JP2774705B2 - High saturation magnetic flux density soft magnetic film - Google Patents

High saturation magnetic flux density soft magnetic film

Info

Publication number
JP2774705B2
JP2774705B2 JP3095877A JP9587791A JP2774705B2 JP 2774705 B2 JP2774705 B2 JP 2774705B2 JP 3095877 A JP3095877 A JP 3095877A JP 9587791 A JP9587791 A JP 9587791A JP 2774705 B2 JP2774705 B2 JP 2774705B2
Authority
JP
Japan
Prior art keywords
film
flux density
magnetic
magnetic flux
coercive force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3095877A
Other languages
Japanese (ja)
Other versions
JPH0590027A (en
Inventor
章伸 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP3095877A priority Critical patent/JP2774705B2/en
Publication of JPH0590027A publication Critical patent/JPH0590027A/en
Application granted granted Critical
Publication of JP2774705B2 publication Critical patent/JP2774705B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15308Amorphous metallic alloys, e.g. glassy metals based on Fe/Ni

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Thin Magnetic Films (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は磁性膜に関し、特に高密
度記録用磁気ヘッド用材料として好適な高飽和磁束密度
を有する軟磁性膜に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic film, and more particularly to a soft magnetic film having a high saturation magnetic flux density suitable as a material for a magnetic head for high density recording.

【0002】[0002]

【従来の技術】磁気記録の高密度化の要求に伴い、磁気
記録媒体の高保磁力化が精力的に進められ、現在では1
500〜2000Oe(エルステッド)近い保磁力を持
つ記録媒体も得られるようになってきた。このような記
録媒体に十分な記録を行なうためには、高い飽和磁束密
度を持つ磁気ヘッドコア材料が必要となる。実際、今後
の記録媒体の高保磁力化の進歩も考え合わせると、高密
度記録用磁気ヘッドのコア材料としては、15000G
(ガウス)以上の飽和磁束密度を持つことが要求され
る。
2. Description of the Related Art With the demand for higher density of magnetic recording, the coercive force of magnetic recording media has been energetically increased.
Recording media having a coercive force close to 500 to 2000 Oe (Oersted) have been obtained. In order to perform sufficient recording on such a recording medium, a magnetic head core material having a high saturation magnetic flux density is required. In fact, considering the future progress of increasing the coercive force of the recording medium, the core material of the magnetic head for high density recording is 15000G.
(Gauss) or higher saturation magnetic flux density is required.

【0003】従来より磁気ヘッドのコア材料としては、
パーマロイ、センダスト、Co系アモルファス合金など
が知られている。これらの材料において、軟磁性を維持
できる範囲での飽和磁束密度の最大値は、パーマロイで
はほぼ10000G、センダストではほぼ13000
G、Co系アモルファス合金では13000〜1500
0Gである。前記の中ではCo系アモルファス合金が有
望であるが、飽和磁束密度を上げると熱的安定性が低く
なり、磁気ヘッド製造工程での高温処理(ガラス溶着な
ど)により軟磁性が劣化したり、またヘッドとしての信
頼性において問題がある。
Conventionally, as a core material of a magnetic head,
Permalloy, Sendust, Co-based amorphous alloys and the like are known. In these materials, the maximum value of the saturation magnetic flux density in a range where soft magnetism can be maintained is approximately 10,000 G for Permalloy and approximately 13,000 G for Sendust.
13000 to 1500 for G and Co based amorphous alloys
0G. Among the above, Co-based amorphous alloys are promising, but if the saturation magnetic flux density is increased, the thermal stability will be reduced, and the soft magnetism will be degraded by high temperature treatment (such as glass welding) in the magnetic head manufacturing process. There is a problem in the reliability as a head.

【0004】このように現在知られている磁気ヘッド用
コア材料では高保磁力媒体の能力を十分に引き出すこと
が難しく、今後の高密度磁気記録の実現に対しては、よ
り飽和磁束密度の高い軟磁性材料の開発が望まれてい
る。
As described above, it is difficult for the currently known core material for a magnetic head to sufficiently bring out the capability of a high coercive force medium, and to realize a high density magnetic recording in the future, a soft material having a higher saturation magnetic flux density will be required. The development of magnetic materials is desired.

