JPH03153823A - Production of sheet-like directional fe-cr-co permanent magnet - Google Patents

Production of sheet-like directional fe-cr-co permanent magnet

Info

Publication number
JPH03153823A
JPH03153823A JP1291330A JP29133089A JPH03153823A JP H03153823 A JPH03153823 A JP H03153823A JP 1291330 A JP1291330 A JP 1291330A JP 29133089 A JP29133089 A JP 29133089A JP H03153823 A JPH03153823 A JP H03153823A
Authority
JP
Japan
Prior art keywords
annealing
magnetic field
permanent magnet
sheet
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1291330A
Other languages
Japanese (ja)
Inventor
Hiroshi Shishido
宍戸 浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP1291330A priority Critical patent/JPH03153823A/en
Publication of JPH03153823A publication Critical patent/JPH03153823A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PURPOSE:To produce a sheet-like directional permanent magnet having high energy product by subjecting an Fe-Cr-Co alloy steel plate to respectively speci fied heating treatment and cold rolling, applying specific magnetic annealing to the resulting sheet, and then carrying out aging annealing at a temp. lower than the magnetic annealing temp. CONSTITUTION:A steel plate to be a base material for an Fe-Cr-Co permanent magnet alloy is subjected to heating treatment at 700-1300 deg.C and then to cold rolling at >=70% rolling reduction. Subsequently, while applying a magnetic field of >=1000e in which the direction of magnetic field conforms with the direction of 45 deg.+ or -15 deg. with respect to the cold rolling direction of this steel sheet, annealing is performed at 600-700 deg.C. Successively, aging annealing is applied to this steel sheet at a temp. lower than the above magnetic annealing temp. By this method, the sheet-like directional Fe-Cr-Co permanent magnet having magnetic properties of >= about 5MGOe (BH)max even in the case of <= about 1mm sheet thickness can be mass-producibly.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、Fe−Cr−Co系永久磁石の製造方法に係
り、特に薄板で一方向性を必要とする電子!a器用部品
の永久磁石材料等に適した永久磁石の製造方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Field of Application> The present invention relates to a method for manufacturing Fe-Cr-Co permanent magnets, particularly for electronic magnets that require unidirectionality in thin plates. This invention relates to a method of manufacturing a permanent magnet suitable for use as a permanent magnet material for instrumental parts.

〈従来の技術〉 Fe−Cr−Co系磁石は、スピノーダル分解を利用す
ることによって高保磁力(Hc)を実現した磁石であり
、永久磁石特性の目安となるエネルギー積((Bll)
saw)は5〜IOM Gosとアルニコ磁石と同程度
を示す、また、アルニコ磁石に比べて冷間加工が容易で
ある等の特徴を有している。
<Prior art> Fe-Cr-Co magnets are magnets that have achieved high coercive force (Hc) by utilizing spinodal decomposition, and the energy product ((Bll)
saw) is on the same level as 5-IOM Gos and alnico magnets, and has characteristics such as easier cold working than alnico magnets.

このFe −Cr −Co系磁石に付いては特公昭−2
0251号、特公昭51−18884号及び特公昭51
−29859号各公報に開示されているように、その特
性も(Bll)saw4〜5 M GOe、 Hc 4
0G〜5000sが得られている。
Regarding this Fe-Cr-Co magnet, special public Sho-2
No. 0251, Special Publication No. 51-18884 and Special Publication No. 18884
-29859 As disclosed in each publication, its characteristics are (Bll) saw4~5 M GOe, Hc 4
0G to 5000s has been obtained.

しかも、^pp1. Phys、 Lett、、 37
(1980)p、 92−93やJ、 Appl、 P
hys、、 54(1983)p、 5400−540
3に報告されているようにFe−Cr−Co系合金の柱
状晶や単結晶材を利用することによって、(Bit)m
axlO〜11MGOeの優れた特性も得られている。
Moreover, ^pp1. Phys, Lett,, 37
(1980) p. 92-93, J. Appl, P.
hys, 54 (1983) p. 5400-540
As reported in 3, (Bit)m can be
Excellent properties of axlO~11MGOe have also been obtained.

