与え、非磁性
薄膜を介して隣接した他方の軟磁性薄膜と異る外部磁界
で磁化回転させることで抵抗変化を行う磁気抵抗効果膜
がある(例えば、フィジカル レビュー B(Phys. Re
v. B)第43巻、1297頁、1991年,特開平4−35831
0号公報)。
Recently, at least two layers of magnetic thin films laminated with a non-magnetic thin film are provided, and an antiferromagnetic thin film is provided adjacent to one soft magnetic thin film to give a coercive force to the non-magnetic thin film. There is a magnetoresistive effect film that changes its resistance by rotating the magnetization by an external magnetic field different from that of the other soft magnetic thin film adjacent to the other (for example, Physical Review B (Phys. Re).
v. B) Volume 43, p. 1297, 1991, JP-A-4-35831
No. 0).

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記先
願の磁気抵抗効果素子においても、小さい外部磁場で動
作するとは言え、実用的なMRセンサー,MRヘッドと
して使用する場合、磁化容易軸方向に信号磁界が印加さ
れる必要があり、磁気センサーとして用いる場合、ゼロ
磁場前後で抵抗変化を示さないこと、および磁壁の不連
続な移動によるバルクハウゼンジャンプなどの非直線性
が現れるという問題があった。
However, even in the magnetoresistive effect element of the above-mentioned prior application, although it operates with a small external magnetic field, when it is used as a practical MR sensor or MR head, a signal is generated in the direction of the easy axis of magnetization. A magnetic field must be applied, and when it is used as a magnetic sensor, there are problems that the resistance does not change before and after the zero magnetic field, and that nonlinearity such as Barkhausen jump appears due to discontinuous movement of the domain wall.

【0005】さらに、反強磁性薄膜としては、FeMn
という耐食性の悪い材料を用いる必要があり、実用化に
際して添加物を加える、または保護膜を施すなどの処理
を必要とするという問題があった。
Further, as an antiferromagnetic thin film, FeMn is used.
Therefore, there is a problem that it is necessary to use a material having poor corrosion resistance, and a treatment such as adding an additive or applying a protective film is required for practical use.

【0006】一方、強磁性層に抗磁力を付与する磁性膜
として、耐食性の優れた酸化物反強磁性膜または永久磁
石薄膜を用いた場合、その上に積層する磁性層/非磁性
層/磁性層サンドイッチ膜の結晶性が悪く、出力にヒス
テリシスが現れやすくなるという問題があった。
On the other hand, when an oxide antiferromagnetic film or a permanent magnet thin film having excellent corrosion resistance is used as a magnetic film for giving a coercive force to the ferromagnetic layer, a magnetic layer / nonmagnetic layer / magnetic layer laminated thereon is used. There was a problem that the crystallinity of the layer sandwich film was poor and hysteresis was likely to appear in the output.

【0007】本発明の目的は、小さな外部磁場でヒステ
リシスが小さく直線的に大きな抵抗変化を示す磁気抵抗
効果膜を提供することにある。
An object of the present invention is to provide a magnetoresistive film having a small hysteresis and a large resistance change linearly with a small external magnetic field.

【0008】[0008]

【課題を解決するための手段】本発明は、基板上に非磁
性薄膜を介して積層した複数の磁性薄膜からなり、非磁
性薄膜を介して隣あう一方の軟磁性薄膜に反強磁性薄膜
または永久磁石薄膜が隣接して設けてあり、この反強磁
性薄膜のバイアス磁界をHr 、他方の軟磁性薄膜の保磁
力をHc2としたとき、Hc2<Hr であることを特徴とす
る磁気抵抗効果膜である。
The present invention comprises a plurality of magnetic thin films laminated on a substrate via a non-magnetic thin film, wherein one soft magnetic thin film adjacent to the non-magnetic thin film is an antiferromagnetic thin film or Magnetic resistance is characterized by Hc 2 <Hr, where permanent magnet thin films are provided adjacent to each other and the bias magnetic field of this antiferromagnetic thin film is Hr and the coercive force of the other soft magnetic thin film is Hc 2. It is an effect film.

【0009】本発明の反強磁性薄膜に用いる反強磁性体
は、具体的には、NiO,CoO,FeO,Fe
2 3 ,CrO,MnO,Cr、または、これらの混合
物である。また、NiO,Nix Co1-x O(x= 0.1〜
0.9 ),CoOから選択される少なくとも2つを交互に
積層した超格子構造としてもよい。そして、超格子中の
NiのCoに対する原子数比を1.0以上とすることに
より、交換結合膜を形成したときの使用可能温度(ブロ
ッキング温度)を100℃以上とすることが可能であ
る。反強磁性薄膜の膜厚の上限は、1000オングスト
ロームである。
The antiferromagnetic material used in the antiferromagnetic thin film of the present invention is specifically NiO, CoO, FeO, Fe.
2 O 3 , CrO, MnO, Cr, or a mixture thereof. In addition, NiO, Ni x Co 1-x O (x = 0.1 to
0.9), at least two selected from CoO may be alternately laminated to form a superlattice structure. By setting the atomic ratio of Ni to Co in the superlattice to 1.0 or more, the usable temperature (blocking temperature) when the exchange coupling film is formed can be 100 ° C. or more. The upper limit of the thickness of the antiferromagnetic thin film is 1000 Å.

【0010】一方、反強磁性体膜の厚さの下限は特には
ないが、反強磁性体超格子の結晶性が隣接する磁性層へ
の交換結合磁界の大きさに大きく影響するため、結晶性
が良好となる100オングストローム以上とすることが
好ましい。また、反強磁性体超格子を構成する場合、各
反強磁性層の単位膜厚は、50オングストローム以下と
することが好ましい。このとき、各反強磁性層間の界面
での相互作用が、超格子の特性に大きく反映され、隣接
する磁性薄膜に大きなバイアス磁界を印加することが可
能である。
On the other hand, although the lower limit of the thickness of the antiferromagnetic material film is not particularly limited, the crystallinity of the antiferromagnetic material superlattice has a great influence on the magnitude of the exchange coupling magnetic field to the adjacent magnetic layer. It is preferably 100 angstroms or more, which provides good properties. In the case of forming an antiferromagnetic superlattice, the unit film thickness of each antiferromagnetic layer is preferably 50 angstroms or less. At this time, the interaction at the interface between the antiferromagnetic layers is largely reflected in the characteristics of the superlattice, and a large bias magnetic field can be applied to the adjacent magnetic thin film.

【0011】そして、基板温度を100〜300℃とし
て成膜することにより、結晶性が改善されバイアス磁界
が上昇する。この成膜は、蒸着法,スパッタリング法,
分子線エピタキシー法(MBE)等の方法で行う。ま
た、基板としては、ガラス,Si,MgO,Al
2 3 ,GaAs,フェライト,CaTi2 3 ,Ba
Ti23 ,Al2 3 −TiC等を用いることができ
る。
By forming the film at a substrate temperature of 100 to 300 ° C., the crystallinity is improved and the bias magnetic field rises. This film is formed by vapor deposition, sputtering,
It is performed by a method such as molecular beam epitaxy (MBE). As the substrate, glass, Si, MgO, Al
2 O 3 , GaAs, ferrite, CaTi 2 O 3 , Ba
Ti 2 O 3, Al 2 O 3 -TiC and the like can be used.

