JPH0462162B2 - - Google Patents

Info

Publication number
JPH0462162B2
JPH0462162B2 JP57075269A JP7526982A JPH0462162B2 JP H0462162 B2 JPH0462162 B2 JP H0462162B2 JP 57075269 A JP57075269 A JP 57075269A JP 7526982 A JP7526982 A JP 7526982A JP H0462162 B2 JPH0462162 B2 JP H0462162B2
Authority
JP
Japan
Prior art keywords
magnetic
film
layer
laminated
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57075269A
Other languages
Japanese (ja)
Other versions
JPS58192311A (en
Inventor
Takayuki Kumasaka
Hideo Fujiwara
Noritoshi Saito
Moichi Ootomo
Takeo Yamashita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP7526982A priority Critical patent/JPS58192311A/en
Publication of JPS58192311A publication Critical patent/JPS58192311A/en
Publication of JPH0462162B2 publication Critical patent/JPH0462162B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Power Engineering (AREA)
  • Magnetic Heads (AREA)
  • Thin Magnetic Films (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は磁気記録再生用の磁気ヘツドのコア材
に用いて特に良好な結果の得られる磁性体膜に係
り、さらに特に高周波領域でも高い透磁率を有
し、且つ低保磁力の積層磁性体膜に関する。 従来、磁気ヘツドのコア材に金属磁性材料を用
いる場合は高周波領域における渦電流損をおさえ
るために磁性体膜を電気的に絶縁して積層した構
造がとられている。またその製造方法としてはス
パツタリング、蒸着、イオンプレーテイングある
いはメツキ等の簿膜形成技術によつて一定膜厚の
磁性体層と絶縁層とを交互に順次形成し、積層体
を得る方法が公知である。 すなわち、第1図に積層磁性体膜の断面図を示
すごとく、基板1の上に数ミクロンの磁性体層2
と電気的に絶縁されるSiO2あるいはAl2O3等の非
磁性体層3を交互に積層して渦電流損を低減させ
た積層磁性体膜を磁気ヘツド材料として用いてい
る。この様な積層構造については、例えば特開昭
52−112797に記載がある。しかし、Ni−Fe合金
(パーマロイ)、Fe−Al−Si合金(センダスト)、
Fe−Si合金等で代表される結晶質磁性合金を薄
膜形成技術によつて形成した場合、堆積された磁
性膜の金属組織は基板にほぼ垂直な柱状構造を有
する。この柱状晶は膜厚が薄い状態においては針
状の細い結晶の集りになつているが膜厚が厚くな
るにしたがつて結晶が成長して太くなる。例え
ば、第2図に第1図の磁性体層の一層の断面斜視
図を示すごとく、基板1の上の磁性体層2は柱状
構造(あるいは針状)4を形成する。この柱状構
造4は基板付近で針状の細い結晶の集りである
が、膜厚が厚くなるにつれ逆円錐状に太く成長
し、膜厚が数ミクロンになると0.1〜0.3μmとな
る。このような構造の磁性体膜は磁壁移動の障
害、磁気異方性のゆらぎ等が大きくなり、これを
非磁性体層を介して多層構造にしても十分な磁気
特性が得られない。また、柱状晶の部分に選択的
に合金が堆積し、表面に凹凸が生じ平坦な面が得
られない等の欠点を生ずる。 本発明の目的は磁気ヘツド用コア材として、低
い保磁力、相対的に高い透磁率、高い飽和磁束密
度を有する積層磁性体膜を提供することにある。 本発明は磁性体層と非磁性体層とを堆積してな
る積層磁性体膜において、厚さが2種以上からな
る非磁性体層を有し、そのうち少なくとも1種が
電気的絶縁層からなる積層磁性体膜である。その
積層膜の一例は第3図に断面図として示す。基板
1の上に磁性体層2と第1の非磁性体層5を交互
に積層した単位積層膜6を形成し、この単位積層
膜と電気的に絶縁する第2の非磁性体層3とを交
互に積層して、膜の厚い積層磁性体膜を形成す
る。第1の非磁性体層5は第2の非磁性体層3よ
り薄くすることが好ましい。第4図は単位積層膜
6の拡大断面斜視図を示し、磁性体層2の構造は
微細な針状晶から形成されたものとなる。 各層の磁性体層の膜厚は0.05〜0.2μmの範囲が
好適で、この範囲の膜厚なら0.1μmφ以下の比較
的均一な針状晶が形成される。したがつて、この
膜厚の磁性体層に第1の非磁性層を形成するとよ
い。第1の非磁性層は結晶の粗大化を防ぐための
もので、電気的な絶縁は目的としないでもよい。
したがつて、必ずしも絶縁体でなくともよく、
Cu、Al、Mo等の導体膜でもよく特に限定するも
のではない。また、磁性体層自身の表面を薄く酸
化し、酸化膜を形成することもできる。第1の非
磁性層の膜厚は10〜100Åが好適で、10Å以下に
すると部分的に単層膜となり、また、100Å以上
にすると磁壁移動の障害となり保磁力の増大、透
磁率の低下をまねきいずれも好ましくない。この
ような積層膜は1〜5μmの膜厚まで形成されて
単位積層膜となり、この単位積層膜と0.1〜1μm
の第2の非磁性体層とを積層してなるのが本発明
の積層磁性体膜である。このようにすれば、10μ
m以上の積層体でも優れた磁性体膜を得ることが
できる。 以下本発明を実施例によつて詳しく説明する。 本発明の実施例では第3図、第4図に示す積層
膜の形成はスパツタリング法によつて行なわれ
る。磁性膜はパーマロイ(Ni−20%Fe)、センダ
スト(Fe−9.5%Si−6%Al)、Fe−6.5%Siまた
はFe−3%Si(それぞれ重量%)等の磁歪零付近
の組成が選ばれ、特に形成膜が柱状構造を示す材
料に好適である。さらに、単層膜では数エルステ
ツドの比較的大きな保磁力の値を示すFe−6.5%
Si膜に有効な結果を得る。Fe−6.5%Si膜は飽和
磁束密度が18000ガウス程度を示し、高保磁力記
録媒体に有効な記録特性を示す材料である。以
下、順を追つて説明する。 基板は非磁性のガラスあるいはセラミツク基板
が選ばれ、基板が高周波スパツタリング容器の陽
極板上に置かれる。そして、Fe−Si基板が陰極
上に置かれる。ターゲツトから基板に対して所望
の高周波電力が印加され、アルゴンガス雰囲気中
でスパツタリングされる。 比較的好条件でスパツタリングするために選ば
れた諸条件は下記の如くである。 ターゲツト組成 Fe−6.5%Si 高周波電力密度 2.8W/cm2 アルゴン圧力 2×10-2Torr 基板温度 350℃ 陽極−陰極間距離 25mm 膜 厚 1.5μm この結果できた単層膜の磁気特性は、保磁力;
2.5Oe、5MHzにおける透磁率;400であつた。な
お、スパツタリング中には面内に一方方向の磁場
(約10エルステツド)が印加されており、またそ
れぞれの値は磁化困難軸方向の磁気特性を示す。 スパツタリングに際しての諸条件は、ターゲツ
ト組成をFe−6.5%Siを用いるとFe側に組成がず
れる傾向にあり、堆積された膜の組成は4.5〜5
%Siとなる。高周波電力密度は2W/cm2以上にし
た方が保磁力が低減する傾向にある。アルゴン圧
力は高い方向で保磁力が低減する。基板温度は歪
応力を緩和するため300℃以上が好ましい。陽極
−陰極間距離は短い方が保磁力が低くなる領域が
あり、スパツタリング中の放電安定性を加味する
と20〜30mmが好ましい。また、アルゴンガス導入
前の容器の真空度は酸化や不純物の混入が磁気特
性に影響するので10-7Torr以上の高真空にする
必要がある。以上の実験結果を踏え以下に多層膜
の実施例を示す。 実施例 1 第5図に第1の非磁性体層とFe−Si膜を交互
に堆積し、1.5μmの積層膜を形成した時のFe−Si
膜の膜厚に対する保磁力(曲線20)と5MHzで
の透磁率(曲線30)の関係を示す。第1の非磁
性体層の膜厚は30オングストローム(スパツタ時