ところが永久磁石特性の向上はめざましく、最近では希
土W4磁石の研究において、例えば特開昭59−460
08号公報に開示されているように、REM−Fe−B
系磁石で(all)@axが25MGOeの高特性のも
のまで製造されるようになった。
However, improvements in permanent magnet properties have been remarkable, and recently, in research on rare earth W4 magnets, for example, JP-A-59-460
As disclosed in Publication No. 08, REM-Fe-B
Magnets with (all)@ax as high as 25 MGOe are now manufactured.

一方近年、電子機器産業の発達にともなって、永久磁石
特性の向上が強く望まれるとともに、実用的形状につい
ても様々な要請がなされている。
On the other hand, in recent years, with the development of the electronic equipment industry, there has been a strong desire to improve the properties of permanent magnets, and various demands have been made regarding practical shapes.

このような要請の中でも薄板形状の要望に応えるべく、
プラスチックrai1石やシー)H1石が考案された。
Among these requests, in order to meet the request for a thin plate shape,
Plastic rai1 stone and sea) H1 stone were devised.

これらの磁石は、プラスチックあるいはゴム状の板中に
フェライトや希土類磁石の粉末を分散させたものである
。この為に永久磁石特性(811)鋼axは、フェライ
ト粉末を用いた場合で〜2MGOe、 REM −Fe
−B系の粉末を用いた場合で7〜10MGOeとバルク
焼結材に比べて低下している。また、磁石の厚みには限
界が生じ、せいぜい1.0〜2.Om程度の厚みが利用
できる薄さである。
These magnets are made by dispersing ferrite or rare earth magnet powder in a plastic or rubber plate. For this reason, the permanent magnetic property (811) steel ax is ~2MGOe, REM -Fe when ferrite powder is used.
- When B-based powder is used, it is 7 to 10 MGOe, which is lower than that of bulk sintered material. Additionally, there is a limit to the thickness of the magnet, which is at most 1.0 to 2. A thickness of approximately 0.0 m is the usable thickness.

これ以上薄くすると、特性、形状を十分に満足した板状
磁石の製造は極めて困難である。特に、上記の希土類i
ff石粉末を用いた場合には請易く、キエーIJ−4度
も低いので、永久磁石特性が周囲の環境の変化に敏感で
あり、精密さが要求される電子部品を構成するには動作
の安定性に問題があり、この為に用途も限定せざるを得
なかった。
If the thickness is made any thinner, it will be extremely difficult to manufacture a plate-shaped magnet that satisfies the characteristics and shape. In particular, the rare earth i
When ff stone powder is used, it is easy to obtain and has a low IJ-4 degree, so the permanent magnet characteristics are sensitive to changes in the surrounding environment, and it is difficult to operate in order to construct electronic parts that require precision. There was a problem with stability, and for this reason, the applications had to be limited.

この点前述したFe−Cr−Co系磁石は、Cr含有合
金であり防錆性が高(、Fe−Co系でもあるのでキュ
ーリー温度も高く温度特性は極めて良好である。
In this regard, the Fe--Cr--Co based magnet mentioned above is a Cr-containing alloy and has high rust prevention properties (and since it is also an Fe--Co based magnet, it has a high Curie temperature and extremely good temperature characteristics.

しかしながら、特性の向上を期待して先述した柱状晶や
単結晶材を用いることは研究室的には可能であっても工
業的規模での大量生産を考えた場合には実現性は殆どな
い。
However, although it is possible to use the above-mentioned columnar crystals or single crystal materials in hopes of improving properties in a laboratory setting, it is hardly practical when considering mass production on an industrial scale.

〈発明が解決しようとする課題〉 以上に述べた背景から、本発明の目的は、Fe −Cr
 −Co系合金磁石においてlll11以下の板厚でも
([111)waxが5MGOe以上の特性を有するも
のを工業的規模で大量に得ることを可能とする永久磁石
のV遣方法を提案することである。
<Problems to be Solved by the Invention> From the background described above, the purpose of the present invention is to
- To propose a permanent magnet V-wiring method that makes it possible to obtain a large amount of Co-based alloy magnets having a ([111) wax of 5 MGOe or more on an industrial scale even if the plate thickness is 111 or less. .