【0012】本発明の永久磁石薄膜に用いる磁性体の種
類は、具体的にはCoCr,CoCrTa,CoCrT
aPt,CoCrPt,CoNiPt,CoNiCr,
CoCrPtSi,FeCoCrである。そして、これ
ら永久磁石薄膜の下地層として、Crが用いられてもよ
い。
The types of magnetic material used in the permanent magnet thin film of the present invention are specifically CoCr, CoCrTa, CoCrT.
aPt, CoCrPt, CoNiPt, CoNiCr,
CoCrPtSi and FeCoCr. Then, Cr may be used as an underlayer of these permanent magnet thin films.

【0013】本発明では、上記反強磁性体薄膜上または
永久磁石薄膜上にbcc構造のFeを10〜60オング
ストロームの厚さに積層し、その上に磁性層/非磁性層
/磁性層からなるサンドイッチ膜を積層することによ
り、サンドイッチ膜の結晶性が向上し、磁気抵抗効果素
子とした時の出力のヒステリシスおよびノイズを小さく
抑えることが出来る。
In the present invention, Fe having a bcc structure is laminated to a thickness of 10 to 60 angstroms on the antiferromagnetic thin film or the permanent magnet thin film, and a magnetic layer / nonmagnetic layer / magnetic layer is formed thereon. By stacking the sandwich films, the crystallinity of the sandwich films is improved, and it is possible to suppress the hysteresis and noise of the output when the magnetoresistive element is used.

【0014】本発明の磁性薄膜に用いる磁性体の種類は
特に制限されないが、具体的には、Fe,Ni,Co,
Mn,Cr,Dy,Er,Nd,Tb,Tm,Ge,G
d等が好ましい。また、これらの元素を含む合金や化合
物としては、例えばFe−Si,Fe−Ni,Fe−C
o,Fe−Gd,Ni−Fe−Co,Ni−Fe−M
o,Fe−Al−Si(センダスト),Fe−Y,Fe
−Mn,Cr−Sb,Co系アモルファス,Co−P
t,Fe−Al,Fe−C,Mn−Sb,Ni−Mn,
フェライト等が好ましい。
The type of magnetic material used in the magnetic thin film of the present invention is not particularly limited, but specifically, Fe, Ni, Co,
Mn, Cr, Dy, Er, Nd, Tb, Tm, Ge, G
d and the like are preferable. Examples of alloys and compounds containing these elements include Fe-Si, Fe-Ni, and Fe-C.
o, Fe-Gd, Ni-Fe-Co, Ni-Fe-M
o, Fe-Al-Si (Sendust), Fe-Y, Fe
-Mn, Cr-Sb, Co-based amorphous, Co-P
t, Fe-Al, Fe-C, Mn-Sb, Ni-Mn,
Ferrite or the like is preferable.

【0015】本発明ではこれらの磁性体から選択して磁
性薄膜を形成する。特に、反強磁性薄膜または永久磁石
薄膜と隣接していない磁性薄膜の異方性磁界Hk2が保磁
力Hc2より大きい材料を選択することにより実現でき
る。また、異方性磁界は膜厚を薄くすることによっても
大きくできる。例えば、NiFeを10オングストロー
ム程度の厚さにすると、異方性磁界Hk2を保磁力Hc2
りも大きくすることができる。
In the present invention, a magnetic thin film is formed by selecting from these magnetic materials. In particular, it can be achieved by anisotropic magnetic field Hk2 of the magnetic thin film not adjacent to the antiferromagnetic thin film or permanent magnet film selects the coercive force Hc 2 is greater than the material. The anisotropic magnetic field can also be increased by reducing the film thickness. For example, when the NiFe to a thickness of about 10 Å, the anisotropic magnetic field Hk2 can be greater than the coercive force Hc 2.

【0016】さらに、このような磁気抵抗効果膜は、磁
性薄膜の磁化容易軸が印加される信号磁界方向に対して
垂直方向になっていて、印加信号磁界方向の磁性薄膜の
保磁力が、Hc2<Hk2<Hr になるように、前記磁性薄
膜を磁場中成膜することにより製造できる。具体的に
は、反強磁性膜と隣接する軟磁性膜の容易軸と、これと
非磁性層を介して隣あう磁性膜の容易磁化方向とが、直
交するように成膜中印加磁界を90度回転させる、また
は磁場中で基板を90度回転させることにより実現され
る。
Furthermore, in such a magnetoresistive film, the easy axis of magnetization of the magnetic thin film is perpendicular to the direction of the applied signal magnetic field, and the coercive force of the magnetic thin film in the direction of the applied signal magnetic field is Hc2. It can be manufactured by forming the magnetic thin film in a magnetic field so that <Hk2 <Hr. Specifically, the applied magnetic field during film formation is set so that the easy axis of the soft magnetic film adjacent to the antiferromagnetic film and the easy magnetization direction of the magnetic film adjacent thereto via the nonmagnetic layer are orthogonal to each other. It is realized by rotating the substrate by 90 degrees or by rotating the substrate by 90 degrees in a magnetic field.

【0017】各磁性薄膜の膜厚は、200オングストロ
ーム以下が好ましい。一方、磁性薄膜の厚さの下限は特
にないが、30オングストローム以下は伝導電子の表面
散乱の効果が大きくなり、磁気抵抗変化が小さくなる。
また、厚さを30オングストローム以上とすれば、膜厚
を均一に保つことが容易となり、特性も良好となる。ま
た、飽和磁化の大きさが小さくなりすぎることもない。
The thickness of each magnetic thin film is preferably 200 angstroms or less. On the other hand, although the lower limit of the thickness of the magnetic thin film is not particularly limited, if the thickness is 30 Å or less, the effect of surface scattering of conduction electrons becomes large, and the change in magnetoresistance becomes small.
Further, if the thickness is 30 angstroms or more, it becomes easy to keep the film thickness uniform and the characteristics become good. Further, the magnitude of saturation magnetization does not become too small.

【0018】また、反強磁性薄膜に隣接する磁性薄膜の
保磁力は、基板温度を150〜300℃として反強磁性
薄膜と連続して成膜することにより小さくすることが可
能である。
The coercive force of the magnetic thin film adjacent to the antiferromagnetic thin film can be reduced by continuously forming the film with the substrate temperature of 150 to 300 ° C.

【0019】さらに、磁性薄膜/非磁性薄膜界面に、C
oまたはCo系合金を挿入することにより、伝導電子の
界面散乱確率が上昇し、より大きな抵抗変化を得ること
が可能である。挿入する膜厚の下限は5オングストロー
ムである。また、膜厚がこれ以下になると、挿入効果が
減少するとともに膜厚制御も困難となる。挿入膜厚の上
限は特にはないが、30オングストローム程度が望まし
い。そして、膜厚がこれ以上厚くなると、磁気抵抗効果
素子の動作範囲における出力にヒステリシスが現れる。
Further, at the magnetic thin film / nonmagnetic thin film interface, C
By inserting an o- or Co-based alloy, it is possible to increase the interface scattering probability of conduction electrons and obtain a larger resistance change. The lower limit of the film thickness to be inserted is 5 Å. Further, if the film thickness is less than this, the insertion effect decreases and the film thickness control becomes difficult. There is no particular upper limit on the thickness of the inserted film, but about 30 Å is desirable. When the film thickness is further increased, hysteresis appears in the output in the operating range of the magnetoresistive effect element.