【0005】[0005]

【発明が解決しようとする課題】15000G以上の飽
和磁束密度を持つ材料として従来、FeあるいはFeを
主成分とする合金(Fe−Al,Fe−Siなど)が知
られている。しかし、高密度磁気記録用ヘッドのコア材
料等に使用する目的で、スパッタ法などの通常の製膜技
術により、前記FeあるいはFeを主成分とする合金の
磁性膜を作成した場合、飽和磁束密度は15000G以
上と大きくすることができるが、保磁力が大きくなり、
十分な軟磁性を得ることが困難であった。この課題を解
決するために、磁性膜を多層化することなどが行なわれ
ているが、特性が十分でなく、また製造工程が複雑にな
るなどの問題が残されている。
As a material having a saturation magnetic flux density of 15000 G or more, Fe or an alloy containing Fe as a main component (Fe-Al, Fe-Si, etc.) is conventionally known. However, when a magnetic film of Fe or an alloy containing Fe as a main component is formed by a normal film forming technique such as a sputtering method for use as a core material of a high-density magnetic recording head, the saturation magnetic flux density Can be increased to 15000G or more, but the coercive force increases,
It was difficult to obtain sufficient soft magnetism. In order to solve this problem, multilayering of the magnetic film and the like have been performed, but problems such as insufficient characteristics and a complicated manufacturing process remain.

【0006】そこで本発明者らは、平成2年10月5日
付提出の特願平2−268051号明細書において、単
層膜において15000G以上の飽和磁束密度を有する
高飽和磁束密度軟磁性膜について特許出願を行なってい
る。
Accordingly, the present inventors have disclosed a high saturation magnetic flux density soft magnetic film having a saturation magnetic flux density of 15000 G or more in a single-layer film in Japanese Patent Application No. 2-26851 filed on Oct. 5, 1990. We are applying for a patent.

【0007】この特許出願に係る磁性膜の1つは、Fe
x Y z (ただしMは、ZrとHfの内、1種以上の
元素を示し、xYZは各々原子%を示す。)の組成式
で示され、前記xYZが、70≦x≦96、1≦Y≦1
2、3≦Z≦25、xY=100なる組成よりな
り、かつ、Zが、1.5YZ≦4.0Yなる関係を満
足するものであった。
One of the magnetic films according to this patent application is Fe
x M Y O z (where M represents at least one element of Zr and Hf, and x , Y , and Z each represent atomic%), and the above-mentioned x , Y , Z Is 70 ≦ x ≦ 96, 1 ≦ Y ≦ 1
The composition was such that 2, 3 ≦ Z ≦ 25 and x + Y + Z = 100, and Y and Z satisfied the relationship of 1.5 YZ ≦ 4.0 Y.

【0008】前記特許出願に係る磁性膜は、15000
G以上の飽和磁束密度を持つ優れた軟磁性薄膜である。
一般的に、磁気ヘッドなどに使用される軟磁性材料は、
保磁力は小さければ小さい程好ましく、また高い周波数
領域での使用の際、渦電流による損失を少なくするため
に、電気抵抗は大きい方が好ましい。そこで本発明の目
的は、15000G以上の高い飽和磁束密度を持ち、前
記特許出願に係る磁性膜よりも低い保磁力を持つ軟磁性
膜を提供すること、及び前記特許出願に係る磁性膜より
も電気抵抗が大きく、高周波領域における渦電流の少な
い軟磁性膜を提供することにある。
[0008] The magnetic film according to the patent application is 15000
It is an excellent soft magnetic thin film having a saturation magnetic flux density of G or more.
Generally, soft magnetic materials used for magnetic heads and the like are:
The smaller the coercive force, the more preferable. In use in a high frequency region, the smaller the coercive force, the smaller the electric resistance is. Therefore, an object of the present invention is to provide a soft magnetic film having a high saturation magnetic flux density of 15000 G or more and a lower coercive force than the magnetic film according to the patent application, and to provide a softer magnetic film than the magnetic film according to the patent application. An object of the present invention is to provide a soft magnetic film having a large resistance and a small eddy current in a high frequency region.

【0009】さらに、MIG(メタルインギャプ)磁気
ヘッドの製造工程には、溶着ガラスにより磁気コアの接
着とギャプ形成を同時に行なうガラス溶着工程があり、
この際磁気ヘッドは、ガラスを溶着するために通常50
0℃〜600℃という高温に加熱されることになる。従
って、MIG磁気ヘッドに用いられる軟磁性薄膜は、高
い飽和磁束密度と伴に、ガラス溶着工程の高温加熱によ
り、磁気特性が劣化しない優れた熱的安定性を持つこと
も必要である。しかしながら前記特許出願に係る磁性膜
は、500℃より高温の加熱により軟磁気特性が劣化す
るため、製造工程にガラス溶着工程を含む磁気ヘッドに
は適していないという問題があった。そこで本発明のも
う一つの目的は、15000G以上の高い飽和磁束密度
を持ち、かつ低保磁力で、しかも優れた熱的安定性を持
つ軟磁性膜を提供することにある。
Further, in the manufacturing process of the MIG (metal-in-gap) magnetic head, there is a glass welding process for simultaneously bonding a magnetic core and forming a gap with a welding glass.
At this time, the magnetic head is usually 50 to weld the glass.
It will be heated to a high temperature of 0 ° C to 600 ° C. Therefore, the soft magnetic thin film used in the MIG magnetic head needs to have not only high saturation magnetic flux density but also excellent thermal stability such that the magnetic properties are not deteriorated by high-temperature heating in the glass welding step. However, the magnetic film according to the patent application has a problem in that the soft magnetic characteristics are deteriorated by heating at a temperature higher than 500 ° C., and thus the magnetic film is not suitable for a magnetic head including a glass welding process in a manufacturing process. Therefore, another object of the present invention is to provide a soft magnetic film having a high saturation magnetic flux density of 15000 G or more, a low coercive force, and excellent thermal stability.