間30秒)とした。スパツタ条件は、電力密度
0.7W/cm2、アルゴン圧力5×10-3Torr、陽極−
陰極間隔30mm、基板温度250℃とした。保磁力は
磁性層を薄くする方向で低減する傾向にあり、
5MHzでの透磁率を1000以上維持するためには
0.05〜0.2μmが好適で、0.1μm付近で最大を示し
た。保磁力の値は膜構造に強く影響をうけ、磁性
膜の柱状構造を細かくすることによつて低減す
る。磁性膜の柱状構造を走査型電子顕微鏡で観察
すると、0.5μm程度以上になると急激に成長する
ことが確認された。したがつて、柱状構造結晶が
あまり成長しない膜厚で、一旦成長を止める効果
を有する第1の非磁性体層(中間層)を設けると
保磁力が低減し、透磁率も高くすることが可能で
ある。このような第1の非磁性層に用いる材料は
SiO2、SiO、Al2O3等の絶縁材料、Cu、Al、Mo、
Ag等の導電材料また、Si、Ge等の半金属でも効
果があることがわかつた。 実施例 2 第6図はFe−Si磁性層の膜厚を0.1μmとした時
の第1の非磁性体層膜厚をかえた時の保磁力(曲
線40)と5MHzにおける透磁率(曲線50)の
変化を示す。この時の磁性体膜は15層とし全膜厚
を約1.5μmとした。第1の非磁性体層の膜厚は薄
くするほど積層膜の磁気特性が向上する。特に第
1の非磁性体層が100オングストローム以下で保
磁力(曲線40)は低減し、透磁率(曲線50)
も向上し、10〜30オングストロームで保磁力が最
も低く、透磁率が最大となる。第1の非磁性体層
を10オングストローム以下にすると磁性膜は部分
的に多層構造が切れ、単層構造になつていること
が確認された。一方、第1の非磁性体層を100オ
ングストローム以上にすると単層膜より保磁力が
小さいものの保磁力の増大、透磁率の低下をきた
し、好ましい磁性体膜を得られなかつた。これは
第1の非磁性体層が厚くなると磁壁移動等の障害
になつているものと考えられる。したがつて、第
1の非磁性体層の膜厚は各層の磁性体層結晶成長
を止める効果がある範囲でできるだけ薄いことが
好ましい。また、熱処理工程を有するときにはあ
る程度の膜厚を必要とする場合がある。 他の実施例では第1の非磁性体層として各層の
磁性体層自身の表面を酸化することによつても同
じ効果を得ることができる。この場合、スパツタ
容器に空気を導入するか、酸素含有ガスを導入し
て表面に酸化膜を形成して行なわれる。また、イ
オンを打込んで表面に変質層を形成してもよい。 このように、第1の非磁性体層を有する積層膜
は数ミクロン膜厚において磁気特性の優れた磁性
体膜を得ることができ、この範囲の膜厚で用いら
れる薄膜磁気ヘツドには十分適用できる。一方、
VTR用ヘツド等で磁性体膜の膜厚をトラツク幅
として用いる構造の場合には、10〜20μmの膜厚
を必要とするため、渦電流損による透磁率の低下
が問題となる。この場合には次のような膜構造が
とられる。 実施例 3 磁性体層と第1の非磁性体層を堆積した適当の
膜厚を単位とする単位積層膜と電気的に絶縁体で
あるSiO2、Al2O3あるいは種々のセラミツク材料
等からなる第2の非磁性体層を積層することによ
つて得られる。単位積層膜の膜厚は1〜5μmの
範囲で好ましい磁気性が得られる、1μm以下に
すると保磁力が増大し、5μm以上にすると高周
波(1MHz以上)領域の透磁率が急激に低下する。
一方、第2の非磁性体層の膜厚は第1の非磁性体
層より厚い膜厚が必要となり、好ましい範囲は
0.1〜1μmである。0.1μm以下にすると電気的絶
縁効果が低下し、単位積層膜の有する保磁力およ
び透磁率の値を確保できなくなる。また、1μm
以上にすると単位積層膜に対して非磁性層の占る
割合が大きくなり、低周波数領域、高周波領域と
もに透磁率が低減する。以下、代表例を第1表に
示す。
The present invention relates to a magnetic film that can be used as a core material of a magnetic head for magnetic recording and reproducing, and which can obtain particularly good results, and more particularly to a laminated magnetic film that has high magnetic permeability even in a high frequency range and has a low coercive force. Regarding. Conventionally, when a metallic magnetic material is used for the core material of a magnetic head, a structure is adopted in which magnetic films are electrically insulated and laminated in order to suppress eddy current loss in a high frequency region. Also, as a manufacturing method, a method is known in which a laminate is obtained by alternately forming magnetic layers and insulating layers of a constant thickness using film forming techniques such as sputtering, vapor deposition, ion plating, or plating. be. That is, as shown in FIG. 1, which is a cross-sectional view of a laminated magnetic film, a magnetic layer 2 of several microns is placed on a substrate 1.
A laminated magnetic film in which eddy current loss is reduced by alternately laminating non-magnetic layers 3 such as SiO 2 or Al 2 O 3 which are electrically insulated from the magnetic head is used as the magnetic head material. Regarding such a laminated structure, for example,
It is described in 52-112797. However, Ni-Fe alloy (permalloy), Fe-Al-Si alloy (sendust),
When a crystalline magnetic alloy such as an Fe--Si alloy is formed by a thin film formation technique, the metal structure of the deposited magnetic film has a columnar structure substantially perpendicular to the substrate. These columnar crystals form a collection of needle-like thin crystals when the film thickness is thin, but as the film thickness increases, the crystals grow and become thicker. For example, as shown in FIG. 2, which is a cross-sectional perspective view of one layer of the magnetic layer shown in FIG. 1, the magnetic layer 2 on the substrate 1 forms a columnar structure (or needle-like structure) 4. This columnar structure 4 is a collection of needle-like thin crystals near the substrate, but