く課題を解決するだめの手段〉 本発明では、以上の!!$!mの解決に当たって、次の
手段を基本的に利用した。
Means for Solving the Problem> The present invention provides the above-mentioned solutions. ! $! In solving m, the following methods were basically used.

すなわち、Fe  Cr  Co系合金が有する良好な
望性加工性を利用して、所定の板厚まで高圧下を施すこ
とにより、素材に方向性を付与し、次にその方向と平行
な磁場方向を存する磁場を印加しながら焼鈍を行いスピ
ノーダル分解を起こさせ、次いで時効処理を施すことに
よって、永久磁石特性の向上を図ったものである。
In other words, by taking advantage of the good workability of Fe Cr Co alloys and applying high pressure to a predetermined thickness, the material is given directionality, and then a magnetic field direction parallel to that direction is applied. The permanent magnet properties are improved by performing annealing while applying a magnetic field to cause spinodal decomposition, and then performing an aging treatment.

すなわち、本発明は、’1jiFi状のFe−Cr−C
o系永久磁石合金を製造する際に、その母材となる鋼板
に700〜1300’Cの温度範囲の加熱処理を施して
後、圧下率70%以上の冷間圧延を施し、次にこの鋼板
の冷間圧延方向に対して45゜±15”の方向に磁場方
向が一致した1000e以上の磁場を印加しながら60
0〜700℃の温度範囲で焼鈍を施し、引き続きこの磁
場焼鈍温度よりも低い温度で時効焼鈍を施すことを特徴
とする薄板状方向性Fe−Cr−Co系永久磁石の製造
方法である。
That is, the present invention provides '1jiFi Fe-Cr-C
When manufacturing an o-based permanent magnet alloy, a steel plate serving as the base material is subjected to heat treatment in a temperature range of 700 to 1300'C, then cold rolled at a reduction rate of 70% or more, and then this steel plate is While applying a magnetic field of 1000e or more with the magnetic field direction aligned in the direction of 45° ± 15" with respect to the cold rolling direction,
This is a method for manufacturing a thin plate-like oriented Fe-Cr-Co permanent magnet, which is characterized by performing annealing in a temperature range of 0 to 700°C, and then performing aging annealing at a temperature lower than the magnetic field annealing temperature.

〈作 用〉 本発明で用いる母材鋼板は、インゴットを分塊圧延して
スラブとし、あるいは連続鋳造で直接スラブとし、その
後に熱間圧延を加えて熱延板としたもので良い、さらに
、冷間圧延に先だって、以上の母材鋼板に対して、熱延
時の残留ff歴を消去するためにノルマライジングまた
は溶体化処理などの熱処理が必要であり、700℃未満
では長時間を要し不経済でもあり、1300’Cを超え
て高いと成分によっては鋼板の表面が溶ける場合もある
ので、加熱温度は、700〜1300℃の範囲とする。
<Function> The base steel plate used in the present invention may be formed by blooming an ingot into a slab, or by continuous casting to directly form a slab, and then hot rolling to form a hot-rolled plate. Prior to cold rolling, heat treatment such as normalizing or solution treatment is required for the above base steel sheets in order to erase the residual ff history during hot rolling. It is also economical, and if the temperature exceeds 1300'C, the surface of the steel plate may melt depending on the components, so the heating temperature is set in the range of 700 to 1300°C.

次に冷延圧下率は、70%に満たないと方位の尖鋭化し
た(1001 <110>方位が得られないばかりでな
く、他の結晶方位が混在するので、70%以上とする。
Next, when the cold rolling reduction ratio is less than 70%, the orientation becomes sharp (not only the 1001 <110> orientation cannot be obtained, but also other crystal orientations are mixed, so the cold rolling reduction ratio is set to 70% or more.

また、母材鋼板の冷間圧延に於いて中間焼鈍を含む2回
の冷延を行ってもよいが、最終圧下率は70%以上であ
る必要がある。
Further, in the cold rolling of the base material steel plate, cold rolling including intermediate annealing may be performed twice, but the final rolling reduction ratio needs to be 70% or more.