【0020】このような磁気抵抗効果膜において、外部
磁界を検知する磁性層、すなわち反強磁性薄膜または永
久磁石薄膜と隣接しない磁性層の容易磁化方向に反強磁
性薄膜または永久磁石薄膜を隣接させることにより、磁
区安定化がはかられ、磁壁の不連続な移動に伴うバルク
ハウゼンジャンプなどの非直線的な出力が回避される。
ここで、磁区安定化に用いられる反強磁性薄膜として
は、例えば、FeMn,NiMn,NiO,CoO,F
eO,Fe2 3 ,CrO,MnOなどが好ましい。ま
た、永久磁石薄膜としては、CoCr,CoCrTa,
CoCrTaPt,CoCrPt,CoNiPt,Co
NiCr,CoCrPtSi,FeCoCrなどが好ま
しい。そして、これらの永久磁石薄膜の下地層として、
Cr などが用いられてもよい。
In such a magnetoresistive film, the antiferromagnetic thin film or the permanent magnet thin film is adjacent to the magnetic layer which detects the external magnetic field, that is, the magnetic layer which is not adjacent to the antiferromagnetic thin film or the permanent magnet thin film. As a result, the magnetic domains are stabilized, and non-linear output such as Barkhausen jump associated with discontinuous movement of the domain wall is avoided.
Here, as the antiferromagnetic thin film used for magnetic domain stabilization, for example, FeMn, NiMn, NiO, CoO, F
eO, Fe 2 O 3 , CrO, MnO and the like are preferable. Further, as the permanent magnet thin film, CoCr, CoCrTa,
CoCrTaPt, CoCrPt, CoNiPt, Co
NiCr, CoCrPtSi, FeCoCr, etc. are preferable. And, as a base layer of these permanent magnet thin films,
Cr or the like may be used.

【0021】さらに、非磁性薄膜は、磁性薄膜間の磁気
相互作用を弱める役割をはたす材料であり、その種類に
特に制限はなく、各種金属ないし半金属非磁性体および
非金属非磁性体から適宜選択すればよい。この金属非磁
性体としては、例えば、Au,Ag,Cu,Pt,A
l,Mg,Mo,Zn,Nb,Ta,V,Hf,Sb,
Zr,Ga,Ti,Sn,Pb等およびこれらの合金が
好ましい。また、半金属非磁性体としては、SiO2
SiO,SiN,Al2 3 ,ZnO,MgO,TiN
等およびこれらに別の元素を添加したものが好ましい。
Further, the non-magnetic thin film is a material that plays a role of weakening the magnetic interaction between the magnetic thin films, and the kind thereof is not particularly limited, and various metals or semi-metal non-magnetic materials and non-metal non-magnetic materials are appropriately used. Just select it. Examples of the metal non-magnetic material include Au, Ag, Cu, Pt, A
1, Mg, Mo, Zn, Nb, Ta, V, Hf, Sb,
Zr, Ga, Ti, Sn, Pb and the like and alloys thereof are preferable. Further, as the semi-metal non-magnetic material, SiO 2 ,
SiO, SiN, Al 2 O 3 , ZnO, MgO, TiN
Etc. and those to which other elements are added are preferable.

【0022】そして、実験結果より非磁性薄膜の厚さ
は、20〜35オングストロームが望ましい。一般に膜
厚が40オングストロームを超えると、非磁性薄膜によ
り抵抗が決まるため、スピンに依存する散乱効果が相対
的に小さくなってしまい、その結果、磁気抵抗変化率が
小さくなってしまう。一方、膜厚が20オングストロー
ム以下になると、磁性薄膜間の磁気相互作用が大きくな
りすぎ、また、磁気的な直接接触状態(ピンホール)の
発生が避けられないことから、両磁性薄膜の磁化方向が
相異なる状態が生じにくくなる。
From the experimental results, the thickness of the non-magnetic thin film is preferably 20 to 35 angstrom. Generally, when the film thickness exceeds 40 angstroms, the resistance is determined by the non-magnetic thin film, so that the spin-dependent scattering effect becomes relatively small, and as a result, the magnetoresistance change rate becomes small. On the other hand, when the film thickness is 20 angstroms or less, the magnetic interaction between the magnetic thin films becomes too large and the magnetic direct contact state (pinhole) is unavoidable. Are unlikely to occur in different states.

【0023】磁性薄膜または非磁性薄膜の膜厚は、透過
型電子顕微鏡,走査型電子顕微鏡,オージェ電子分光分
析等により測定することができる。また、薄膜の結晶構
造は、X線回折や高速電子線回折等により確認すること
ができる。
The film thickness of the magnetic thin film or the non-magnetic thin film can be measured by a transmission electron microscope, a scanning electron microscope, Auger electron spectroscopy or the like. The crystal structure of the thin film can be confirmed by X-ray diffraction, high-speed electron beam diffraction, or the like.

【0024】本発明の磁気抵抗効果素子において、人工
格子膜の繰り返し積層回数Nには特に制限はなく、目的
とする磁気抵抗変化率等に応じて適宜選定すればよい。
しかしながら、酸化物反強磁性薄膜を用いる場合、比抵
抗値が大きく、積層する効果が損なわれるため、反強磁
性層/磁性層/非磁性層/磁性層/非磁性層/磁性層/
反強磁性層とする構造に置き替えられるのが好ましい。
In the magnetoresistive effect element of the present invention, the number N of repeated laminations of the artificial lattice film is not particularly limited and may be appropriately selected according to the target magnetoresistance change rate and the like.
However, when an oxide antiferromagnetic thin film is used, the specific resistance value is large and the effect of stacking is impaired. Therefore, the antiferromagnetic layer / magnetic layer / nonmagnetic layer / magnetic layer / nonmagnetic layer / magnetic layer /
It is preferable to replace the structure with an antiferromagnetic layer.

【0025】なお、最上層の磁性薄膜の表面には、窒化
珪素,酸化珪素,酸化アルミ等の酸化防止膜が設けられ
てもよく、また、電極を引き出すための金属導電層が設
けられてもよい。
The surface of the uppermost magnetic thin film may be provided with an anti-oxidation film of silicon nitride, silicon oxide, aluminum oxide or the like, or may be provided with a metal conductive layer for drawing out electrodes. Good.

【0026】また、磁気抵抗効果素子中に存在する磁性
薄膜は、その磁気特性を直接測定することはできないの
で、通常、下記のようにして測定する。まず、測定すべ
き磁性薄膜を、磁性薄膜の合計厚さが、500〜100
0オングストローム程度になるまで非磁性薄膜と交互に
成膜して測定用サンプルを作製し、これについて磁気特
性を測定する。この場合、磁性薄膜の厚さ,非磁性薄膜
の厚さおよび非磁性薄膜の組成は、磁気抵抗効果素子に
おけるものと同等にする。
Since the magnetic characteristics of the magnetic thin film existing in the magnetoresistive element cannot be directly measured, it is usually measured as follows. First, the magnetic thin film to be measured has a total thickness of 500 to 100
A non-magnetic thin film is alternately formed to a thickness of about 0 Å to prepare a measurement sample, and the magnetic characteristics of the sample are measured. In this case, the thickness of the magnetic thin film, the thickness of the non-magnetic thin film, and the composition of the non-magnetic thin film are the same as those in the magnetoresistive effect element.