as the film thickness increases, it grows thicker in an inverted conical shape, and when the film thickness becomes several microns, it becomes 0.1 to 0.3 μm. A magnetic film with such a structure suffers from large disturbances in domain wall motion, fluctuations in magnetic anisotropy, etc., and even if it is formed into a multilayer structure with non-magnetic layers interposed therebetween, sufficient magnetic properties cannot be obtained. Further, the alloy is selectively deposited on the columnar crystal portions, causing defects such as unevenness on the surface and the inability to obtain a flat surface. An object of the present invention is to provide a laminated magnetic film having low coercive force, relatively high magnetic permeability, and high saturation magnetic flux density as a core material for a magnetic head. The present invention provides a laminated magnetic film formed by depositing a magnetic layer and a non-magnetic layer, which has a non-magnetic layer having two or more types of thickness, at least one of which is an electrically insulating layer. It is a laminated magnetic film. An example of the laminated film is shown as a cross-sectional view in FIG. A unit laminated film 6 in which magnetic layers 2 and first non-magnetic layers 5 are alternately laminated is formed on the substrate 1, and a second non-magnetic layer 3 is electrically insulated from this unit laminated film. are alternately laminated to form a thick laminated magnetic film. The first nonmagnetic layer 5 is preferably thinner than the second nonmagnetic layer 3. FIG. 4 shows an enlarged cross-sectional perspective view of the unit laminated film 6, and the structure of the magnetic layer 2 is formed from fine needle-like crystals. The thickness of each magnetic layer is preferably in the range of 0.05 to 0.2 .mu.m, and if the thickness is within this range, relatively uniform acicular crystals with a diameter of 0.1 .mu.m or less are formed. Therefore, it is preferable to form the first nonmagnetic layer on the magnetic layer having this thickness. The first nonmagnetic layer is for preventing crystal coarsening, and may not be intended for electrical insulation.
Therefore, it does not necessarily have to be an insulator,
It may also be a conductive film of Cu, Al, Mo, etc., and is not particularly limited. Alternatively, the surface of the magnetic layer itself can be thinly oxidized to form an oxide film. The preferred thickness of the first nonmagnetic layer is 10 to 100 Å. If it is less than 10 Å, it will become a partially monolayer film, and if it is more than 100 Å, it will become an obstacle to domain wall movement, increasing the coercive force and decreasing the magnetic permeability. I don't like either of them. Such a laminated film is formed to a film thickness of 1 to 5 μm to form a unit laminated film, and this unit laminated film has a thickness of 0.1 to 1 μm.
The laminated magnetic film of the present invention is formed by laminating the second non-magnetic layer. In this way, 10μ
An excellent magnetic film can be obtained even with a laminate having a thickness of m or more. The present invention will be explained in detail below with reference to Examples. In the embodiment of the present invention, the laminated film shown in FIGS. 3 and 4 is formed by a sputtering method. The magnetic film has a composition near zero magnetostriction, such as permalloy (Ni-20%Fe), Sendust (Fe-9.5%Si-6%Al), Fe-6.5%Si, or Fe-3%Si (each in weight%). This method is particularly suitable for materials whose formed film has a columnar structure. Furthermore, in a single layer film, Fe−6.5% exhibits a relatively large coercive force value of several oersteds.