第1図にFe −26%Cr−15,5%Go−3,5
%Moの組成を有する合金素材を、鋼塊とした後、加熱
分塊圧延してスラブとし、さらに加熱して熱延を施して
熱延板とした後、920″Cで2分間の焼鈍をしてから
冷間圧下率を変えたときの集合組織の変化を示す、70
%以上で先鋭な(1001<110>組織の得られるこ
とが分かる。
Figure 1 shows Fe-26%Cr-15,5%Go-3,5
An alloy material having a composition of %Mo was made into a steel ingot, then hot blooming rolled to make a slab, further heated and hot rolled to make a hot rolled sheet, and then annealed at 920''C for 2 minutes. 70 showing the change in texture when the cold reduction rate is changed after
% or more, a sharp (1001<110> structure) is obtained.

次に、上記の圧下率65.70および90%の冷間圧延
仮に対して、磁場方向を変えて680℃の温度で100
00eの磁場中焼鈍し、更に660〜400 ’C迄5
0時間かけて冷却した場合の磁気特性の変化について第
2図に示す、圧延方向と磁場方向のなす角度が、30〜
60”の範囲すなわち45±15°の範囲で5MGOe
以上が得られている。この時圧下率が70%に満たない
と5MGOe以上は得られない。
Next, for the above-mentioned cold rolling with a reduction rate of 65.70 and 90%, the direction of the magnetic field was changed and 100% was rolled at a temperature of 680°C.
Annealed in a magnetic field of 00e and then further annealed to 660~400'C5
Regarding the change in magnetic properties when cooling for 0 hours, as shown in Figure 2, the angle between the rolling direction and the magnetic field direction is 30~
5MGOe in a range of 60” or 45±15°
The above has been obtained. At this time, if the reduction rate is less than 70%, 5 MGOe or more cannot be obtained.

磁場中焼鈍温度範囲は、600℃未満であるとスピノー
ダル分解による2相分離に時間がかかり不経済となり、
一方700℃を超えるとスピノーダル分解が困難となり
、磁気特性が劣化するので、600〜700℃の範囲と
する必要がある0時効焼鈍は、磁場中焼鈍で得られたス
ピノーダル分解粒子の粒成長を促すもので、磁場中焼鈍
温度より高温であると、印加磁場によって磁場方向に規
制された粒子の方向性が崩れるので磁場中焼鈍温度より
低い温度とする。また、400″Cより低い温度まで時
効焼鈍を施しても磁気特性はさほど向上せず、むしろ不
経済でもあるので、時効焼鈍温度の下限は400℃が好
適である。従って、時効焼鈍温度範囲は、磁場中焼鈍温
度未満〜400℃が好適である。
If the temperature range for annealing in a magnetic field is less than 600°C, two-phase separation due to spinodal decomposition takes time and becomes uneconomical.
On the other hand, if the temperature exceeds 700°C, spinodal decomposition becomes difficult and magnetic properties deteriorate, so zero-age annealing, which needs to be in the range of 600 to 700°C, promotes grain growth of spinodal decomposition particles obtained by magnetic field annealing. However, if the temperature is higher than the annealing temperature in a magnetic field, the orientation of the particles, which are regulated in the direction of the magnetic field by the applied magnetic field, will be disrupted, so the temperature is set lower than the annealing temperature in the magnetic field. In addition, even if age annealing is performed to a temperature lower than 400"C, the magnetic properties will not improve much and it is rather uneconomical, so the lower limit of the age annealing temperature is preferably 400 °C. Therefore, the age annealing temperature range is , below the annealing temperature in a magnetic field to 400°C.

二の温度範囲では、冷却速度を変えて冷却しても良いし
、任意の温度で等温焼鈍を施してもよい。
In the second temperature range, cooling may be performed by changing the cooling rate, or isothermal annealing may be performed at an arbitrary temperature.

更に、この焼鈍時には磁場を印加してもまた、しな(て
も特性は大幅に変わるものではない。
Furthermore, even if a magnetic field is applied during this annealing, the characteristics do not change significantly.

