JPH0590027A - Soft magnetic film of high saturation flux density - Google Patents

Soft magnetic film of high saturation flux density

Info

Publication number
JPH0590027A
JPH0590027A JP9587791A JP9587791A JPH0590027A JP H0590027 A JPH0590027 A JP H0590027A JP 9587791 A JP9587791 A JP 9587791A JP 9587791 A JP9587791 A JP 9587791A JP H0590027 A JPH0590027 A JP H0590027A
Authority
JP
Japan
Prior art keywords
magnetic
flux density
film
coercive force
magnetic film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9587791A
Other languages
Japanese (ja)
Other versions
JP2774705B2 (en
Inventor
Akinobu Kojima
章伸 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP3095877A priority Critical patent/JP2774705B2/en
Publication of JPH0590027A publication Critical patent/JPH0590027A/en
Application granted granted Critical
Publication of JP2774705B2 publication Critical patent/JP2774705B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15308Amorphous metallic alloys, e.g. glassy metals based on Fe/Ni

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To provide a magnetic film whose coercive force is lower than that of conventional magnetic films, to provide a magnetic film whose eddy-current loss in a high-frequency region is low and to provide a magnetic film whose thermal stability is high. CONSTITUTION:The title film satisfies a relationship which is indicated by the compositional formula of FexMyOzQw (where M represents one or more kinds out of Zr and Hf, Q represents one or more kinds of C and N as well as (x), (y), (z) and (w) represent respective atomic %) and which is composed of a composition wherein (x), (y), (z) and (w) are 70<=x<=96, 1<=y<=12, 3<=z<=25, w<=26 and x+y+z+w+100/ Thereby, when C is added, the title film whose coercive force is lower than that in conventional cases is obtained, and it is suitable for a thin-film magnetic head which uses a low-heat-resistance resin as an insulating layer. When N in a specific amount is added, the title film whose thermal stability is high is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は磁性膜に関し、特に高密
度記録用磁気ヘッド用材料として好適な高飽和磁束密度
を有する軟磁性膜に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic film, and more particularly to a soft magnetic film having a high saturation magnetic flux density suitable as a material for a magnetic head for high density recording.

【0002】[0002]

【従来の技術】磁気記録の高密度化の要求に伴い、磁気
記録媒体の高保磁力化が精力的に進められ、現在では1
500〜2000Oe(エルステッド)近い保磁力を持
つ記録媒体も得られるようになってきた。このような記
録媒体に十分な記録を行なうためには、高い飽和磁束密
度を持つ磁気ヘッドコア材料が必要となる。実際、今後
の記録媒体の高保磁力化の進歩も考え合わせると、高密
度記録用磁気ヘッドのコア材料としては、1500G
(ガウス)以上の飽和磁束密度を持つことが要求され
る。
2. Description of the Related Art With the demand for higher density magnetic recording, the coercive force of magnetic recording media has been energetically increased, and it is now 1
Recording media having a coercive force close to 500 to 2000 Oe (Oersted) have also been obtained. In order to perform sufficient recording on such a recording medium, a magnetic head core material having a high saturation magnetic flux density is required. In fact, considering the future progress in higher coercive force of recording media, 1500G is the core material for high-density magnetic heads.
It is required to have a saturation magnetic flux density of (Gauss) or more.

【0003】従来より磁気ヘッドのコア材料としては、
パーマロイ、センダスト、Co系アモルファス合金など
が知られている。これらの材料において、軟磁性を維持
できる範囲での飽和磁束密度の最大値は、パーマロイで
はほぼ10000G、センダストではほぼ13000
G、Co系アモルファス合金では13000〜1500
0Gである。前記の中ではCo系アモルファス合金が有
望であるが、飽和磁束密度を上げると熱的安定性が低く
なり、磁気ヘッド製造工程での高温処理(ガラス溶着な
ど)により軟磁性が劣化したり、またヘッドとしての信
頼性において問題がある。
Conventionally, as a core material of a magnetic head,
Permalloy, Sendust, Co-based amorphous alloys, etc. are known. In these materials, the maximum value of the saturation magnetic flux density in the range where the soft magnetism can be maintained is approximately 10,000 G for Permalloy and approximately 13,000 for Sendust.
13000 to 1500 for G and Co type amorphous alloys
It is 0G. Among the above, Co-based amorphous alloys are promising, but increasing the saturation magnetic flux density lowers the thermal stability and deteriorates the soft magnetism due to high temperature treatment (glass welding, etc.) in the magnetic head manufacturing process. There is a problem in reliability as a head.