Obtain valid results for Si films. The Fe-6.5%Si film exhibits a saturation magnetic flux density of approximately 18,000 Gauss, and is a material that exhibits recording characteristics effective for high coercive force recording media. The following is a step-by-step explanation. A non-magnetic glass or ceramic substrate is selected as the substrate, and the substrate is placed on the anode plate of the high frequency sputtering vessel. Then, a Fe-Si substrate is placed on the cathode. A desired high frequency power is applied to the substrate from the target, and sputtering is performed in an argon gas atmosphere. The conditions selected for sputtering under relatively favorable conditions are as follows. Target composition Fe-6.5%Si Radio frequency power density 2.8W/cm 2 Argon pressure 2×10 -2 Torr Substrate temperature 350℃ Anode-cathode distance 25mm Film thickness 1.5μm The magnetic properties of the resulting single-layer film are magnetic force;
Magnetic permeability at 2.5Oe and 5MHz was 400. Note that during sputtering, a unidirectional magnetic field (approximately 10 oersted) is applied in the plane, and each value indicates the magnetic properties in the direction of the hard magnetization axis. The conditions for sputtering are that when Fe-6.5%Si is used as the target composition, the composition tends to shift toward the Fe side, and the composition of the deposited film is 4.5 to 5%.
%Si. The coercive force tends to decrease when the high-frequency power density is set to 2 W/cm 2 or higher. The coercive force decreases as the argon pressure increases. The substrate temperature is preferably 300° C. or higher to alleviate strain stress. There is a region in which the shorter the anode-cathode distance, the lower the coercive force, and when considering the discharge stability during sputtering, it is preferably 20 to 30 mm. Furthermore, the degree of vacuum in the container before introducing argon gas needs to be a high vacuum of 10 -7 Torr or higher, since oxidation and impurity contamination affect the magnetic properties. Based on the above experimental results, examples of multilayer films are shown below. Example 1 Figure 5 shows the Fe-Si layer when the first non-magnetic layer and the Fe-Si film are alternately deposited to form a 1.5 μm laminated film.
The relationship between coercive force (curve 20) and magnetic permeability at 5 MHz (curve 30) with respect to film thickness is shown. The thickness of the first nonmagnetic layer was 30 angstroms (sputtering time 30 seconds). The sputter condition is the power density
0.7W/cm 2 , argon pressure 5×10 -3 Torr, anode -
The cathode spacing was 30 mm, and the substrate temperature was 250°C. Coercive force tends to decrease as the magnetic layer becomes thinner.
To maintain magnetic permeability of 1000 or more at 5MHz
The preferred value was 0.05 to 0.2 μm, and the maximum value was observed around 0.1 μm. The value of coercive force is strongly influenced by the film structure, and can be reduced by making the columnar structure of the magnetic film finer. When the columnar structure of the magnetic film was observed using a scanning electron microscope, it was confirmed that the magnetic film grows rapidly when it becomes about 0.5 μm or more. Therefore, by providing a first non-magnetic layer (intermediate layer) that has the effect of temporarily stopping the growth of columnar structure crystals with a film thickness that does not allow much growth, the coercive force can be reduced and the magnetic permeability can be increased. It is. The material used for such a first nonmagnetic layer is
Insulating materials such as SiO 2 , SiO, Al 2 O 3 , Cu, Al, Mo,