第2図に用いた素材の中で、圧延方向に対して45°方
向に磁場を印加した場合の磁気特性に及ぼす磁場中焼鈍
温度の影響に付いて第3図に示す。
FIG. 3 shows the influence of the annealing temperature in a magnetic field on the magnetic properties of the materials used in FIG. 2 when a magnetic field is applied in a direction of 45 degrees with respect to the rolling direction.

600〜700℃の範囲で5MGOe以上が得られる。5MGOe or more can be obtained in the range of 600 to 700°C.

なお、この時の時効焼鈍は、磁場中焼鈍温度より20℃
低い温度から4QO″Cまでの範囲を50時間かけて冷
却した。
In addition, the aging annealing at this time is 20°C higher than the magnetic field annealing temperature.
Cooling was carried out over a period of 50 hours from low temperature to 4QO''C.

印加磁場の強さは1000e以上必要である。第3図に
用いた試料について、Kl場の強さを変えて印加した場
合の磁気特性の変化を第4図に示す0図から分かるよう
に(Bll)a+axは1000eまで急激に増加する
が、1000e以上では漸増するものの大幅な改善は認
められない、従って、磁場の強さは10000以上あれ
ばよいことになる。
The strength of the applied magnetic field needs to be 1000e or more. For the sample used in Figure 3, the change in magnetic properties when varying the strength of the Kl field is applied is shown in Figure 4. As can be seen from the 0 diagram in Figure 4, (Bll) a+ax increases rapidly up to 1000e, but At 1000e or more, although it gradually increases, no significant improvement is observed.Therefore, it is sufficient that the magnetic field strength is 10000e or more.

次に、この合金系の成分について説明する。Next, the components of this alloy system will be explained.

Coは、この合金系の飽和磁束密度を向上させ、(Bl
l)waxを改善すると同時にこの合金系に於けるキエ
ーリー温度を上昇させ、更に磁気特性の向上を図るため
の磁場焼鈍時のスピノーダル分解の効果を高めるのに有
効に寄与する。含有量が3wt%(以下単に%で示す)
に満たないとスピノーダル分解に時間がかかるばかりで
なく、十分な磁場改善効果が得られない、他方、35%
を超えるとT相やFe、 Coの規則相が部分的に析出
してスピノーダル分解が不均一になり、特性が劣化する
ほか、コストの上昇を招く不利も加わるので、Coの含
有量は3〜35%程度とすることが望ましい。
Co improves the saturation magnetic flux density of this alloy system, and (Bl
l) At the same time as improving wax, it increases the Chierly temperature in this alloy system, and effectively contributes to increasing the effect of spinodal decomposition during magnetic field annealing to further improve magnetic properties. Content is 3wt% (hereinafter simply expressed as %)
If it is less than 35%, not only will spinodal decomposition take time, but a sufficient magnetic field improvement effect will not be obtained.
If the Co content exceeds 3 to 3, the T phase and ordered phases of Fe and Co will partially precipitate, resulting in uneven spinodal decomposition, resulting in deterioration of properties and an additional disadvantage of increased cost. It is desirable to set it to about 35%.

C「はFeと合金化してα相を形成する元素であり、過
飽和固溶状態のPe−Cr合金の形成することにより、
その後の時効焼鈍で効果的にスピノーダル分解を起こす
、しかしながら含有量が10%に満たないと長時間かけ
ても、スピノーダル分解の惹起が困難であり、他方35
%を超えるとα相の形成が促進され易く、脆くなり加工
性が劣化することと、合金の飽和磁化が低下し、結果と
して(Bit) waxが低下するため、Cr含有量は
10〜35%程度とするのが望ましい。
C is an element that alloys with Fe to form an α phase, and by forming a Pe-Cr alloy in a supersaturated solid solution state,
The subsequent age annealing effectively causes spinodal decomposition. However, if the content is less than 10%, it is difficult to induce spinodal decomposition even if the content is less than 10%.
If the Cr content exceeds 10% to 35%, the formation of α phase is likely to be promoted, resulting in brittleness and deterioration of workability, as well as a decrease in the saturation magnetization of the alloy, resulting in a decrease in (Bit) wax. It is desirable that the