【0027】[0027]

【作用】本発明の磁気抵抗効果膜では、一方の軟磁性薄
膜に隣接して反強磁性薄膜または永久磁石薄膜が形成さ
れており、交換バイアス力が働いていることが必須であ
る。その理由は、本発明の原理が隣合った磁性薄膜の磁
化の向きが互いに逆向きに向いたとき、最大の抵抗を示
すことにあるからである。すなわち、本発明の磁気抵抗
効果膜では、図3のB−H曲線に示すように、外部磁場
Hが磁性薄膜の異方性磁界Hk2と反強磁性薄膜または永
久磁石薄膜によって交換バイアスされた一方の磁性薄膜
の抗磁力(Hr orHch)の間にあるとき、すなわちHk2
<H<HrorHchであるとき、隣合った磁性薄膜の磁化
の方向が互いに逆向きになり、抵抗が増大する。
In the magnetoresistive film of the present invention, an antiferromagnetic thin film or a permanent magnet thin film is formed adjacent to one soft magnetic thin film, and it is essential that an exchange bias force works. The reason is that the principle of the present invention is to show the maximum resistance when the magnetization directions of the adjacent magnetic thin films are opposite to each other. That is, in the magnetoresistive film of the present invention, the external magnetic field H was exchange-biased by the anisotropic magnetic field Hk 2 of the magnetic thin film and the antiferromagnetic thin film or the permanent magnet thin film as shown by the BH curve in FIG. When it is between the coercive force (Hr or Hch) of one magnetic thin film, that is, Hk 2
When <H <HrorHch, the magnetization directions of the adjacent magnetic thin films are opposite to each other, and the resistance increases.

【0028】図2は、本発明の磁気抵抗効果膜を用いた
MRセンサの一例を示す展開斜視図である。このMRセ
ンサは、図2に示すように、基板5上に形成された人工
格子膜8からなり、基板5上に形成された反強磁性薄膜
(または永久磁石薄膜)7の上に、非磁性薄膜1を介し
た磁性薄膜3,4間の磁化容易軸方向を直交させ、磁気
記録媒体9から放出される信号磁界を磁性薄膜4の磁化
容易軸方向に対し垂直となるように設定する。
FIG. 2 is a developed perspective view showing an example of an MR sensor using the magnetoresistive effect film of the present invention. As shown in FIG. 2, this MR sensor comprises an artificial lattice film 8 formed on a substrate 5, and a non-magnetic layer is formed on an antiferromagnetic thin film (or a permanent magnet thin film) 7 formed on the substrate 5. The easy magnetization axis direction between the magnetic thin films 3 and 4 via the thin film 1 is made orthogonal to each other, and the signal magnetic field emitted from the magnetic recording medium 9 is set to be perpendicular to the easy magnetization axis direction of the magnetic thin film 4.

【0029】このとき、磁性薄膜3は、隣接する反強磁
性薄膜(または永久磁石薄膜)6により一方向異方性が
付与されている。また、磁性薄膜4の両端部の近傍に
は、磁化容易軸方向に反強磁性薄膜(または永久磁石薄
膜)7が隣接しており、磁化容易軸方向に一方向化され
ている。そして、磁性薄膜4の磁化方向が、磁気記録媒
体9の信号磁界の大きさに応答して回転することによ
り、抵抗が変化し磁場を検知する。
At this time, the magnetic thin film 3 is provided with unidirectional anisotropy by the adjacent antiferromagnetic thin film (or permanent magnet thin film) 6. An antiferromagnetic thin film (or a permanent magnet thin film) 7 is adjacent to both ends of the magnetic thin film 4 in the easy axis direction, and is unidirectional in the easy axis direction. Then, the magnetization direction of the magnetic thin film 4 rotates in response to the magnitude of the signal magnetic field of the magnetic recording medium 9, whereby the resistance changes and the magnetic field is detected.

【0030】次に、本発明の磁気抵抗効果膜における外
部磁場、保磁力および磁化方向の関係について、図3を
参照して説明する。
Next, the relationship between the external magnetic field, the coercive force, and the magnetization direction in the magnetoresistive film of the present invention will be described with reference to FIG.

【0031】(1) 本発明の磁気抵抗効果膜を、図3に示
すように、交換バイアスされた軟磁性薄膜の抗磁力をH
r 、他方の軟磁性薄膜の保磁力をHc2、異方性磁界をH
k2とする(0<Hk2<Hr )。そして、最初に外部磁場
Hを、H<−Hk2となるように印加しておく。このと
き、磁性薄膜3および磁性薄膜4の磁化方向は、外部磁
場Hと同じ−(負)方向に向いている〔領域(A)〕。
(1) As shown in FIG. 3, the magnetoresistive film of the present invention has a coercive force H of the soft magnetic thin film subjected to exchange bias.
r, the coercive force of the other soft magnetic thin film is Hc 2 , and the anisotropic magnetic field is H
Let k 2 (0 <Hk 2 <Hr). Then, first, the external magnetic field H is applied so that H <−Hk 2 . At this time, the magnetization directions of the magnetic thin film 3 and the magnetic thin film 4 are the same as the − (negative) direction of the external magnetic field H [region (A)].

【0032】(2) 次に、外部磁場を弱めていくと、−H
k2<H<Hk2において、磁性薄膜4の磁化は+(正)方
向に回転する〔領域(B)〕。
(2) Next, when the external magnetic field is weakened, -H
When k 2 <H <Hk 2 , the magnetization of the magnetic thin film 4 rotates in the + (positive) direction [region (B)].

【0033】(3) そして、外部磁場Hが、Hk2<H<H
r では、磁性薄膜3および磁性薄膜4の磁化方向は互い
に逆向きになる〔領域(C)〕。
(3) The external magnetic field H is Hk 2 <H <H
At r, the magnetization directions of the magnetic thin film 3 and the magnetic thin film 4 are opposite to each other [region (C)].

【0034】(4) さらに、外部磁場Hを大きくした、H
r <Hでは、磁性薄膜4の磁化も反転し、磁性薄膜3お
よび磁性薄膜4の磁化方向は、同じ+(正)方向に揃っ
て向く〔領域(D)〕。
(4) Further, when the external magnetic field H is increased, H
When r <H, the magnetization of the magnetic thin film 4 is also reversed, and the magnetization directions of the magnetic thin film 3 and the magnetic thin film 4 are aligned in the same + (positive) direction [region (D)].

【0035】この磁気抵抗効果膜の抵抗値は、図4に示
すR−H曲線から判るように、磁性薄膜3および磁性薄
膜4の相対的な磁化方向によって変化し、領域(B)の
ゼロ磁場前後では直線的に変化し、領域(C)では最大
値(Rmax )となり、領域(A)および領域(D)では
最小値(Rmin )となる。
As can be seen from the RH curve shown in FIG. 4, the resistance value of this magnetoresistive film changes depending on the relative magnetization directions of the magnetic thin film 3 and the magnetic thin film 4, and the zero magnetic field in the region (B). It changes linearly before and after, and has the maximum value (Rmax) in the region (C) and the minimum value (Rmin) in the regions (A) and (D).

【0036】[0036]

【実施例】次に、本発明について図面を参照して説明す
る。
Next, the present invention will be described with reference to the drawings.