【0010】[0010]

【課題を解決するための手段】請求項1記載の発明は前
記課題を解決するために、Fex Y z w (ただし
Mは、ZrとHfの内、1種以上の元素を示し、QはC
とNの内、1種以上を示し、X,Y,Z,Wは各々原子%を
示す。)の組成式で示され、前記X,Y,Z,Wが、QがC
を含むとき70≦X<96であり、QがNのとき70≦X
<89であり、1≦Y≦12であり、QがCを含むとき
3≦Z≦25であり、QがNのとき10<Z≦25であ
り、W≦26、X+Y+Z+W=100なる組成からなるよ
うにしたものである。請求項2記載の発明は前記課題を
解決するために、Fex Y z w (ただしMは、Z
rとHfの内、1種以上の元素を示し、RはSiとBと
AlとYの内、1種以上を示し、X,Y,Z,Wは各々原子
%を示す。)の組成式で示され、前記X,Y,Z,Wが、7
0≦X<96、1≦Y≦12、3≦Z≦25、W≦26、X
+Y+Z+W=100なる組成からなるようにしたもので
ある。
SUMMARY OF THE INVENTION The first aspect of the present invention in order to solve the above problems, Fe x M Y O z Q w ( where M is, among Zr and Hf, represents one or more elements , Q is C
And N, one or more of X, Y, Z, and W each represent atomic%. ) Represented by the composition formula, the X, Y, Z, W is, Q is C
When X is N, 70 ≦ X <96, and when Q is N, 70 ≦ X
<89, 1 ≦ Y ≦ 12, and Q includes C
3 ≦ Z ≦ 25, and when Q is N, 10 <Z ≦ 25
In other words, the composition is such that W ≦ 26 and X + Y + Z + W = 100. In order to solve the above-mentioned problem, the invention according to claim 2 is characterized in that F x M Y O z R w (where M is Z
R and Hf represent one or more elements, R represents one or more of Si, B, Al and Y, and X, Y, Z and W each represent atomic%. ), Wherein X, Y, Z, and W are 7
0 ≦ X <96, 1 ≦ Y ≦ 12, 3 ≦ Z ≦ 25, W ≦ 26, X
+ Y + Z + W = 100.

【0011】[0011]

【作用】以下に本発明について更に詳細に説明する。前
記組成の高飽和磁束密度軟磁性膜において、Fe(鉄)
は主成分であり、磁性を担う元素であり、少なくとも1
5000G以上の飽和磁束密度を得るためには、X≧7
0原子%であることが必要である。前記元素M(MはZ
r(ジルコニウム)、Hf(ハフニウム)の内少なくと
も一つの元素)とO(酸素)は軟磁性を得るために必要
な元素であり、FeにMとOを同時に、特定量添加する
ことによって膜の軟磁性は著しく向上する。良好な軟磁
気特性を得るためには、膜中MとOの含有量が1原子%
≦Y≦12原子%かつZ≦25原子%でなければならな
い。
The present invention will be described below in more detail. In the high saturation magnetic flux density soft magnetic film having the above composition, Fe (iron)
Is a main component and is an element responsible for magnetism.
In order to obtain a saturation magnetic flux density of 5000 G or more, X ≧ 7
It must be 0 atomic%. The element M (M is Z
r (zirconium), Hf (at least one element of hafnium)) and O (oxygen) are elements necessary for obtaining soft magnetism, and M and O are simultaneously added to Fe in a specific amount to form a film. Soft magnetism is significantly improved. In order to obtain good soft magnetic properties, the content of M and O in the film should be 1 atomic%.
≦ Y ≦ 12 at% and Z ≦ 25 at% .