It was found that conductive materials such as Ag and semimetals such as Si and Ge are also effective. Example 2 Figure 6 shows the coercive force (curve 40) and magnetic permeability (curve 50) at 5MHz when the thickness of the first non-magnetic layer is changed when the thickness of the Fe-Si magnetic layer is 0.1 μm. ). At this time, the magnetic film had 15 layers, and the total film thickness was about 1.5 μm. The thinner the first nonmagnetic layer is, the better the magnetic properties of the laminated film are. In particular, when the first non-magnetic layer is less than 100 angstroms, the coercive force (curve 40) decreases, and the magnetic permeability (curve 50) decreases.
The coercivity is lowest and the permeability is highest between 10 and 30 angstroms. It was confirmed that when the thickness of the first non-magnetic layer was reduced to 10 angstroms or less, the multilayer structure of the magnetic film was partially broken and a single layer structure was formed. On the other hand, when the first nonmagnetic layer has a thickness of 100 angstroms or more, although the coercive force is smaller than that of a single layer film, the coercive force increases and the magnetic permeability decreases, making it impossible to obtain a desirable magnetic film. This is considered to be because when the first non-magnetic layer becomes thicker, it becomes an obstacle to domain wall movement and the like. Therefore, it is preferable that the thickness of the first nonmagnetic layer is as thin as possible within a range that is effective in stopping the crystal growth of the magnetic layer of each layer. Furthermore, when a heat treatment process is involved, a certain degree of film thickness may be required. In other embodiments, the same effect can be obtained by oxidizing the surface of each magnetic layer itself as the first nonmagnetic layer. In this case, air is introduced into the sputtering container or an oxygen-containing gas is introduced to form an oxide film on the surface. Alternatively, an altered layer may be formed on the surface by implanting ions. In this way, the laminated film having the first non-magnetic layer can obtain a magnetic film with excellent magnetic properties even at a film thickness of several microns, and is fully applicable to thin-film magnetic heads used with film thickness in this range. can. on the other hand,
In the case of a structure in which the thickness of the magnetic film is used as the track width in a VTR head or the like, a film thickness of 10 to 20 .mu.m is required, resulting in a decrease in magnetic permeability due to eddy current loss. In this case, the following membrane structure is adopted. Example 3 A unit laminated film of an appropriate film thickness in which a magnetic layer and a first non-magnetic layer are deposited, and electrically insulating materials such as SiO 2 , Al 2 O 3 or various ceramic materials, etc. This can be obtained by laminating second non-magnetic layers. Preferable magnetic properties can be obtained when the thickness of the unit laminated film is in the range of 1 to 5 μm; when it is less than 1 μm, the coercive force increases, and when it is more than 5 μm, the magnetic permeability in the high frequency (1 MHz or more) region decreases rapidly.
On the other hand, the thickness of the second non-magnetic layer needs to be thicker than the first non-magnetic layer, and the preferable range is
It is 0.1 to 1 μm. When the thickness is less than 0.1 μm, the electrical insulation effect decreases, making it impossible to secure the coercive force and magnetic permeability values of the unit laminated film. Also, 1μm
If the ratio is above, the ratio of the nonmagnetic layer to the unit laminated film increases, and the magnetic permeability decreases in both the low frequency region and the high frequency region. Representative examples are shown in Table 1 below.