【0037】図1は、本発明に係る磁気抵抗効果膜を示
す一部省略側面図である。本発明の磁気抵抗効果膜は、
図1に示すように、基板5上に人工格子膜8を形成した
ものであって、反強磁性体薄膜(または永久磁石薄膜)
6を形成した基板5上に、bcc構造のFeからなるb
cc Fe薄膜2,磁性薄膜3,非磁性薄膜1,磁性薄
膜4,反強磁性薄膜(または永久磁石薄膜)7を順次積
層して構成されている。
FIG. 1 is a partially omitted side view showing a magnetoresistive effect film according to the present invention. The magnetoresistive film of the present invention is
As shown in FIG. 1, an artificial lattice film 8 is formed on a substrate 5, which is an antiferromagnetic thin film (or a permanent magnet thin film).
B made of Fe having a bcc structure is formed on the substrate 5 on which 6 is formed.
The cc Fe thin film 2, magnetic thin film 3, non-magnetic thin film 1, magnetic thin film 4, antiferromagnetic thin film (or permanent magnet thin film) 7 are sequentially laminated.

【0038】次に、本発明の磁気抵抗効果膜による具体
的な実験結果について説明する。
Next, concrete experimental results using the magnetoresistive film of the present invention will be described.

【0039】まず、基板には、ガラス基板を用い、この
ガラス基板を真空装置の中に入れ、10-7Torr台ま
で真空引きを行う。そして、ガラス基板の温度を150
℃に上昇させ、反強磁性体層を500オングストローム
の厚さで形成し、続いて、bcc Fe層およびNiF
eの磁性層を成膜する。このようにして、150℃で交
換結合膜を形成後、ガラス基板の温度を再び室温に戻
し、非磁性層および磁性層を形成して磁気抵抗効果膜と
する。
First, a glass substrate is used as a substrate, and the glass substrate is placed in a vacuum apparatus and vacuumed to a level of 10 -7 Torr. Then, the temperature of the glass substrate is set to 150.
C. to form an antiferromagnetic layer with a thickness of 500 angstroms, followed by a bcc Fe layer and NiF.
The magnetic layer of e is formed. Thus, after forming the exchange coupling film at 150 ° C., the temperature of the glass substrate is returned to room temperature again, and the nonmagnetic layer and the magnetic layer are formed to form a magnetoresistive film.

【0040】この人工格子による磁気抵抗効果膜の磁化
測定は、振動試料型磁力計により行った。抵抗測定は、
試料から1.0×10mm2 の形状のサンプルを作製
し、外部磁界を面内に電流と垂直方向になるように印加
しながら−500〜500Oeまで変化させたときの抵
抗値を4端子法により測定し、その抵抗値から磁気抵抗
変化率ΔR/Rを求めた。この磁気抵抗変化率ΔR/R
は、測定した抵抗値の最大抵抗値をRmax ,最小抵抗値
をRmin として、次式により計算した。
The magnetization measurement of the magnetoresistive film using this artificial lattice was performed by a vibrating sample magnetometer. Resistance measurement is
A sample with a shape of 1.0 × 10 mm 2 was prepared from the sample, and the resistance value when changing from −500 to 500 Oe while applying an external magnetic field in the plane so as to be in the direction perpendicular to the current was measured by the 4-terminal method. The magnetic resistance change rate ΔR / R was determined from the measured resistance value. This rate of change in magnetic resistance ΔR / R
Was calculated by the following equation, where Rmax is the maximum resistance value and Rmin is the minimum resistance value of the measured resistance values.

【0041】 [0041]

【0042】そして、次に示す人工格子膜を約2.2〜
3.5オングストローム/秒の成膜速度で成膜して作製
した。
Then, the artificial lattice film shown below is used for about 2.2.
It was formed by forming a film at a film forming rate of 3.5 Å / sec.

【0043】Glass / (CoO(10)/NiO(10))25 / Fe(50) /
NiFe(50) / Cu(25) / NiFe(100) ここで、上記の人工格子膜は、ガラス基板上に、厚
さ10オングストロームのCoO層とNiO層とを交互
に25回ずつ積層した超格子の反強磁性層を形成した
後、厚さ50オングストロームのbcc Fe層、
厚さ50オングストロームのNi80%−Fe20%の
磁性層、厚さ25オングストロームのCuからなる非
磁性層、厚さ100オングストロームのNi80%−
Fe20%の磁性層を順次成膜し積層した、ことを意味
する。
Glass / (CoO (10) / NiO (10)) 25 / Fe (50) /
NiFe (50) / Cu (25) / NiFe (100) Here, the artificial lattice film is a superlattice in which a CoO layer and a NiO layer having a thickness of 10 Å are alternately laminated 25 times on a glass substrate. Of 50 Å thick bcc Fe layer after forming the antiferromagnetic layer of
50 angstrom thick Ni 80% -Fe 20% magnetic layer, 25 angstrom non-magnetic layer made of Cu, 100 angstrom Ni 80%-
This means that magnetic layers of 20% Fe were sequentially formed and laminated.

【0044】また、この人工格子膜は、非磁性層の厚を
25オングストロームとすることにより、3.8%程度
の抵抗変化率が得られ、ヒステリシスもbcc Feを
磁性サンドイッチ層の下地として挿入することにより小
さくなった。さらに、磁性層(NiFe)/非磁性層
(Cu)界面にCoを挿入することにより、6%の抵抗
変化率が得られた。
Also, in this artificial lattice film, a resistance change rate of about 3.8% is obtained by setting the thickness of the non-magnetic layer to 25 angstroms, and hysteresis is also obtained by inserting bcc Fe as the base of the magnetic sandwich layer. It became smaller. Furthermore, by inserting Co at the interface of the magnetic layer (NiFe) / nonmagnetic layer (Cu), a resistance change rate of 6% was obtained.

【0045】図5は、本実施例の人工格子膜について、
外部磁界を−500〜500Oeまで変化させたときの
B−H曲線を示し、また、図6は、同様に抵抗変化率を
示すMR曲線を示し、ゼロ磁場前後で直線的に大きな抵
抗変化を示すことが判る。
FIG. 5 shows the artificial lattice film of this embodiment,
FIG. 6 shows a B-H curve when the external magnetic field is changed from −500 to 500 Oe, and FIG. 6 also shows an MR curve showing the resistance change rate, showing a large linear resistance change before and after the zero magnetic field. I understand.

【0046】なお、本実施例では、反強磁性層がCoO
とNiOとの超格子のみの場合について記述したが、N
x Co1-x O(x= 0.1〜0.9 )とNiOとの超格子、
Nix Co1-x O(x= 0.1〜0.9 )とCoOとの超格
子、または、NiO,CoO,FeO,Fe2 3 ,C
rO,MnO,Crのいずれか1つ、またはこれらの混
合物からなる超格子、さらに、この反強磁性層をCoC
r,CoCrTa,CoCrTaPt,CoCrPt,
CoNiPt,CoNiCr,CoCrPtSi,Fe
CoCrのいずれか1つからなる永久磁石層に置き換え
たものでも、4〜7%の抵抗変化率が得られた。
In this embodiment, the antiferromagnetic layer is CoO.
The case of only the superlattice of Ni and NiO was described, but N
a superlattice of i x Co 1-x O (x = 0.1 to 0.9) and NiO,
Superlattice of Ni x Co 1-x O (x = 0.1 to 0.9) and CoO, or NiO, CoO, FeO, Fe 2 O 3 , C
Any one of rO, MnO, and Cr, or a superlattice composed of a mixture thereof, and further, the antiferromagnetic layer is CoC.
r, CoCrTa, CoCrTaPt, CoCrPt,
CoNiPt, CoNiCr, CoCrPtSi, Fe
Even when the permanent magnet layer was made of any one of CoCr, the resistance change rate of 4 to 7% was obtained.