【0012】QはC(炭素)とN(窒素)の1種類以上
を示す。CとNの1種類以上を含有させることで保磁力
を従来よりも低くすることができる。ところで、薄膜磁
気ヘッドにおいては、上部及び下部磁性層との間にホト
レジストなどの耐熱性の低い樹脂が絶縁層として用いら
れており、使用する磁性膜に400℃以上の熱処理を施
すことはできない。この点において、実施例で示すよう
にCとNを含んでいると、400℃以上の熱処理を施さ
ないでも充分に低い保磁力を得ることができ、メリット
がある。ここで、X≧70原子%、Y≧1原子%、Z≧3
原子%よりW≦26原子%となる。またWは当然W>0、Y
≧1原子%、Z≧3原子%、X+Y+Z+W=100より、X
<96原子%となる。また、QがNの場合は、X≧70
原子%、Y≧1原子%、Z>10原子%よりW≦26原子
%となる。またWは当然W>0、Y≧1原子%、Z>10原
子%、X+Y+Z+W=100より、X<89原子%とな
る。このような組成の場合には、高飽和磁束密度軟磁性
膜の軟磁気特性を更に向上させることができる。
Q represents one or more of C (carbon) and N (nitrogen). By containing one or more of C and N, the coercive force can be made lower than before. By the way, in the thin film magnetic head, a resin having low heat resistance such as a photoresist is used as an insulating layer between the upper and lower magnetic layers, and the magnetic film to be used cannot be subjected to a heat treatment of 400 ° C. or more. In this regard, if C and N are contained as shown in the embodiment, a sufficiently low coercive force can be obtained without performing a heat treatment at 400 ° C. or more, which is advantageous. Here, X ≧ 70 atomic%, Y ≧ 1 atomic%, Z ≧ 3
From atomic%, W ≦ 26 atomic%. W is naturally W> 0, Y
≧ 1 atomic%, Z ≧ 3 atomic%, X + Y + Z + W = 100, X
<96 atomic%. When Q is N, X ≧ 70
Atomic%, Y ≧ 1 atomic%, Z> 10 atomic%, W ≦ 26 atomic
%. W is naturally W> 0, Y ≧ 1 atomic%, Z> 10
%, X <89 atomic% from X + Y + Z + W = 100.
You. In such a composition, high saturation magnetic flux density
The soft magnetic properties of the film can be further improved.

【0013】ここで特にQがNで、1原子%<Y<5原
子%、10原子%<Z<13原子%、W<24原子%なる
組成において、高温熱処理後の保磁力を従来より低くす
ることができる。前記したように、MIG(メタルイン
ギャプ)磁気ヘッドの製造工程においては溶着ガラスに
よる固着工程が含まれるので、磁気ヘッドは製造時に高
温(溶着ガラスの種類により500℃〜600℃)に加
熱される。この点において、実施例で示すように本組成
の磁性膜は、高温(500℃〜600℃)加熱後も充分
に低い保磁力を維持できるという優れた性質を持ってい
る。
In particular, in a composition where Q is N and 1 at% <Y <5 at%, 10 at% <Z <13 at% , and W <24 at % , the coercive force after high-temperature heat treatment is lower than that of the conventional one. can do. As described above, in the manufacturing process of the MIG (metal-in-gap) magnetic head, a fixing process using a welded glass is included, so that the magnetic head is heated to a high temperature (500 ° C. to 600 ° C. depending on the type of the welded glass) during the manufacturing. . In this regard, as shown in the examples, the magnetic film of the present composition has an excellent property that a sufficiently low coercive force can be maintained even after heating at a high temperature (500 ° C. to 600 ° C.).

【0014】RはSi(珪素)とB(ボロン)とAl
(アルミニウム)とY(イットリウム)の内、1種以上
を示す。これらの1種以上を含有させることで電気抵抗
を高くすることができ、高周波域における渦電流損失を
低減することができ、高周波での透磁率を高めることが
できる。X,Y,Z,Wの範囲は前記と同様に、70≦X<
96、1≦Y≦12、3≦Z≦25、W≦26、X+Y+Z+
W=100である。
R is Si (silicon), B (boron) and Al
One or more of (aluminum) and Y (yttrium) are shown. By including one or more of these, electrical resistance can be increased, eddy current loss in a high frequency region can be reduced, and magnetic permeability at a high frequency can be increased. The range of X, Y, Z and W is 70 ≦ X <
96, 1 ≦ Y ≦ 12, 3 ≦ Z ≦ 25, W ≦ 26, X + Y + Z +
W = 100.

【0015】なお、本発明における高飽和磁束密度軟磁
性膜は、磁歪定数の調整や耐食性の改善を目的として、
飽和磁束密度を大きく低下させたり、軟磁性を劣化させ
ない範囲で、前記4元組成に他の元素を添加することも
可能である。
Incidentally, the high saturation magnetic flux density soft magnetic film of the present invention is used for the purpose of adjusting the magnetostriction constant and improving the corrosion resistance.
Other elements can be added to the quaternary composition as long as the saturation magnetic flux density is not significantly reduced or the soft magnetism is not deteriorated.