【表】 例1、2、3、4、5はFe−Si磁性体の積層
膜の構成およびその磁気特性を示す。それぞれの
構成において、単位積層膜の持つ磁気特性を損ね
ずに高講話磁束密度、低保磁力を有し、高周波領
域においても高透磁率を有する厚膜の積層磁性体
膜を得ることができる。また、例6、7に示すご
とく、Fe−Si−Al、Ni−Fe系でも優れた積層磁
性体膜を得ることができる。 以上に述べたごとく本発明は特に薄膜形成技術
によつて得られる磁性体膜の柱状構造を有するも
のに効果が得られる。 本発明は磁性体層と非磁性体層とを堆積してな
る積層磁性体膜において、厚さが異なる非磁性体
層を適当に組み合せることによつて優れた磁気特
性を有する磁性膜を得ることにある。例えば、数
ミクロンの磁性膜ならば、数十オングストローム
の非磁性体膜を適当に間に介することによつて磁
気特性がかなり改善され、さらに適当な間隔で数
百オングストロームの絶縁性の非磁性体膜を間に
介することによつても効果が現われる。また、5
ミクロン程度以上の磁性体膜に電気的絶縁性の高
い膜厚の非磁性体膜が適当な間隔で挿入されるこ
とによつて、厚膜磁性体においても優れた磁気特
性を保つことができる。
[Table] Examples 1, 2, 3, 4, and 5 show the structure of a laminated film of Fe-Si magnetic material and its magnetic properties. In each configuration, it is possible to obtain a thick laminated magnetic film having high magnetic flux density, low coercive force, and high magnetic permeability even in a high frequency region without impairing the magnetic properties of the unit laminated film. Further, as shown in Examples 6 and 7, excellent laminated magnetic films can be obtained using Fe-Si-Al and Ni-Fe systems. As described above, the present invention is particularly effective for magnetic films having a columnar structure obtained by thin film forming techniques. The present invention obtains a magnetic film having excellent magnetic properties by appropriately combining non-magnetic layers with different thicknesses in a laminated magnetic film formed by depositing a magnetic layer and a non-magnetic layer. There is a particular thing. For example, in the case of a magnetic film of several microns, the magnetic properties can be considerably improved by interposing a non-magnetic material film of several tens of angstroms in between, and furthermore, the magnetic properties can be significantly improved by interposing a non-magnetic film of several tens of angstroms in thickness, and furthermore, with an insulating non-magnetic film of several hundred angstroms at appropriate intervals. Effects can also be obtained by interposing a membrane. Also, 5
Excellent magnetic properties can be maintained even in thick-film magnetic materials by inserting electrically insulating, thick non-magnetic films at appropriate intervals into a magnetic film of micron size or more.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の積層磁性体膜の断面図、第2図
は磁性体層の一層の断面斜視図、第3図は本発明
の一実施例における積層磁性体膜の断面図、第4
図は単位積層膜の拡大断面斜視図、第5図は本発
明の一実施例における積層膜の磁性体層の厚さと
磁気特性の関係を示すグラフ、第6図は本発明の
一実施例における積層膜の第1の非磁性体層の厚
さと磁気特性の関係を示すグラフである。 2……磁性体層、3……第2の非磁性体層、5
……第1の非磁性体層、20……保磁力を示す曲
線、30……透磁率を示す曲線、40……保磁力
を示す曲線、50……透磁率を示す曲線。
FIG. 1 is a cross-sectional view of a conventional laminated magnetic film, FIG. 2 is a cross-sectional perspective view of one magnetic layer, FIG. 3 is a cross-sectional view of a laminated magnetic film in an embodiment of the present invention, and FIG.
The figure is an enlarged cross-sectional perspective view of a unit laminated film, FIG. 5 is a graph showing the relationship between the thickness of the magnetic layer and magnetic properties of a laminated film in an embodiment of the present invention, and FIG. 6 is a graph in an embodiment of the present invention. It is a graph showing the relationship between the thickness of the first nonmagnetic layer of the laminated film and the magnetic properties. 2...Magnetic layer, 3...Second non-magnetic layer, 5
...First non-magnetic layer, 20... Curve showing coercive force, 30... Curve showing magnetic permeability, 40... Curve showing coercive force, 50... Curve showing magnetic permeability.