【0047】[0047]

【発明の効果】以上説明したように、本発明の磁気抵抗
効果膜は、小さな外部磁場でヒステリシスが小さく直線
的に大きな抵抗変化を示す磁気抵抗効果膜を得ることが
できる。
As described above, the magnetoresistive effect film of the present invention can be a magnetoresistive effect film having a small hysteresis and a large linear resistance change under a small external magnetic field.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る磁気抵抗効果膜を示す一部省略側
面図である。
FIG. 1 is a partially omitted side view showing a magnetoresistive film according to the present invention.

【図2】本発明の磁気抵抗効果膜を用いたMRセンサー
の一例を示す展開斜視図である。
FIG. 2 is a developed perspective view showing an example of an MR sensor using the magnetoresistive film of the present invention.

【図3】本発明の磁気抵抗効果膜の作用原理を説明する
B−H曲線である。
FIG. 3 is a BH curve explaining the working principle of the magnetoresistive film of the present invention.

【図4】本発明の磁気抵抗効果膜の作用原理を説明する
R−H曲線である。
FIG. 4 is an RH curve explaining the working principle of the magnetoresistive film of the present invention.

【図5】本発明に係る磁気抵抗効果膜のB−H曲線であ
る。
FIG. 5 is a BH curve of the magnetoresistive film according to the present invention.

【図6】本発明に係る磁気抵抗効果膜のMR曲線であ
る。
FIG. 6 is an MR curve of a magnetoresistive film according to the present invention.

【符号の説明】[Explanation of symbols]

1 非磁性薄膜 2 bcc Fe薄膜 3,4 磁性薄膜 5 基板 6,7 反強磁性薄膜(または永久磁石薄膜) 8 人工格子膜 9 磁気録媒体 1 non-magnetic thin film 2 bcc Fe thin film 3,4 magnetic thin film 5 substrate 6,7 antiferromagnetic thin film (or permanent magnet thin film) 8 artificial lattice film 9 magnetic recording medium

───────────────────────────────────────────────────── フロントページの続き (72)発明者 石原 邦彦 東京都港区芝五丁目7番1号 日本電気株 式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kunihiko Ishihara 5-7-1, Shiba, Minato-ku, Tokyo NEC Corporation

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 基板上に非磁性薄膜を介して積層した複
数の磁性薄膜からなり、非磁性薄膜を介して隣接する一
方の軟磁性薄膜に反強磁性薄膜が隣接して設けてあり、
前記反強磁性薄膜のバイアス磁界をHr 、前記反強磁性
薄膜に隣接しない他方の軟磁性薄膜の保磁力をHc2とし
たとき、Hc2<Hr である磁気抵抗効果膜において、 前記反強磁性体が、NiO,Nix Co1-x O(x= 0.1
〜0.9 ),CoOの少なくとも2つからなる超格子であ
り、この超格子中のNiのCoに対する原子数比が1.
0以上であることを特徴とする磁気抵抗効果膜。
1. An antiferromagnetic thin film is provided adjacent to one soft magnetic thin film which is composed of a plurality of magnetic thin films laminated on a substrate with a nonmagnetic thin film interposed therebetween,
A bias magnetic field Hr of the antiferromagnetic thin film, when said the coercive force of the antiferromagnetic thin film is not adjacent the other soft magnetic thin film Hc2, the magnetoresistive film is Hc 2 <Hr, the antiferromagnetic However, NiO, Ni x Co 1-x O (x = 0.1
.About.0.9), a superlattice composed of at least two of CoO, and the atomic ratio of Ni to Co in the superlattice is 1.
A magnetoresistive film having a value of 0 or more.
【請求項2】 前記反強磁性体が、NiO,CoO,F
eO,Fe2 3 ,CrO,MnO,Crのいずれか1
つ、または少なくともこれらの2つの混合物からなるこ
とを特徴とする請求項1記載の磁気抵抗効果膜。
2. The antiferromagnetic material is NiO, CoO, F
Any one of eO, Fe 2 O 3 , CrO, MnO, Cr 1
2. The magnetoresistive film according to claim 1, wherein the magnetoresistive film comprises one or at least a mixture of two of them.
【請求項3】 基板上に非磁性薄膜を介して積層した複
数の磁性薄膜からなり、非磁性薄膜を介して隣あう一方
の軟磁性薄膜に永久磁石薄膜が隣接して設けてあり、前
記永久磁石薄膜の保磁力をHch、前記永久磁石薄膜に隣
接しない他方の軟磁性薄膜の保磁力をHc2としたとき、
Hc2<Hchである磁気抵抗効果膜において、 前記永久磁石薄膜が、CoCr,CoCrTa,CoC
rTaPt,CoCrPt,CoNiPt,CoNiC
r,CoCrPtSi,FeCoCrのいずれか1つか
らなることを特徴とする磁気抵抗効果膜。
3. A permanent magnet thin film is provided adjacent to one soft magnetic thin film which is formed by stacking a plurality of magnetic thin films on a substrate with a non-magnetic thin film interposed therebetween. When the coercive force of the magnet thin film is Hch and the coercive force of the other soft magnetic thin film not adjacent to the permanent magnet thin film is Hc 2 ,
In the magnetoresistive film with Hc 2 <Hch, the permanent magnet thin film is CoCr, CoCrTa, CoC.
rTaPt, CoCrPt, CoNiPt, CoNiC
A magnetoresistive effect film comprising any one of r, CoCrPtSi, and FeCoCr.
【請求項4】 請求項1または2記載の磁気抵抗効果膜
において、前記反強磁性体薄膜上に厚さ10〜60オン
グストロームのbcc構造のFeを積層し、その上に磁
性層/非磁性層/磁性層からなるサンドイッチ膜を積層
することを特徴とする磁気抵抗効果膜。
4. The magnetoresistive film according to claim 1, wherein Fe having a bcc structure with a thickness of 10 to 60 angstrom is laminated on the antiferromagnetic thin film, and the magnetic layer / nonmagnetic layer is formed thereon. / A magnetoresistive film comprising a sandwich film composed of a magnetic layer.
【請求項5】 請求項3記載の磁気抵抗効果膜におい
て、前記永久磁石薄膜上に厚さ10〜60オングストロ
ームのbcc構造のFeを積層し、その上に磁性層/非
磁性層/磁性層からなるサンドイッチ膜を積層すること
を特徴とする磁気抵抗効果膜。
5. The magnetoresistive film according to claim 3, wherein Fe having a bcc structure and having a thickness of 10 to 60 angstrom is laminated on the permanent magnet thin film, and a magnetic layer / nonmagnetic layer / magnetic layer is formed on the Fe layer. A magnetoresistive effect film, which comprises laminating sandwich films.
【請求項6】 請求項1または2記載の磁気抵抗効果膜
において、前記反強磁性薄膜と隣接しない前記他方の軟
磁性薄膜を別の反強磁性薄膜または永久磁石薄膜を用い
て単磁区化することを特徴とする磁気抵抗効果膜。
6. The magnetoresistive film according to claim 1, wherein the other soft magnetic thin film that is not adjacent to the antiferromagnetic thin film is made into a single magnetic domain by using another antiferromagnetic thin film or a permanent magnet thin film. A magnetoresistive effect film characterized by the above.
【請求項7】 請求項3記載の磁気抵抗効果膜におい
て、前記永久磁石薄膜と隣接しない前記他方の軟磁性薄
膜を別の反強磁性薄膜または永久磁石薄膜を用いて単磁
区化することを特徴とする磁気抵抗効果膜。
7. The magnetoresistive film according to claim 3, wherein the other soft magnetic thin film which is not adjacent to the permanent magnet thin film is made into a single magnetic domain by using another antiferromagnetic thin film or a permanent magnet thin film. And a magnetoresistive effect film.
JP7011354A 1995-01-27 1995-01-27 Magnetoresistive film Expired - Lifetime JP2748876B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP7011354A JP2748876B2 (en) 1995-01-27 1995-01-27 Magnetoresistive film
DE69637811T DE69637811D1 (en) 1995-01-27 1996-01-29 Magnetoresistance effect film
EP96300598A EP0724301B1 (en) 1995-01-27 1996-01-29 Magnetoresistance effects film
US08/593,689 US5917400A (en) 1995-01-27 1996-01-29 Magnetoresistance effects film
US09/038,093 US6063491A (en) 1995-01-27 1998-03-11 Magnetoresistance effects film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7011354A JP2748876B2 (en) 1995-01-27 1995-01-27 Magnetoresistive film