【0016】本発明における高飽和磁束密度軟磁性膜
は、スパッタ法や真空蒸着法などの通常一般的な薄膜作
製法により作製され、膜作製方法に特別な限定を持たな
い。
The high saturation magnetic flux density soft magnetic film of the present invention is produced by a general thin film production method such as a sputtering method or a vacuum evaporation method, and there is no particular limitation on the film production method.

【0017】スパッタ法により本発明における高飽和磁
束密度軟磁性膜を作製する場合、装置としては、DCス
パッタ、RFスパッタ、マグネトロンスパッタ、対向タ
ーゲット式スパッタ、イオンビームスパッタ装置等の既
存の装置を使用することができる。OまたはNを膜中に
添加する方法としては、Ar等の不活性ガス中に酸素ガ
スまたは窒素ガスを混合したAr+O2 またはAr+O
2 +N2 混合雰囲気ガスでスパッタを行なう反応性スパ
ッタが有効である。また、Fe,Fe−M、あるいはF
e−M−Q(MはZr、Hfの内少なくとも一種の元
素、QはC,B,Si,Al,Yのうち少なくとも一種
の元素)合金ターゲットの上に、Fe,M、あるいはQ
の酸化物または窒化物を配置した複合ターゲットを用い
てAr等の不活性ガス中で作製することもできる。
When the high saturation magnetic flux density soft magnetic film of the present invention is produced by the sputtering method, an existing apparatus such as DC sputtering, RF sputtering, magnetron sputtering, facing target type sputtering, or ion beam sputtering apparatus is used. can do. As a method of adding O or N to the film, Ar + O 2 or Ar + O 2 in which oxygen gas or nitrogen gas is mixed in an inert gas such as Ar.
Reactive sputtering, in which sputtering is performed in a 2 + N 2 mixed atmosphere gas, is effective. Further, Fe, Fe-M, or F
e-MQ (M is at least one element of Zr and Hf, Q is at least one element of C, B, Si, Al and Y) on an alloy target, Fe, M or Q
It can also be manufactured in an inert gas such as Ar using a composite target in which an oxide or nitride of the above is disposed.

【0018】[0018]

【実施例】「実施例1」高周波マグネトロンスパッタ装
置により、Fe−Hf系、Fe−Hf−C系、Fe−H
f−B系、Fe−Hf−Si系、Fe−Hf−Al系、
Fe−Hf−Y系の各合金ターゲットを適宜用い、Ar
+O2 (0.1〜1.0%)ガス雰囲気または、Ar+
2 (0.1〜1.0%)+N2 (0.5〜10%)ガ
ス雰囲気で成膜を行なった。主なスパッタ条件を以下に
示す。 予備排気 1×10-5Pa以下 高周波電力 400W Arガス圧 1.0Pa 基板 結晶化ガラス基板(間接水冷) 電極間距離 70mm 製造時膜厚を2μmになるようスパッタ時間を調節し
た。各磁性膜の組成は、誘導結合プラズマ(ICP)発
光分析法及び、X線マイクロアナライザー(EPMA)
により決定した。飽和磁束密度と保磁力をVSMにより
測定した。
[Example 1] Fe-Hf-based, Fe-Hf-C-based, Fe-H
f-B system, Fe-Hf-Si system, Fe-Hf-Al system,
Each of the Fe—Hf—Y alloy targets is appropriately used, and
+ O 2 (0.1 to 1.0%) gas atmosphere or Ar +
Film formation was performed in an O 2 (0.1 to 1.0%) + N 2 (0.5 to 10%) gas atmosphere. The main sputtering conditions are shown below. Preliminary evacuation 1 × 10 −5 Pa or less High frequency power 400 W Ar gas pressure 1.0 Pa Substrate Crystallized glass substrate (indirect water cooling) Distance between electrodes 70 mm The sputtering time was adjusted so that the film thickness at the time of production was 2 μm. The composition of each magnetic film is determined by inductively coupled plasma (ICP) emission spectrometry and X-ray microanalyzer (EPMA).
Determined by The saturation magnetic flux density and the coercive force were measured by VSM.

【0019】前記の製造条件で多数の試料を作成し、各
試料における磁気特性及び電気抵抗を測定した。
A number of samples were prepared under the above manufacturing conditions, and the magnetic properties and electric resistance of each sample were measured.

【0020】図1にFe−Hf−O−C系、Fe−Hf
−O−N系の磁性膜におけるCまたはN含有量と成膜の
ままの状態〜300℃以下での熱処理後における保磁力
(Hc)の関係を示し、図2にFe−Hf−O−N系の
磁性膜における熱処理温度(アニール温度)と保磁力の
関係を示す。
FIG. 1 shows an Fe-Hf-OC system, Fe-Hf
The relationship between the C or N content in the -ON-based magnetic film and the coercive force (Hc) after the heat treatment at 300 [deg.] C. or less, as-formed, is shown in FIG. 2, and the Fe-Hf-O-N is shown in FIG. 4 shows the relationship between the heat treatment temperature (annealing temperature) and the coercive force in a magnetic film of the present invention.