また、副成分として、Ti、 Zr、V、 Nb、 T
a、 Mo、WSB、 Ai Sis Ge5Sn等の
元素を単独あるいは複合の合計で0.O1〜5.0 s
et%の範囲で添加してもよい、これらの元素はα相形
成元素であり、0,01%に満たないとスピノーダル分
解に先立つα相単一固溶体を生成するのに役立たず、5
%を超えると飽和磁束密度を低下させ、更にα相を形成
して加工性を劣化させると同時に、スピノーダル分解を
不均一にするので、上記の範囲が好適である。
In addition, as subcomponents, Ti, Zr, V, Nb, T
The total of elements such as a, Mo, WSB, Ai Sis Ge5Sn, alone or in combination is 0. O1~5.0s
These elements may be added in a range of et%. These elements are α phase forming elements, and if the amount is less than 0.01%, they are not useful for producing an α phase single solid solution prior to spinodal decomposition.
If it exceeds %, the saturation magnetic flux density will be lowered, α phase will be formed, and workability will be deteriorated, and at the same time spinodal decomposition will become non-uniform, so the above range is preferable.

本発明では、上述した組成の合金を転炉又は電気炉等で
溶製し、インゴットを分解圧延してスラブとし、あるい
は連続鋳造で直接スラブとし、その後に熱間圧延を加え
て熱延板としたものを母材鋼板として利用できる。これ
らの綱板をIH以下の板厚に冷間圧延し、上述の処理を
施すことにより、5MGOeを満足する薄板状方向性F
ecr−C。
In the present invention, an alloy having the above-mentioned composition is melted in a converter or electric furnace, the ingot is decomposed and rolled into a slab, or directly cast into a slab by continuous casting, and then hot-rolled to form a hot-rolled sheet. This can be used as a base material steel plate. By cold rolling these steel plates to a thickness of IH or less and subjecting them to the above-mentioned treatment, a thin plate orientation F that satisfies 5MGOe is obtained.
ecr-C.

系永久磁石を容易に工業的規模で大量に生産することが
可能である。
It is possible to easily mass-produce permanent magnets on an industrial scale.

以下具体的に実施例を基に説明する。The following will be specifically explained based on examples.

〈実施例〉 実施例I 第1表に示す成分を有する30kgインゴットを作製し
、インゴットの表面を1關程研削した後1260℃で3
0分間加熱し直ちに熱間圧延を行い、4.OI厚の熱延
板とした。この仮に対して表面のスケールを酸洗してお
とした後、第1表に示す種々の焼鈍温度で2分間の熱処
理を施した。この板に対して87.5%の圧下率で冷間
圧延を施し0.5mmの板厚とした。その後、圧延方向
から45゛方向にIKOeの磁場を印加して670℃で
40分間の焼鈍を施して、650〜400 ’C迄50
時間かけて冷却した。これらの板に対して30X30m
のサイズに切り出した試料について積重ねた時の板厚が
5−以上になるようにして自動B−H)レーサーによっ
て、10KOe迄の測定磁場を印加してB−Hlill
線を測定し、(Bll)IIasを調べた。そのとき得
られた磁気特性を第1表に併記する。
<Example> Example I A 30 kg ingot having the components shown in Table 1 was prepared, and after grinding the surface of the ingot by about 1 inch, it was heated at 1260°C for 3
4. Heating for 0 minutes and immediately hot rolling. It was made into a hot rolled sheet with OI thickness. After removing scale on the surface of this sample with acid, heat treatment was performed for 2 minutes at various annealing temperatures shown in Table 1. This plate was cold rolled at a reduction rate of 87.5% to a thickness of 0.5 mm. After that, an IKOe magnetic field was applied in the 45° direction from the rolling direction, and annealing was performed at 670°C for 40 minutes, and the temperature was increased to 50°C from 650 to 400°C.
Cooled down over time. 30X30m for these boards
Samples cut to the size of B-Hlill were stacked to have a thickness of 5 or more when stacked, and a measurement magnetic field of up to 10 KOe was applied using an automatic B-H) racer.
The line was measured and (Bll) IIas was examined. The magnetic properties obtained at that time are also listed in Table 1.