Publications (2)

Publication Number Publication Date
JPH08204253A true JPH08204253A (en) 1996-08-09
JP2748876B2 JP2748876B2 (en) 1998-05-13

Family

ID=11775704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7011354A Expired - Lifetime JP2748876B2 (en) 1995-01-27 1995-01-27 Magnetoresistive film

Country Status (4)

Country Link
US (2) US5917400A (en)
EP (1) EP0724301B1 (en)
JP (1) JP2748876B2 (en)
DE (1) DE69637811D1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997011499A1 (en) * 1995-09-21 1997-03-27 Tdk Corporation Magnetic transducer
US5889640A (en) * 1995-09-14 1999-03-30 Nec Corporation Magnetoresistive element and sensor having optimal cross point
US6083632A (en) * 1997-01-08 2000-07-04 Nec Corporation Magnetoresistive effect film and method of manufacture thereof
US6090480A (en) * 1997-04-30 2000-07-18 Nec Corporation Magnetoresistive device
US6114850A (en) * 1997-03-18 2000-09-05 Nec Corporation Magnetoresistance effect element, and magnetoresistance effect sensor and magnetic information recording and playback system using same
US6178073B1 (en) * 1997-12-01 2001-01-23 Nec Corporation Magneto-resistance effect element with a fixing layer formed from a superlattice of at least two different materials and production method of the same
US6301088B1 (en) 1998-04-09 2001-10-09 Nec Corporation Magnetoresistance effect device and method of forming the same as well as magnetoresistance effect sensor and magnetic recording system
US6369993B1 (en) 1997-05-14 2002-04-09 Nec Corporation Magnetoresistance effect sensor and magnetoresistance detection system and magnetic storage system using this sensor
JP2002520884A (en) * 1998-07-20 2002-07-09 モトローラ・インコーポレイテッド MTJ having low sheet resistance and method of manufacturing the same
KR100347084B1 (en) * 1997-10-30 2002-10-25 닛본 덴기 가부시끼가이샤 Magnetic tunnel junction element that can be used as an external magnetic field sensor
WO2003021579A1 (en) * 2001-08-29 2003-03-13 Lambeth David N Magnetic material structures, devices and methods
US6597547B1 (en) 1997-09-29 2003-07-22 Matsushita Electric Industrial Co., Ltd. Magnetoresistive device with an α-Fe2O3 antiferromagnetic film and indirect exchange coupling film layers of differing thickness
US6775110B1 (en) 1997-05-14 2004-08-10 Tdk Corporation Magnetoresistance effect device with a Ta, Hf, or Zr sublayer contacting an NiFe layer in a magneto resistive structure
JP2005353819A (en) * 2004-06-10 2005-12-22 Canon Inc Magnetoresistive effect element and storage device using the same
US7128988B2 (en) 2002-08-29 2006-10-31 Lambeth Systems Magnetic material structures, devices and methods

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2748876B2 (en) * 1995-01-27 1998-05-13 日本電気株式会社 Magnetoresistive film
US5708358A (en) * 1996-03-21 1998-01-13 Read-Rite Corporation Spin valve magnetoresistive transducers having permanent magnets
EP0910800B1 (en) * 1996-07-05 2004-02-11 Koninklijke Philips Electronics N.V. A magnetic field sensor and method of manufacturing a magnetic field sensor
JP3030333B2 (en) * 1997-03-14 2000-04-10 工業技術院長 Switching device and memory device using current and electric field induced phase transition
JP3255872B2 (en) 1997-04-17 2002-02-12 アルプス電気株式会社 Spin valve type thin film element and method of manufacturing the same
US6436871B1 (en) * 1999-02-22 2002-08-20 Symyx Technologies, Inc. Catalysts for oxidative dehydrogenation
JP3473835B2 (en) * 1999-06-10 2003-12-08 Tdk株式会社 Thin-film magnetic head assembly and processing method thereof
US6219210B1 (en) * 1999-07-30 2001-04-17 International Business Machines Corporation Spin valve sensor with nickel oxide pinning layer on a chromium seed layer
JP3421281B2 (en) * 1999-08-11 2003-06-30 ティーディーケイ株式会社 Magnetic transducer, thin-film magnetic head, and method of manufacturing the same
US6754054B2 (en) 2000-01-10 2004-06-22 Seagate Technology Llc Spin valve read element using a permanent magnet to form a pinned layer
US7050274B2 (en) * 2001-03-15 2006-05-23 Seagate Technology Llc Multilayer permanent magnet films
JP3954615B2 (en) * 2002-04-24 2007-08-08 松下電器産業株式会社 Magnetoresistive element
US20150125622A1 (en) * 2010-04-01 2015-05-07 The Trustees of Columbia University in HIe City of Systems and methods for high and ultra-high vacuum physical vapor deposition with in-situ magnetic field
US8456778B2 (en) * 2011-05-16 2013-06-04 Headway Technologies, Inc. Writer design with enhanced writability
CN108117390B (en) * 2017-12-29 2020-11-03 江西理工大学 Rare earth oxide ceramic material with exchange bias reversal and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03153823A (en) * 1989-11-10 1991-07-01 Kawasaki Steel Corp Production of sheet-like directional fe-cr-co permanent magnet
JPH04358310A (en) * 1990-12-11 1992-12-11 Internatl Business Mach Corp <Ibm> Magnetic reluctance sensor utilizing spin valve effect
WO1993012928A1 (en) * 1992-01-03 1993-07-08 Conner Peripherals, Inc. Magnetic recording media employing soft magnetic material
JPH05347013A (en) * 1992-04-13 1993-12-27 Hitachi Ltd Magnetic recording and reproducing device
JPH08153313A (en) * 1994-11-29 1996-06-11 Fujitsu Ltd Magneto-resistance effect type head and magnetic disk device