【0021】図1に示す結果から、本発明の磁性膜はC
またはNの含有量の増加に伴い、保磁力が減少すること
が判明した。また低い保磁力を得るために400℃以上
の温度での熱処理を必要としないこともわかる。
From the results shown in FIG. 1, the magnetic film of the present invention has C
Alternatively, it has been found that the coercive force decreases as the N content increases. It can also be seen that heat treatment at a temperature of 400 ° C. or higher is not required to obtain a low coercive force.

【0022】図2に示す結果から、Fe−Hf−O−N
系膜は従来膜に比較すると、500℃より高温の熱処理
後においても、成膜のままの保磁力とほとんど変化しな
いことが判明した。これに対し、比較例の試料は500
℃より高温の熱処理によって保磁力が上昇していること
がわかる。
From the results shown in FIG. 2, it can be seen that Fe--Hf--O--N
It has been found that the coercive force of the system film hardly changes as it is after the heat treatment at a temperature higher than 500 ° C. as compared with the conventional film. On the other hand, the sample of the comparative example is 500
It can be seen that the coercive force is increased by the heat treatment at a temperature higher than ℃.

【0023】図3と図4に、前記方法で製造された試料
において、Fe−Hf−O−B系とFe−Hf−O−S
i系とFe−Hf−O−Al系とFe−Hf−O−Y系
の各試料について、B含有量とSi含有量とAl含有量
とY含有量に対する比抵抗(ρ)の変化を示す。図3と
図4に示す結果から、B,Si,AlまたはYのいずれ
でも添加することで比抵抗を向上できることを確認でき
た。
FIGS. 3 and 4 show that the samples manufactured by the above-described method show the Fe—Hf—O—B system and the Fe—Hf—O—S system.
For each of the i-type, Fe-Hf-O-Al-type, and Fe-Hf-OY-type samples, the change in specific resistance (ρ) with respect to the B content, the Si content, the Al content, and the Y content is shown. . From the results shown in FIGS. 3 and 4, it was confirmed that the specific resistance can be improved by adding any of B, Si, Al and Y.

【0024】次に、前記方法で製造したFe−Hf−O
−C系、Fe−Hf−O−N系の磁性膜について飽和磁
束密度(Bs)と成膜のままの状態〜300℃以下での
熱処理後における保磁力の測定結果を表1に示す。Fe
−Hf−O−N系膜について飽和磁束密度と500℃〜
600℃での熱処理後における保磁力の測定結果を表2
に示す。Fe−Hf−O−B、Fe−Hf−O−Si、
Fe−Hf−O−Al、Fe−Hf−O−Y系膜につい
て飽和磁束密度と比抵抗と400℃〜500℃での熱処
理後における保磁力の測定結果を表3に示す。
Next, the Fe-Hf-O produced by the above method is used.
Table 1 shows the measurement results of the saturation magnetic flux density (Bs) and the coercive force after the heat treatment at 300 ° C. or lower for the —C-based and Fe—Hf—ON-based magnetic films. Fe
-Hf-ON-based film with saturation magnetic flux density and 500 ° C.
Table 2 shows the measurement results of the coercive force after the heat treatment at 600 ° C.
Shown in Fe-Hf-OB, Fe-Hf-O-Si,
Table 3 shows the measurement results of the saturation magnetic flux density, the specific resistance, and the coercive force after the heat treatment at 400 ° C. to 500 ° C. for the Fe—Hf—O—Al and Fe—Hf—O—Y based films.