【0004】このように現在知られている磁気ヘッド用
コア材料では高保磁力媒体の能力を十分に引き出すこと
が難しく、今後の高密度磁気記録の実現に対しては、よ
り飽和磁束密度の高い軟磁性材料の開発が望まれてい
る。
As described above, it is difficult to sufficiently bring out the capability of the high coercive force medium with the currently known core material for magnetic heads, and in order to realize high density magnetic recording in the future, soft magnetic materials with higher saturation magnetic flux density will be used. Development of magnetic materials is desired.

【0005】[0005]

【発明が解決しようとする課題】15000G以上の飽
和磁束密度を持つ材料として従来、FeあるいはFeを
主成分とする合金(Fe−Al,Fe−Siなど)が知
られている。しかし、高密度磁気記録用ヘッドのコア材
料等に使用する目的で、スパッタ法などの通常の製膜技
術により、前記FeあるいはFeを主成分とする合金の
磁性膜を作成した場合、飽和磁束密度は15000G以
上と大きくすることができるが、保磁力が大きくなり、
十分な軟磁性を得ることが困難であった。この課題を解
決するために、磁性膜を多層化することなどが行なわれ
ているが、特性が十分でなく、また製造工程が複雑にな
るなどの問題が残されている。
As a material having a saturation magnetic flux density of 15000 G or more, Fe or an alloy containing Fe as a main component (Fe-Al, Fe-Si, etc.) is conventionally known. However, when a magnetic film of Fe or an alloy containing Fe as a main component is formed by a normal film forming technique such as a sputtering method for use as a core material of a high-density magnetic recording head, the saturation magnetic flux density is increased. Can be increased to 15000 G or more, but the coercive force increases,
It was difficult to obtain sufficient soft magnetism. In order to solve this problem, a magnetic film is made to have a multi-layer structure, but there are still problems such as insufficient characteristics and complicated manufacturing process.

【0006】そこで本発明者らは、平成2年10月5日
付提出の特願平2−268051号明細書において、単
層膜において15000G以上の飽和磁束密度を有する
高飽和磁束密度軟磁性膜について特許出願を行なってい
る。
Therefore, the inventors of the present invention have disclosed a high saturation magnetic flux density soft magnetic film having a saturation magnetic flux density of 15000 G or more in a single layer film in Japanese Patent Application No. 2-268051 filed on October 5, 1990. We are applying for a patent.

【0007】この特許出願に係る磁性膜の1つは、Fe
x Y z (ただしMは、ZrとHfの内、1種以上の
元素を示し、xYZは各々原子%を示す。)の組成式
で示され、前記xYZが、70≦x≦96、1≦Y≦1
2、3≦Z≦25、xY=100なる組成よりな
り、かつ、Zが、1.5YZ≦4.0Yなる関係を満
足するものであった。
One of the magnetic films according to this patent application is Fe.
x M Y O z (where M represents one or more elements of Zr and Hf, and x , Y , and Z each represent atomic%), and x , Y , and Z described above. , 70 ≦ x ≦ 96, 1 ≦ Y ≦ 1
The composition was 2, 3 ≤ Z ≤ 25, x + Y + Z = 100, and Y and Z satisfied the relationship of 1.5 YZ ≤ 4.0 Y.

【0008】前記特許出願に係る磁性膜は、15000
G以上の飽和磁束密度を持つ優れた軟磁性薄膜である。
一般的に、磁気ヘッドなどに使用される軟磁性材料は、
保磁力は小さければ小さい程好ましく、また高い周波数
領域での使用の際、渦電流による損失を少なくするため
に、電気抵抗は大きい方が好ましい。そこで本発明の目
的は、15000G以上の高い飽和磁束密度を持ち、前
記特許出願に係る磁性膜よりも低い保磁力を持つ軟磁性
膜を提供すること、及び前記特許出願に係る磁性膜より
も電気抵抗が大きく、高周波領域における渦電流の少な
い軟磁性膜を提供することにある。
The magnetic film according to the above patent application is 15000.
It is an excellent soft magnetic thin film having a saturation magnetic flux density of G or more.
Generally, soft magnetic materials used for magnetic heads, etc.
The smaller the coercive force is, the more preferable, and in use in a high frequency region, the larger electric resistance is preferable in order to reduce the loss due to the eddy current. Therefore, an object of the present invention is to provide a soft magnetic film having a high saturation magnetic flux density of 15000 G or more and a coercive force lower than that of the magnetic film according to the above-mentioned patent application, and more electric than the magnetic film according to the above-mentioned patent application. It is to provide a soft magnetic film having a large resistance and a small eddy current in a high frequency region.