水中本発明適用外 実施例2 Fe−28Cr−14,6Go −2,7Mo −0,
3Wの組成を有する50kgインゴットより3.0m厚
の熱延板を作製し、1000’Cで2分間の焼鈍を行っ
た後に、第2表に示す圧下率で冷間圧延板を作製した。
Underwater Example 2 not applicable to the present invention Fe-28Cr-14,6Go -2,7Mo -0,
A 3.0 m thick hot rolled plate was produced from a 50 kg ingot having a composition of 3W, and after annealing at 1000'C for 2 minutes, a cold rolled plate was produced at the rolling reduction ratio shown in Table 2.

この圧延仮に対して、45°方向に印加磁場強度を変え
て30分間の焼鈍を加えた後、650〜500 ”Cま
で50時間かけて冷却した。実施例1に示す方法によっ
て測定した磁気特性の結果を第2表に併記する。
This pre-rolled material was annealed for 30 minutes while varying the applied magnetic field strength in the 45° direction, and then cooled to 650-500''C over 50 hours.The magnetic properties measured by the method shown in Example 1 The results are also listed in Table 2.

*印本発明適用外 実施例3 Fe−25Cr−15Co −3,25iの組成を有す
る30kgインゴットから2.0鵬厚の熱延板を作製し
、950℃で5分間の焼鈍を行った後、圧下率95%の
冷間圧延を施して0.1閣の板厚に仕上げた。この板に
対して圧延方向に対して印加するIKOeの磁場方向を
変えて、680”Cで30分間の焼鈍を行った後、60
0゛Cで5時間、550℃Tl0時間、500℃で15
時間の階段状の焼鈍を行い、実施例!に示す方法によっ
て磁気特性を調べた。結果に付いて第3表に示す。
*Example 3 not applicable to the present invention A hot-rolled sheet with a thickness of 2.0 mm was prepared from a 30 kg ingot having a composition of Fe-25Cr-15Co-3,25i, annealed at 950°C for 5 minutes, and then rolled. It was cold rolled at a rate of 95% and finished to a thickness of 0.1 mm. This plate was annealed at 680"C for 30 minutes by changing the direction of the IKOe magnetic field applied to the rolling direction, and then
5 hours at 0゛C, 0 hours at 550℃, 15 hours at 500℃
Example of stepwise annealing of time! The magnetic properties were investigated using the method shown below. The results are shown in Table 3.

〈発明の効果〉 かくしてこの発明によれば、Fe−Cr−Co系合金を
用いることによって一方向性の5MGOe以上の(Bl
l)a+axを有する1■以下の板厚の永久磁石を工業
的に生産できる。しかも最終的な磁場焼鈍工程までは、
コイル状で取り扱うことができ、大量に工業的規模で生
産するに適している。
<Effects of the Invention> Thus, according to the present invention, by using the Fe-Cr-Co alloy, unidirectional 5MGOe or more (Bl
l) It is possible to industrially produce a permanent magnet having a thickness of 1 inch or less and having a+ax. Moreover, up to the final magnetic field annealing process,
It can be handled in coiled form and is suitable for mass production on an industrial scale.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は掻点図に及ぼす冷間圧下率の影響を示す図、第
2図は(all)waxに及ぼす冷間圧延方向と印加磁
場のなす角度の影響を示すグラフ、第3図は(BH)I
Iaxに及ぼす磁場焼鈍温度の影響を示すグラフ、第4
図は(Bll)waxに及ぼす印加磁場強度の影響を示
すグラフである。
Figure 1 is a graph showing the effect of cold rolling reduction on the scratch diagram, Figure 2 is a graph showing the effect of the angle between the cold rolling direction and the applied magnetic field on (all) wax, and Figure 3 is ( BH)I
Graph showing the influence of magnetic field annealing temperature on Iax, 4th
The figure is a graph showing the influence of applied magnetic field strength on (Bll)wax.