【0025】表1に示す結果から本発明に係る磁性膜に
おいてCまたはNを含むものは、15000Gを超える
飽和磁束密度を示し、しかも従来例に比較して保磁力が
低いことが判明した。表2に示す結果から本発明に係る
磁性膜においてNを含むものは、15000Gを超える
飽和磁束密度を示し、500℃〜600℃での熱処理に
おいても低い保磁力を示すことが確認できた。また、こ
のように低い保磁力を得るためには膜中のN含有量が2
4原子%より少なく、O含有量が10原子%から13原
子%の間にあり、Hf含有量が1原子%から5原子%の
間になければならない事がわかる。表3に示す結果か
ら、本発明に係わる磁性膜において、B,Si,Alあ
るいはYを含む磁性膜は16000Gを超える飽和磁束
密度と低い保磁力を示し、しかも比抵抗が高いことが明
かとなった。よって表3に示す組成の磁性膜は高周波領
域での渦電流損失が少なく、高周波での透磁率を高める
ことができるものである。
From the results shown in Table 1, it was found that the magnetic film according to the present invention containing C or N exhibited a saturation magnetic flux density exceeding 15,000 G and had a lower coercive force than the conventional example. From the results shown in Table 2, it was confirmed that the magnetic film according to the present invention containing N exhibited a saturation magnetic flux density exceeding 15,000 G and exhibited a low coercive force even in a heat treatment at 500 ° C. to 600 ° C. In order to obtain such a low coercive force, the N content in the film must be 2%.
It can be seen that the O content must be less than 4 atomic%, the O content must be between 10 atomic% and 13 atomic%, and the Hf content must be between 1 atomic% and 5 atomic%. From the results shown in Table 3, it is clear that among the magnetic films according to the present invention, the magnetic film containing B, Si, Al or Y has a saturation magnetic flux density exceeding 16000 G, a low coercive force, and a high specific resistance. Was. Therefore, the magnetic film having the composition shown in Table 3 has a small eddy current loss in a high frequency region and can increase the magnetic permeability at a high frequency.

【0026】[0026]

【表1】 [Table 1]

【0027】[0027]

【表2】 [Table 2]

【0028】[0028]

【表3】 [Table 3]

【0029】[0029]

【発明の効果】以上説明したように請求項1記載の発明
によれば、Feに、ZrまたはHfと、Oと、Cまたは
Nとを所定量添加してなるために、15000Gを超え
る飽和磁束密度を発揮する上に、保磁力が従来の膜より
も低い特徴を有する磁性膜を提供することができる。特
にNの特定量の添加では、500℃より高温の加熱にお
いても軟磁気特性の劣化のほとんど起らない優れた熱的
安定性をも兼ね備えた軟磁性膜を提供することができ
る。よって本発明の磁性膜は、高密度記録用の高い性能
を持つ磁気ヘッドに好適な素材である。
As described above, according to the first aspect of the present invention, since a predetermined amount of Zr or Hf, O, C or N is added to Fe, a saturation magnetic flux exceeding 15000 G is obtained. It is possible to provide a magnetic film having a characteristic that the density is high and the coercive force is lower than that of a conventional film. In particular, when a specific amount of N is added, it is possible to provide a soft magnetic film having excellent thermal stability with almost no deterioration of soft magnetic characteristics even when heated at a temperature higher than 500 ° C. Therefore, the magnetic film of the present invention is a material suitable for a magnetic head having high performance for high-density recording.

【0030】また、請求項2に記載した発明によれば、
Feに、ZrまたはHfと、Oと、Si、B、Alまた
はYを所定量添加することで、16000Gを超える飽
和磁束密度を発揮する上に、比抵抗が高く、高周波域で
の渦電流損失の少ない高周波域での透磁率の高い磁性膜
を提供することができる。よって本発明の磁性膜を磁気
ヘッドに適用することにより、高周波域での透磁率の高
い、高記録特性の磁気ヘッドを提供することができる。
According to the second aspect of the present invention,
By adding a predetermined amount of Zr or Hf, O, Si, B, Al or Y to Fe, a saturation magnetic flux density exceeding 16000 G is exhibited, and the specific resistance is high, and the eddy current loss in a high frequency region is increased. It is possible to provide a magnetic film having a high magnetic permeability in a high-frequency range with a small amount. Therefore, by applying the magnetic film of the present invention to a magnetic head, it is possible to provide a magnetic head having high magnetic permeability in a high frequency range and high recording characteristics.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明試料における保磁力と膜中C,Nの含有
量との関係を示すグラフである。
FIG. 1 is a graph showing the relationship between the coercive force and the contents of C and N in a film of a sample of the present invention.

【図2】本発明試料におけるN添加膜の保磁力とアニー
ル温度との関係を示すグラフである。
FIG. 2 is a graph showing a relationship between a coercive force of an N-added film and an annealing temperature in a sample of the present invention.

【図3】成膜のままの本発明試料における比抵抗とB,
Si,Al,Y含有量Xとの関係を示すグラフである。
FIG. 3 shows the specific resistance and B,
It is a graph which shows the relationship with Si, Al, and Y content X.