【0009】さらに、MIG(メタルインギャプ)磁気
ヘッドの製造工程には、溶着ガラスにより磁気コアの接
着とギャプ形成を同時に行なうガラス溶着工程があり、
この際磁気ヘッドは、ガラスを溶着するために通常50
0℃〜600℃という高温に加熱されることになる。従
って、MIG磁気ヘッドに用いられる軟磁性薄膜は、高
い飽和磁束密度と伴に、ガラス溶着工程の高温加熱によ
り、磁気特性が劣化しない優れた熱的安定性を持つこと
も必要である。しかしながら前記特許出願に係る磁性膜
は、500℃より高温の加熱により軟磁気特性が劣化す
るため、製造工程にガラス溶着工程を含む磁気ヘッドに
は適していないという問題があった。そこで本発明のも
う一つの目的は、15000G以上の高い飽和磁束密度
を持ち、かつ低保磁力で、しかも優れた熱的安定性を持
つ軟磁性膜を提供することにある。
Further, in the manufacturing process of a MIG (metal in gap) magnetic head, there is a glass welding process for simultaneously adhering a magnetic core and forming a gap with a welding glass.
At this time, the magnetic head is usually set to 50 because it welds glass.
It will be heated to a high temperature of 0 ° C to 600 ° C. Therefore, the soft magnetic thin film used for the MIG magnetic head is required to have not only high saturation magnetic flux density but also excellent thermal stability in which magnetic characteristics do not deteriorate due to high temperature heating in the glass welding step. However, the magnetic film according to the above patent application has a problem that it is not suitable for a magnetic head including a glass welding step in its manufacturing process because its soft magnetic characteristics are deteriorated by heating at a temperature higher than 500 ° C. Therefore, another object of the present invention is to provide a soft magnetic film having a high saturation magnetic flux density of 15,000 G or more, a low coercive force, and excellent thermal stability.

【0010】[0010]

【課題を解決するための手段】 請求項1記載の発明は
前記課題を解決するために、Fex Y z w (ただ
しMは、ZrとHfの内、1種以上の元素を示し、Qは
CとNの内、1種以上を示し、xYZWは各々原子%
を示す。)の組成式で示され、前記xYZWが、70
x<96、1≦Y≦12、3≦Z≦25、W≦26、xY
ZW=100なる組成からなるようにしたものであ
る。請求項2記載の発明は前記課題を解決するために、
Fex Y z w (ただしMは、ZrとHfの内、1
種以上の元素を示し、RはSiとBとAlとYの内、1
種以上を示し、xYZWは各々原子%を示す。)の組
成式で示され、前記xYZWが、70≦x<96、1
Y≦12、3≦Z≦25、W≦26、xYZW=10
0なる組成からなるようにしたものである。
[Means for Solving the Problems] In order to solve the above-mentioned problems, the invention according to claim 1 provides Fe x M Y O z Q w (where M represents one or more elements of Zr and Hf, and Q represents C and N, 1 or more, x , Y , Z , and W are each atomic%
Indicates. ), Where x , Y , Z and W are 70
x <96, 1 ≤ Y ≤ 12, 3 ≤ Z ≤ 25, W ≤ 26, x + Y
The composition is + Z + W = 100. In order to solve the above-mentioned problems, the invention according to claim 2
Fe x M Y O z R w (where M is one of Zr and Hf
R is an element of Si, B, Al or Y
Species or more, and x , Y , Z , and W each represent atomic%. ), Where x , Y , Z and W are 70 ≦ x <96, 1
Y ≤ 12, 3 ≤ Z ≤ 25, W ≤ 26, x + Y + Z + W = 10
It has a composition of 0.