Claims (1)

【特許請求の範囲】[Claims]  薄板状のFe−Cr−Co系永久磁石合金を製造する
際に、その母材となる鋼板に700〜1300℃の温度
範囲の加熱処理を施して後、圧下率70%以上の冷間圧
延を施し、次にこの鋼板の冷間圧延方向に対して45゜
±15゜の方向に磁場方向が一致した1000e以上の
磁場を印加しながら600〜700℃の温度範囲で焼鈍
を施し、引き続きこの磁場焼鈍温度よりも低い温度で時
効焼鈍を施すことを特徴とする薄板状方向性Fe−Cr
−Co系永久磁石の製造方法。
When manufacturing a thin plate-shaped Fe-Cr-Co permanent magnet alloy, the base material steel plate is heat treated in a temperature range of 700 to 1300°C, and then cold rolled at a reduction rate of 70% or more. Then, annealing is performed in a temperature range of 600 to 700 °C while applying a magnetic field of 1000 e or more with the magnetic field direction aligned at 45 ° ± 15 ° with respect to the cold rolling direction of the steel plate, and then annealing is performed in a temperature range of 600 to 700 ° C. Thin plate-shaped oriented Fe-Cr characterized by aging annealing at a temperature lower than the annealing temperature
- A method for producing a Co-based permanent magnet.
JP1291330A 1989-11-10 1989-11-10 Production of sheet-like directional fe-cr-co permanent magnet Pending JPH03153823A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1291330A JPH03153823A (en) 1989-11-10 1989-11-10 Production of sheet-like directional fe-cr-co permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1291330A JPH03153823A (en) 1989-11-10 1989-11-10 Production of sheet-like directional fe-cr-co permanent magnet

Publications (1)

Publication Number Publication Date
JPH03153823A true JPH03153823A (en) 1991-07-01

Family

ID=17767517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1291330A Pending JPH03153823A (en) 1989-11-10 1989-11-10 Production of sheet-like directional fe-cr-co permanent magnet

Country Status (1)

Country Link
JP (1) JPH03153823A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08204253A (en) * 1995-01-27 1996-08-09 Nec Corp Magnetoresistive effect film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08204253A (en) * 1995-01-27 1996-08-09 Nec Corp Magnetoresistive effect film

Similar Documents

Publication Publication Date Title
JP5543970B2 (en) Magnetostrictive material and method for preparing the same
JPS5929644B2 (en) Method for modifying magnetic properties of high magnetic permeability amorphous alloy
JPH0741891A (en) Wear resistant high permeability alloy, its production and magnetic recording and reproducing head
JP2535963B2 (en) Silicon steel sheet having excellent magnetic properties and method for producing the same
KR930005897B1 (en) Very thin electrical steel strip having low core loss and high magnetic flux density and a process for producing the same
EP0216457A1 (en) Method of producing two-phase separation type Fe-Cr-Co series permanent magnets
JPS621817A (en) Production of electrical steel sheet
JPH03153823A (en) Production of sheet-like directional fe-cr-co permanent magnet
Sugimoto et al. The development of< 100> texture in Fe-Cr-Co-Mo permanent magnet alloys
JPH02209455A (en) Silicon steel sheet having excellent magnetic properties
JPH0742559B2 (en) Amorphous alloy ribbon for magnetic core with excellent space factor and method for producing the same
Kustas Shear-based deformation processing and characterization of electrical steel sheet
JPH02250922A (en) Production of rare earth element-transition element -b magnet
JPS6057686B2 (en) Permanent magnetic ribbon and its manufacturing method
JPH046221A (en) Production of double oriented silicon steel sheet
JPS63109114A (en) Manufacture of fe-sn soft-magnetic sheet metal
JPH01290746A (en) Soft-magnetic alloy
JP3066661B2 (en) Method for manufacturing bidirectional silicon steel sheet
JP3169427B2 (en) Method for producing bidirectional silicon steel sheet with excellent magnetic properties
JPH0699752B2 (en) High magnetic flux density bi-directional electrical steel sheet manufacturing method
JPS59104429A (en) Preparation of non-directional electromagnetic steel strip
JPH02101710A (en) Permanent magnet and manufacture thereof
JPH0621294B2 (en) Method for manufacturing high silicon iron plate
JPS6130405B2 (en)
JP2503122B2 (en) Method for manufacturing non-oriented electromagnetic thick plate with excellent magnetic properties