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4103315A (en) * 1977-06-24 1978-07-25 International Business Machines Corporation Antiferromagnetic-ferromagnetic exchange bias films
JP3088478B2 (en) * 1990-05-21 2000-09-18 財団法人生産開発科学研究所 Magnetoresistive element
US5341261A (en) * 1991-08-26 1994-08-23 International Business Machines Corporation Magnetoresistive sensor having multilayer thin film structure
US5304975A (en) * 1991-10-23 1994-04-19 Kabushiki Kaisha Toshiba Magnetoresistance effect element and magnetoresistance effect sensor
JP3207477B2 (en) * 1991-12-24 2001-09-10 財団法人生産開発科学研究所 Magnetoresistance effect element
US5315468A (en) * 1992-07-28 1994-05-24 International Business Machines Corporation Magnetoresistive sensor having antiferromagnetic layer for exchange bias
JP2725977B2 (en) * 1992-08-28 1998-03-11 インターナショナル・ビジネス・マシーンズ・コーポレイション Magnetoresistive sensor, method of manufacturing the same, and magnetic storage system
EP0594243A3 (en) * 1992-10-19 1994-09-21 Philips Electronics Nv Magnetic field sensor
US5549978A (en) * 1992-10-30 1996-08-27 Kabushiki Kaisha Toshiba Magnetoresistance effect element
US5569544A (en) * 1992-11-16 1996-10-29 Nonvolatile Electronics, Incorporated Magnetoresistive structure comprising ferromagnetic thin films and intermediate layers of less than 30 angstroms formed of alloys having immiscible components
JP2860233B2 (en) * 1993-09-09 1999-02-24 株式会社日立製作所 Giant magnetoresistance effect type magnetic head and magnetic recording / reproducing apparatus using the same
US5528440A (en) * 1994-07-26 1996-06-18 International Business Machines Corporation Spin valve magnetoresistive element with longitudinal exchange biasing of end regions abutting the free layer, and magnetic recording system using the element
US5508866A (en) * 1994-08-15 1996-04-16 International Business Machines Corporation Magnetoresistive sensor having exchange-coupled stabilization for transverse bias layer
JP2738312B2 (en) * 1994-09-08 1998-04-08 日本電気株式会社 Magnetoresistive film and method of manufacturing the same
JP2748876B2 (en) * 1995-01-27 1998-05-13 日本電気株式会社 Magnetoresistive film
US5793279A (en) * 1996-08-26 1998-08-11 Read-Rite Corporation Methods and compositions for optimizing interfacial properties of magnetoresistive sensors

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03153823A (en) * 1989-11-10 1991-07-01 Kawasaki Steel Corp Production of sheet-like directional fe-cr-co permanent magnet
JPH04358310A (en) * 1990-12-11 1992-12-11 Internatl Business Mach Corp <Ibm> Magnetic reluctance sensor utilizing spin valve effect
WO1993012928A1 (en) * 1992-01-03 1993-07-08 Conner Peripherals, Inc. Magnetic recording media employing soft magnetic material
JPH05347013A (en) * 1992-04-13 1993-12-27 Hitachi Ltd Magnetic recording and reproducing device
JPH08153313A (en) * 1994-11-29 1996-06-11 Fujitsu Ltd Magneto-resistance effect type head and magnetic disk device

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5889640A (en) * 1995-09-14 1999-03-30 Nec Corporation Magnetoresistive element and sensor having optimal cross point
WO1997011499A1 (en) * 1995-09-21 1997-03-27 Tdk Corporation Magnetic transducer
US5923504A (en) * 1995-09-21 1999-07-13 Tdk Corporation Magnetoresistance device
US6083632A (en) * 1997-01-08 2000-07-04 Nec Corporation Magnetoresistive effect film and method of manufacture thereof
US6452386B1 (en) 1997-03-18 2002-09-17 Nec Corporation Magnetoresistance effect element, and magnetoresistance effect sensor and magnetic information recording and playback system using same
US6114850A (en) * 1997-03-18 2000-09-05 Nec Corporation Magnetoresistance effect element, and magnetoresistance effect sensor and magnetic information recording and playback system using same
US6456468B1 (en) 1997-03-18 2002-09-24 Nec Corporation Magnetoresistance effect element, and magnetoresistance effect sensor and magnetic information recording and playback system using same
US6090480A (en) * 1997-04-30 2000-07-18 Nec Corporation Magnetoresistive device
US6775110B1 (en) 1997-05-14 2004-08-10 Tdk Corporation Magnetoresistance effect device with a Ta, Hf, or Zr sublayer contacting an NiFe layer in a magneto resistive structure
US6369993B1 (en) 1997-05-14 2002-04-09 Nec Corporation Magnetoresistance effect sensor and magnetoresistance detection system and magnetic storage system using this sensor
US7064936B2 (en) 1997-05-14 2006-06-20 Tdk Corporation Magnetoresistance effect device
US6597547B1 (en) 1997-09-29 2003-07-22 Matsushita Electric Industrial Co., Ltd. Magnetoresistive device with an α-Fe2O3 antiferromagnetic film and indirect exchange coupling film layers of differing thickness
KR100347084B1 (en) * 1997-10-30 2002-10-25 닛본 덴기 가부시끼가이샤 Magnetic tunnel junction element that can be used as an external magnetic field sensor
US6178073B1 (en) * 1997-12-01 2001-01-23 Nec Corporation Magneto-resistance effect element with a fixing layer formed from a superlattice of at least two different materials and production method of the same
US6301088B1 (en) 1998-04-09 2001-10-09 Nec Corporation Magnetoresistance effect device and method of forming the same as well as magnetoresistance effect sensor and magnetic recording system
JP2002520884A (en) * 1998-07-20 2002-07-09 モトローラ・インコーポレイテッド MTJ having low sheet resistance and method of manufacturing the same
JP4897140B2 (en) * 1998-07-20 2012-03-14 エバースピン テクノロジーズ インコーポレイテッド Method for manufacturing MTJ having low sheet resistance
WO2003021579A1 (en) * 2001-08-29 2003-03-13 Lambeth David N Magnetic material structures, devices and methods
KR100763285B1 (en) * 2001-08-29 2007-10-04 데이빗 엔. 램베스 Magnetic material devices
US7128988B2 (en) 2002-08-29 2006-10-31 Lambeth Systems Magnetic material structures, devices and methods
JP2005353819A (en) * 2004-06-10 2005-12-22 Canon Inc Magnetoresistive effect element and storage device using the same

Also Published As

Publication number Publication date
EP0724301A3 (en) 1997-11-26
EP0724301A2 (en) 1996-07-31
EP0724301B1 (en) 2009-01-14
DE69637811D1 (en) 2009-03-05
US5917400A (en) 1999-06-29
JP2748876B2 (en) 1998-05-13
US6063491A (en) 2000-05-16

Similar Documents

Publication Publication Date Title
JP2748876B2 (en) Magnetoresistive film
JP2738312B2 (en) Magnetoresistive film and method of manufacturing the same
JP2778626B2 (en) Magnetoresistance effect film, method of manufacturing the same, and magnetoresistance effect element
JP3088478B2 (en) Magnetoresistive element
JP3207477B2 (en) Magnetoresistance effect element
JP2690623B2 (en) Magnetoresistance effect element
JP3411626B2 (en) Magnetic multilayer film, magnetoresistive effect element, and method of manufacturing the same
JP2901501B2 (en) Magnetic multilayer film, method of manufacturing the same, and magnetoresistive element
JP3088519B2 (en) Magnetoresistive element
JP2743806B2 (en) Magnetoresistive film and method of manufacturing the same
JP2924819B2 (en) Magnetoresistive film and method of manufacturing the same
EP0624868B1 (en) Magnetoresistance effect elements and method of fabricating the same
JP3247535B2 (en) Magnetoresistance effect element
JP2738295B2 (en) Magnetoresistive film and method of manufacturing the same
JP3337732B2 (en) Magnetoresistance effect element
US6001430A (en) Magnetoresistance effect film and production process thereof
JP2674532B2 (en) Magnetoresistive magnetic head
JPH07211956A (en) Magnetoresistance effect element

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19970902

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980120