【0011】[0011]

【作用】以下に本発明について更に詳細に説明する。前
記組成の高飽和磁束密度軟磁性膜において、Fe(鉄)
は主成分であり、磁性を担う元素であり、少なくとも1
5000G以上の飽和磁束密度を得るためには、x≧7
0原子%であることが必要である。前記元素M(MはZ
r(ジルコニウム)、Hf(ハフニウム)の内少なくと
も一つの元素)とO(酸素)は軟磁性を得るために必要
な元素であり、FeにMとOを同時に、特定量添加する
ことによって膜の軟磁性は著しく向上する。良好な軟磁
気特性を得るためには、膜中MとOの含有量が1原子%
Y≦12原子%かつ3原子%≦Z≦25原子%でなけれ
ばならない。
The present invention will be described in more detail below. In the high saturation magnetic flux density soft magnetic film having the above composition, Fe (iron)
Is a main component, is an element that plays a role in magnetism, and is at least 1
To obtain a saturation magnetic flux density of 5000 G or more, x ≧ 7
It is necessary to be 0 atomic%. The element M (M is Z
At least one element of r (zirconium) and Hf (hafnium) and O (oxygen) are necessary elements for obtaining soft magnetism, and by adding a specific amount of M and O to Fe at the same time, Soft magnetism is significantly improved. In order to obtain good soft magnetic properties, the content of M and O in the film should be 1 atomic%
It must be ≤ Y ≤ 12 atomic% and 3 atomic% ≤ Z ≤ 25 atomic%.

【0012】QはC(炭素)とN(窒素)の1種類以上
を示す。CとNの1種類以上を含有させることで保磁力
を従来よりも低くすることができる。ところで、薄膜磁
気ヘッドにおいては、上部及び下部磁性層との間にホト
レジストなどの耐熱性の低い樹脂が絶縁層として用いら
れており、使用する磁性膜に400℃以上の熱処理を施
すことはできない。この点において、実施例で示すよう
にCとNを含んでいると、400℃以上の熱処理を施さ
ないでも充分に低い保磁力を得ることができ、メリット
がある。ここで、x≧70原子%、Y≧1原子%、Z≧3
原子%よりW≦26原子%となる。またWは当然W>0、Y
≧1原子%、Z≧3原子%、xYZW=100より、x
<96原子%となる。
Q represents at least one of C (carbon) and N (nitrogen). By including at least one of C and N, the coercive force can be made lower than before. By the way, in the thin film magnetic head, a resin having low heat resistance such as photoresist is used as an insulating layer between the upper and lower magnetic layers, and the magnetic film used cannot be subjected to heat treatment at 400 ° C. or higher. In this respect, if C and N are contained, as shown in the examples, a sufficiently low coercive force can be obtained without heat treatment at 400 ° C. or higher, which is advantageous. Where x ≧ 70 atomic%, Y ≧ 1 atomic%, Z ≧ 3
From atomic%, W ≦ 26 atomic%. Also, W is naturally W > 0, Y
≧ 1 atomic%, Z ≧ 3 atomic%, x + Y + Z + W = 100, x
<96 atomic%.

【0013】ここで特にQがNで、1原子%<Y<5原
子%、1原子%<Z<13原子%、<24原子%なる
組成において、高温熱処理後の保磁力を従来より低くす
ることができる。前記したように、MIG(メタルイン
ギャプ)磁気ヘッドの製造工程においては溶着ガラスに
よる固着工程が含まれるので、磁気ヘッドは製造時に高
温(溶着ガラスの種類により500℃〜600℃)に加
熱される。この点において、実施例で示すように本組成
の磁性膜は、高温(500℃〜600℃)加熱後も充分
に低い保磁力を維持できるという優れた性質を持ってい
る。
In particular, in the composition where Q is N and 1 atom% < Y <5 atom%, 1 atom% < Z <13 atom% and W <24 atom%, the coercive force after high temperature heat treatment is lower than that of the conventional one. can do. As described above, the manufacturing process of the MIG (Metal Ingap) magnetic head includes a fixing process using fused glass, so the magnetic head is heated to a high temperature (500 ° C. to 600 ° C. depending on the type of fused glass) during manufacturing. .. In this respect, the magnetic film of the present composition has an excellent property that it can maintain a sufficiently low coercive force even after being heated at a high temperature (500 ° C. to 600 ° C.) as shown in Examples.

【0014】RはSi(珪素)とB(ボロン)とAl
(アルミニウム)とY(イットリウム)の内、1種以上
を示す。これらの1種以上を含有させることで電気抵抗
を高くすることができ、高周波域における渦電流損失を
低減することができ、高周波での透磁率を高めることが
できる。YZWの範囲は前記と同様である。
R is Si (silicon), B (boron) and Al
At least one of (aluminum) and Y (yttrium) is shown. By containing one or more of these, the electrical resistance can be increased, the eddy current loss in the high frequency region can be reduced, and the magnetic permeability at the high frequency can be increased. The ranges of x , Y , Z and W are the same as above.