Claims (1)

【特許請求の範囲】 1 結晶質磁性合金からなる磁性体層と非磁性体
層とを堆積してなる積層磁性体膜において、 0.05〜0.2μmの膜厚を有する磁性体層と10〜
100オングストロームの膜厚を有する第1の非磁
性体層とを交互に積層して単位積層膜を構成し、
当該単位積層膜と前記第1の非磁性体層よりも膜
厚の厚い電気絶縁層である第2の非磁性体層とを
交互に積層してなることを特徴とする積層磁性体
膜。 2 前記第2の非磁性体層の膜厚が0.1〜1μmで
あり、前記単位積層膜の膜厚が1〜5μmである
ことを特徴とする特許請求の範囲第1項記載の積
層磁性体膜。 3 前記第1の非磁性体層が導電材料であること
を特徴とする特許請求の範囲第1項または第2項
記載の積層磁性体膜。 4 前記第1の非磁性体層が半金属であることを
特徴とする特許請求の範囲第1項または第2項記
載の積層磁性体膜。 5 前記第1の非磁性体層が絶縁体であることを
特徴とする特許請求の範囲第1項または第2項記
載の積層磁性体膜。 6 前記第1の非磁性体層が磁性体層自身の表面
酸化層であることを特徴とする特許請求の範囲第
1項または第2項記載の積層磁性体膜。 7 前記磁性体層はNi−Fe合金であることを特
徴とする特許請求の範囲第1項乃至第6項のうち
いずれかに記載の積層磁性体膜。 8 前記磁性体層はFe−Al−Si合金であること
を特徴とする特許請求の範囲第1項乃至第6項の
うちいずれかに記載の積層磁性体膜。 9 前記磁性体層はFe−Si合金であることを特
徴とする特許請求の範囲第1項乃至第6項のうち
いずれかに記載の積層磁性体膜。 10 前記磁性体層は0.1μmφ以下の針状の結晶
で構成されることを特徴とする特許請求の範囲第
1項乃至第9項のうちいずれかに記載の積層磁性
体膜。
[Scope of Claims] 1. A laminated magnetic film formed by depositing a magnetic layer made of a crystalline magnetic alloy and a non-magnetic layer, a magnetic layer having a thickness of 0.05 to 0.2 μm and 10 to 10 μm.
A unit laminated film is formed by alternately laminating a first non-magnetic layer having a film thickness of 100 angstroms,
A laminated magnetic film characterized in that the unit laminated film and a second nonmagnetic layer, which is an electrically insulating layer thicker than the first nonmagnetic layer, are alternately laminated. 2. The laminated magnetic film according to claim 1, wherein the second non-magnetic layer has a thickness of 0.1 to 1 μm, and the unit laminated film has a thickness of 1 to 5 μm. . 3. The laminated magnetic film according to claim 1 or 2, wherein the first nonmagnetic layer is a conductive material. 4. The laminated magnetic film according to claim 1 or 2, wherein the first nonmagnetic layer is made of a semimetal. 5. The laminated magnetic film according to claim 1 or 2, wherein the first nonmagnetic layer is an insulator. 6. The laminated magnetic film according to claim 1 or 2, wherein the first non-magnetic layer is a surface oxidation layer of the magnetic layer itself. 7. The laminated magnetic film according to any one of claims 1 to 6, wherein the magnetic layer is made of a Ni-Fe alloy. 8. The laminated magnetic film according to any one of claims 1 to 6, wherein the magnetic layer is made of an Fe-Al-Si alloy. 9. The laminated magnetic film according to any one of claims 1 to 6, wherein the magnetic layer is an Fe-Si alloy. 10. The laminated magnetic film according to any one of claims 1 to 9, wherein the magnetic layer is composed of needle-like crystals with a diameter of 0.1 μm or less.
JP7526982A 1982-05-07 1982-05-07 Laminated magnetic film Granted JPS58192311A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7526982A JPS58192311A (en) 1982-05-07 1982-05-07 Laminated magnetic film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7526982A JPS58192311A (en) 1982-05-07 1982-05-07 Laminated magnetic film