【図4】500℃アニール後の本発明試料における比抵
抗とB,Si,Al,Y含有量Xとの関係を示すグラフ
である。
FIG. 4 is a graph showing the relationship between the specific resistance and the B, Si, Al, Y content X in the sample of the present invention after annealing at 500 ° C.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 Fex Y z w (ただしMは、ZrとHfの内、1種以上の元素を示
し、QはCとNの内、1種以上を示し、X,Y,Z,Wは各
々原子%を示す。)の組成式で示され、前記X,Y,Z,W
が、QがCを含むとき70≦X<96であり、QがNの
とき70≦X<89であり、1≦Y≦12であり、QがC
を含むとき3≦Z≦25であり、QがNのとき10<Z≦
25であり、W≦26、X+Y+Z+W=100なる組成か
らなることを特徴とする高飽和磁束密度軟磁性膜。
1. A Fe x M Y O z Q w ( where M is, among Zr and Hf, represents one or more elements, Q is of C and N, represents one or more, X, Y, Z and W each represent atomic%)), and the above-mentioned X, Y, Z, W
However, when Q contains C, 70 ≦ X <96, and when Q is N
At this time, 70 ≦ X <89, 1 ≦ Y ≦ 12, and Q is C
When Z is 3 ≦ Z ≦ 25, and when Q is N, 10 <Z ≦
25. A high saturation magnetic flux density soft magnetic film characterized by having a composition of W ≦ 26 and X + Y + Z + W = 100.
【請求項2】 Fex Y z w (ただしMは、ZrとHfの内、1種以上の元素を示
し、RはSiとBとAlとYの内、1種以上を示
し、xYZWは各々原子%を示す。)の組成式で示さ
れ、前記xYZWが、70≦x<96、1≦Y≦12、
3≦Z≦25、W≦26、xYZW=100なる組成か
らなることを特徴とする高飽和磁束密度軟磁性膜。
Wherein Fe x M Y O z R w ( where M is, among Zr and Hf, represents one or more elements, R represents among Si, B, Al and Y, represents one or more, x , Y , Z , and W each represent an atomic%.) wherein x , Y , Z , and W are 70 ≦ x <96, 1 ≦ Y ≦ 12,
A high saturation magnetic flux density soft magnetic film having a composition of 3 ≦ Z ≦ 25, W ≦ 26, and x + Y + Z + W = 100.
JP3095877A 1991-04-25 1991-04-25 High saturation magnetic flux density soft magnetic film Expired - Lifetime JP2774705B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3095877A JP2774705B2 (en) 1991-04-25 1991-04-25 High saturation magnetic flux density soft magnetic film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3095877A JP2774705B2 (en) 1991-04-25 1991-04-25 High saturation magnetic flux density soft magnetic film

Publications (2)

Publication Number Publication Date
JPH0590027A JPH0590027A (en) 1993-04-09
JP2774705B2 true JP2774705B2 (en) 1998-07-09

Family

ID=14149571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3095877A Expired - Lifetime JP2774705B2 (en) 1991-04-25 1991-04-25 High saturation magnetic flux density soft magnetic film

Country Status (1)

Country Link
JP (1) JP2774705B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR960004664B1 (en) * 1993-09-03 1996-04-11 한국과학기술연구원 Soft-magnetic thin film alloy for magnetic head and the manufacturing method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07116564B2 (en) * 1990-02-28 1995-12-13 日本ビクター株式会社 Magnetic alloy

Also Published As

Publication number Publication date
JPH0590027A (en) 1993-04-09

Similar Documents

Publication Publication Date Title
US5302469A (en) Soft magnetic thin film
US5439754A (en) Ferromagnetic film, method of manufacturing the same, and magnetic head
JPS63119209A (en) Soft magnetic thin-film
JPH0519804B2 (en)
JP2774705B2 (en) High saturation magnetic flux density soft magnetic film
JP2950917B2 (en) Soft magnetic thin film
JP2996553B2 (en) Soft magnetic alloy thin film
JPS58100412A (en) Manufacture of soft magnetic material
JPH03106003A (en) Soft magnetic amorphous alloy thin film
JPH0462162B2 (en)
JP3036891B2 (en) Thin film magnetic head
JP3232592B2 (en) Magnetic head
JP2911284B2 (en) Soft magnetic alloy film
JP2925257B2 (en) Ferromagnetic film, method of manufacturing the same, and magnetic head
JPH05114530A (en) Manufacture of soft magnetic alloy film and manufacture of magnetic head
JP3181723B2 (en) Soft magnetic alloy film
JP2950921B2 (en) Soft magnetic thin film
KR100193703B1 (en) Manufacturing method of soft magnetic alloy film, magnetic head and soft magnetic alloy film
JP3087265B2 (en) Magnetic alloy
JP2727274B2 (en) Soft magnetic thin film
JPH04144210A (en) Soft magnetic film with high saturation magnetic flux density
JPH07249519A (en) Soft magnetic alloy film, magnetic head, and method for adjusting coefficient of thermal expansion of soft magnetic alloy film
JP2808547B2 (en) Composite magnetic head
JPH05243046A (en) Soft magnetic alloy film
JPH01146312A (en) Soft magnetic thin film

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980407