【0015】なお、本発明における高飽和磁束密度軟磁
性膜は、磁歪定数の調整や耐食性の改善を目的として、
飽和磁束密度を大きく低下させたり、軟磁性を劣化させ
ない範囲で、前記4元組成に他の元素を添加することも
可能である。
The high saturation magnetic flux density soft magnetic film of the present invention has the purpose of adjusting the magnetostriction constant and improving the corrosion resistance.
Other elements can be added to the quaternary composition as long as the saturation magnetic flux density is not significantly reduced and the soft magnetism is not deteriorated.

【0016】本発明における高飽和磁束密度軟磁性膜
は、スパッタ法や真空蒸着法などの通常一般的な薄膜作
製法により作製され、膜作製方法に特別な限定を持たな
い。
The high saturation magnetic flux density soft magnetic film of the present invention is produced by a general thin film production method such as a sputtering method or a vacuum deposition method, and the film production method is not particularly limited.

【0017】スパッタ法により本発明における高飽和磁
束密度軟磁性膜を作製する場合、装置としては、DCス
パッタ、RFスパッタ、マグネトロンスパッタ、対向タ
ーゲット式スパッタ、イオンビームスパッタ装置等の既
存の装置を使用することができる。OまたはNを膜中に
添加する方法としては、Ar等の不活性ガス中に酸素ガ
スまたは窒素ガスを混合したAr+O2 またはAr+O
2 +N2 混合雰囲気ガスでスパッタを行なう反応性スパ
ッタが有効である。また、Fe,Fe−M、あるいはF
e−M−Q(MはZr、Hfの内少なくとも一種の元
素、QはC,B,Si,Al,Yのうち少なくとも一種
の元素)合金ターゲットの上に、Fe,M、あるいはQ
の酸化物または窒化物を配置した複合ターゲットを用い
てAr等の不活性ガス中で作製することもできる。
When the high saturation magnetic flux density soft magnetic film of the present invention is produced by the sputtering method, the existing equipment such as DC sputtering, RF sputtering, magnetron sputtering, opposed target type sputtering and ion beam sputtering equipment is used. can do. As a method of adding O or N into the film, Ar + O 2 or Ar + O in which an oxygen gas or a nitrogen gas is mixed in an inert gas such as Ar is used.
Reactive sputtering, in which sputtering is performed in a 2 + N 2 mixed atmosphere gas, is effective. In addition, Fe, Fe-M, or F
e-M-Q (M is at least one element of Zr and Hf, Q is at least one element of C, B, Si, Al, Y) Fe, M, or Q on the alloy target.
It is also possible to fabricate in an inert gas such as Ar by using the composite target in which the oxide or the nitride is placed.

【0018】[0018]

【実施例】「実施例1」高周波マグネトロンスパッタ装
置により、Fe−Hf系、Fe−Hf−C系、Fe−H
f−B系、Fe−Hf−Si系、Fe−Hf−Al系、
Fe−Hf−Y系の各合金ターゲットを適宜用い、Ar
+O2 (0.1〜1.0%)ガス雰囲気または、Ar+
2 (0.1〜1.0%)+N2 (0.5〜10%)ガ
ス雰囲気で成膜を行なった。主なスパッタ条件を以下に
示す。 予備排気 1×10-5Pa以下 高周波電力 400W Arガス圧 1.0Pa 基板 結晶化ガラス基板(間接水冷) 電極間距離 70mm 製造時膜厚を2μmになるようスパッタ時間を調節し
た。各磁性膜の組成は、誘導結合プラズマ(ICP)発
光分析法及び、X線マイクロアナライザー(EPMA)
により決定した。飽和磁束密度と保磁力をVSMにより
測定した。
[Example] "Example 1" Fe-Hf system, Fe-Hf-C system, Fe-H by a high frequency magnetron sputtering apparatus
f-B type, Fe-Hf-Si type, Fe-Hf-Al type,
Using Fe-Hf-Y based alloy targets as appropriate, Ar
+ O 2 (0.1-1.0%) gas atmosphere or Ar +
Film formation was performed in an O 2 (0.1 to 1.0%) + N 2 (0.5 to 10%) gas atmosphere. The main sputtering conditions are shown below. Pre-evacuation 1 × 10 −5 Pa or less High frequency power 400 W Ar gas pressure 1.0 Pa Substrate Crystallized glass substrate (indirect water cooling) Distance between electrodes 70 mm Sputtering time was adjusted so that the film thickness during manufacturing was 2 μm. The composition of each magnetic film is determined by inductively coupled plasma (ICP) emission spectrometry and X-ray microanalyzer (EPMA).
Determined by The saturation magnetic flux density and coercive force were measured by VSM.