Publications (2)

Publication Number Publication Date
JPS58192311A JPS58192311A (en) 1983-11-09
JPH0462162B2 true JPH0462162B2 (en) 1992-10-05

Family

ID=13571331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7526982A Granted JPS58192311A (en) 1982-05-07 1982-05-07 Laminated magnetic film

Country Status (1)

Country Link
JP (1) JPS58192311A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0785451B2 (en) * 1984-10-17 1995-09-13 株式会社日立製作所 High permeability multilayer magnetic film
JP2650890B2 (en) * 1985-02-15 1997-09-10 株式会社日立製作所 Multilayer magnetic film
US5142426A (en) * 1990-06-21 1992-08-25 International Business Machines Corporation Thin film magnetic head having interspersed resistance layers to provide a desired cut-off frequency
JPH0676238A (en) * 1992-07-08 1994-03-18 Fuji Electric Co Ltd Thin-film magnetic head
US6628478B2 (en) 2001-04-17 2003-09-30 Hitachi Global Storage Technologies Netherlands B.V. Write head with all metallic laminated pole pieces with thickness differential

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51138899A (en) * 1975-05-26 1976-11-30 Hitachi Ltd Layered high permiability magnetic material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51138899A (en) * 1975-05-26 1976-11-30 Hitachi Ltd Layered high permiability magnetic material

Also Published As

Publication number Publication date
JPS58192311A (en) 1983-11-09

Similar Documents

Publication Publication Date Title
JPS59130408A (en) Magnetic film
JPH0622170B2 (en) Magnetic head
US5403457A (en) Method for making soft magnetic film
US5302469A (en) Soft magnetic thin film
JPH0519804B2 (en)
JPH0462162B2 (en)
US4943879A (en) Thin film magnetic head including magnetic layers having high saturation magnetic flux density and metal film for avoiding deterioration during manufacturing
JP3382084B2 (en) Magnetic thin film for magnetic head, method of manufacturing the same, and magnetic head using the magnetic thin film
JPH07116563B2 (en) Fe-based soft magnetic alloy
JP2950917B2 (en) Soft magnetic thin film
JP2696989B2 (en) Multilayer magnetic film
JPS60132305A (en) Iron-nitrogen laminated magnetic film and magnetic head using the same
JPS61202310A (en) Composite type magnetic head
JP3232592B2 (en) Magnetic head
JP2950921B2 (en) Soft magnetic thin film
JP2925257B2 (en) Ferromagnetic film, method of manufacturing the same, and magnetic head
JPS63311613A (en) Thin film magnetic head
JP2774705B2 (en) High saturation magnetic flux density soft magnetic film
JPH01175707A (en) Laminated soft thin magnetic film
JP3036891B2 (en) Thin film magnetic head
JP2000100622A (en) Magnetic thin film and magnetic head using the same
JPH03203008A (en) Production of laminated film of fe-si-al ferromagnetic alloy for magnetic head
JPH01119004A (en) Magnetic film
JPH01283319A (en) Production of magnetic material for magnetic head
JPH03278409A (en) Laminated thin soft magnetic film