【0019】前記の製造条件で多数の試料を作成し、各
試料における磁気特性及び電気抵抗を測定した。
A large number of samples were prepared under the above manufacturing conditions, and the magnetic characteristics and electric resistance of each sample were measured.

【0020】図1にFe−Hf−O−C系、Fe−Hf
−O−N系の磁性膜におけるCまたはN含有量と成膜の
ままの状態〜300℃以下での熱処理後における保磁力
(Hc)の関係を示し、図2にFe−Hf−O−N系の
磁性膜における熱処理温度(アニール温度)と保磁力の
関係を示す。
FIG. 1 shows the Fe-Hf-O-C system and Fe-Hf.
The relationship between the content of C or N in the —O—N magnetic film and the coercive force (Hc) after the film is formed to the heat treatment at 300 ° C. or less is shown in FIG. The relationship between the heat treatment temperature (annealing temperature) and the coercive force of the magnetic film of the system is shown.

【0021】図1に示す結果から、本発明の磁性膜はC
またはNの含有量の増加に伴い、保磁力が減少すること
が判明した。また低い保磁力を得るために400℃以上
の温度での熱処理を必要としないこともわかる。
From the results shown in FIG. 1, the magnetic film of the present invention has C
It was also found that the coercive force decreases with an increase in the N content. It is also found that heat treatment at a temperature of 400 ° C. or higher is not required to obtain a low coercive force.

【0022】図2に示す結果から、Fe−Hf−O−N
系膜は従来膜に比較すると、500℃より高温の熱処理
後においても、成膜のままの保磁力とほとんど変化しな
いことが判明した。これに対し、比較例の試料は500
℃より高温の熱処理によって保磁力が上昇していること
がわかる。
From the results shown in FIG. 2, Fe-Hf-O-N
It was found that the system film has almost no change from the coercive force as formed even after the heat treatment at a temperature higher than 500 ° C., as compared with the conventional film. On the other hand, the sample of the comparative example is 500
It can be seen that the coercive force is increased by the heat treatment at a temperature higher than ℃.

【0023】図3と図4に、前記方法で製造された試料
において、Fe−Hf−O−B系とFe−Hf−O−S
i系とFe−Hf−O−Al系とFe−Hf−O−Y系
の各試料について、B含有量とSi含有量とAl含有量
とY含有量に対する比抵抗(ρ)の変化を示す。図3と
図4に示す結果から、B,Si,AlまたはYのいずれ
でも添加することで比抵抗を向上できることを確認でき
た。
3 and 4, in the samples manufactured by the above method, Fe-Hf-O-B system and Fe-Hf-O-S system.
Changes in specific resistance (ρ) with respect to B content, Si content, Al content, and Y content are shown for each of the i-type, Fe-Hf-O-Al, and Fe-Hf-O-Y type samples. .. From the results shown in FIGS. 3 and 4, it was confirmed that the resistivity can be improved by adding any of B, Si, Al or Y.

【0024】次に、前記方法で製造したFe−Hf−O
−C系、Fe−Hf−O−N系の磁性膜について飽和磁
束密度(Bs)と成膜のままの状態〜300℃以下での
熱処理後における保磁力の測定結果を表1に示す。Fe
−Hf−O−N系膜について飽和磁束密度と500℃〜
600℃での熱処理後における保磁力の測定結果を表2
に示す。Fe−Hf−O−B、Fe−Hf−O−Si、
Fe−Hf−O−Al、Fe−Hf−O−Y系膜につい
て飽和磁束密度と比抵抗と400℃〜500℃での熱処
理後における保磁力の測定結果を表3に示す。
Next, Fe-Hf-O produced by the above method
Table 1 shows the measurement results of the saturation magnetic flux density (Bs) and the coercive force after the heat treatment at 300 ° C. or less of the saturated magnetic flux density (Bs) of the —C-based and Fe—Hf—O—N-based magnetic films. Fe
-Hf-ON-N film, saturation magnetic flux density and 500 ° C-
Table 2 shows the measurement results of the coercive force after the heat treatment at 600 ° C.
Shown in. Fe-Hf-OB, Fe-Hf-O-Si,
Table 3 shows the measurement results of the saturation magnetic flux density, the specific resistance, and the coercive force of the Fe-Hf-O-Al and Fe-Hf-O-Y based films after heat treatment at 400 ° C to 500 ° C.

【0025】表1に示す結果から本発明に係る磁性膜に
おいてCまたはNを含むものは、15000Gを超える
飽和磁束密度を示し、しかも従来例に比較して保磁力が
低いことが判明した。表2に示す結果から本発明に係る
磁性膜においてNを含むものは、15000Gを超える
飽和磁束密度を示し、500℃〜600℃での熱処理に
おいても低い保磁力を示すことが確認できた。また、こ
のように低い保磁力を得るためには膜中のN含有量が2
4原子%より少なく、O含有量が3原子%から13原子
%の間にあり、Hf含有量が1原子%から5原子%の間
になければならない事がわかる。表3に示す結果から、
本発明に係わる磁性膜において、B,Si,Alあるい
はYを含む磁性膜は16000Gを超える飽和磁束密度
と低い保磁力を示し、しかも比抵抗が高いことが明かと
なった。よって表3に示す組成の磁性膜は高周波領域で
の渦電流損失が少なく、高周波での透磁率を高めること
ができるものである。
From the results shown in Table 1, it was found that the magnetic film according to the present invention containing C or N exhibited a saturation magnetic flux density exceeding 15,000 G and had a lower coercive force than the conventional example. From the results shown in Table 2, it was confirmed that the magnetic film according to the present invention containing N exhibits a saturation magnetic flux density of more than 15000 G and exhibits a low coercive force even in the heat treatment at 500 ° C. to 600 ° C. Further, in order to obtain such a low coercive force, the N content in the film should be 2
It can be seen that it must be less than 4 atom%, the O content must be between 3 atom% and 13 atom%, and the Hf content must be between 1 atom% and 5 atom%. From the results shown in Table 3,
In the magnetic film according to the present invention, it was revealed that the magnetic film containing B, Si, Al or Y exhibited a saturation magnetic flux density of over 16000 G, a low coercive force, and a high specific resistance. Therefore, the magnetic film having the composition shown in Table 3 has a small eddy current loss in the high frequency region and can increase the magnetic permeability in the high frequency region.

【0026】[0026]

【表1】 [Table 1]

【0027】[0027]

【表2】 [Table 2]

【0028】[0028]

【表3】 [Table 3]

【0029】[0029]

【発明の効果】以上説明したように請求項1記載の発明
によれば、Feに、ZrまたはHfと、Oと、Cまたは
Nとを所定量添加してなるために、15000Gを超え
る飽和磁束密度を発揮する上に、保磁力が従来の膜より
も低い特徴を有する磁性膜を提供することができる。特
にNの特定量の添加では、500℃より高温の加熱にお
いても軟磁気特性の劣化のほとんど起らない優れた熱的
安定性をも兼ね備えた軟磁性膜を提供することができ
る。よって本発明の磁性膜は、高密度記録用の高い性能
を持つ磁気ヘッドに好適な素材である。
As described above, according to the invention described in claim 1, since a predetermined amount of Zr or Hf, O, and C or N is added to Fe, a saturation magnetic flux exceeding 15,000 G is obtained. It is possible to provide a magnetic film having a characteristic that the coercive force is lower than that of the conventional film while exhibiting the density. In particular, by adding a specific amount of N, it is possible to provide a soft magnetic film having excellent thermal stability in which deterioration of the soft magnetic properties hardly occurs even when heated at a temperature higher than 500 ° C. Therefore, the magnetic film of the present invention is a material suitable for a magnetic head having high performance for high density recording.

【0030】また、請求項2に記載した発明によれば、
Feに、ZrまたはHfと、Oと、Si、B、Alまた
はYを所定量添加することで、16000Gを超える飽
和磁束密度を発揮する上に、比抵抗が高く、高周波域で
の渦電流損失の少ない高周波域での透磁率の高い磁性膜
を提供することができる。よって本発明の磁性膜を磁気
ヘッドに適用することにより、高周波域での透磁率の高
い、高記録特性の磁気ヘッドを提供することができる。
According to the invention described in claim 2,
By adding a predetermined amount of Zr or Hf, O, and Si, B, Al, or Y to Fe, a saturation magnetic flux density of more than 16000 G is exhibited, and high specific resistance and eddy current loss in high frequency range It is possible to provide a magnetic film having a high magnetic permeability in a high frequency region with a small amount. Therefore, by applying the magnetic film of the present invention to a magnetic head, it is possible to provide a magnetic head having high magnetic permeability and high recording characteristics in a high frequency range.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明試料における保磁力と膜中C,Nの含有
量との関係を示すグラフである。
FIG. 1 is a graph showing a relationship between coercive force and C and N contents in a film of a sample of the present invention.

【図2】本発明試料におけるN添加膜の保磁力とアニー
ル温度との関係を示すグラフである。
FIG. 2 is a graph showing a relationship between a coercive force of an N-doped film and an annealing temperature in a sample of the present invention.

【図3】成膜のままの本発明試料における比抵抗とB,
Si,Al,Y含有量Xとの関係を示すグラフである。
FIG. 3 shows the specific resistance and B of the sample of the present invention as deposited.
It is a graph which shows the relationship with Si, Al, and Y content X.

【図4】500℃アニール後の本発明試料における比抵
抗とB,Si,Al,Y含有量Xとの関係を示すグラフ
である。
FIG. 4 is a graph showing the relationship between the specific resistance and the B, Si, Al, Y content X in the sample of the present invention after annealing at 500 ° C.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 Fex Y z w (ただしMは、ZrとHfの内、1種以上の元素を示
し、QはCとNの内、1種以上を示し、xYZWは各
々原子%を示す。)の組成式で示され、前記xYZW
が、70≦x<96、1≦Y≦12、3≦Z≦25、W≦2
6、xYZW=100なる組成からなることを特徴と
する高飽和磁束密度軟磁性膜。
1. Fe x M Y O z Q w (where M represents at least one element of Zr and Hf, Q represents at least one element of C and N, x , Y , Z and W each represent atomic%), and the above x , Y , Z , and W
There, 70 ≦ x <96,1 ≦ Y ≦ 12,3 ≦ Z ≦ 25, W ≦ 2
6. A high saturation magnetic flux density soft magnetic film having a composition of x + Y + Z + W = 100.
【請求項2】 Fex Y z w (ただしMは、ZrとHfの内、1種以上の元素を示
し、RはSiとBとAlとYの内、1種以上を示
し、xYZWは各々原子%を示す。)の組成式で示さ
れ、前記xYZWが、70≦x<96、1≦Y≦12、
3≦Z≦25、W≦26、xYZW=100なる組成か
らなることを特徴とする高飽和磁束密度軟磁性膜。
2. Fe x M Y O z R w (where M represents at least one element of Zr and Hf, R represents at least one element of Si, B, Al and Y, x , Y , Z , and W each represent atomic%), and x , Y , Z , and W are 70 ≦ x <96, 1 ≦ Y ≦ 12,
3 ≦ Z ≦ 25, W ≦ 26, x + Y + Z + W = 100 becomes high saturation flux density soft magnetic film characterized by comprising the composition.
JP3095877A 1991-04-25 1991-04-25 High saturation magnetic flux density soft magnetic film Expired - Lifetime JP2774705B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3095877A JP2774705B2 (en) 1991-04-25 1991-04-25 High saturation magnetic flux density soft magnetic film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3095877A JP2774705B2 (en) 1991-04-25 1991-04-25 High saturation magnetic flux density soft magnetic film

Publications (2)

Publication Number Publication Date
JPH0590027A true JPH0590027A (en) 1993-04-09
JP2774705B2 JP2774705B2 (en) 1998-07-09

Family

ID=14149571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3095877A Expired - Lifetime JP2774705B2 (en) 1991-04-25 1991-04-25 High saturation magnetic flux density soft magnetic film

Country Status (1)

Country Link
JP (1) JP2774705B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0786037A (en) * 1993-09-03 1995-03-31 Korea Advanced Inst Of Sci Technol Iron-based soft-magnetism thin-film alloy for magnetic head, and manufacture thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03250706A (en) * 1990-02-28 1991-11-08 Victor Co Of Japan Ltd Magnetic alloy

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03250706A (en) * 1990-02-28 1991-11-08 Victor Co Of Japan Ltd Magnetic alloy

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0786037A (en) * 1993-09-03 1995-03-31 Korea Advanced Inst Of Sci Technol Iron-based soft-magnetism thin-film alloy for magnetic head, and manufacture thereof

Also Published As

Publication number Publication date
JP2774705B2 (en) 1998-07-09

Similar Documents

Publication Publication Date Title
US5302469A (en) Soft magnetic thin film
JPS63119209A (en) Soft magnetic thin-film
JP2950917B2 (en) Soft magnetic thin film
JP2774705B2 (en) High saturation magnetic flux density soft magnetic film
JP2996553B2 (en) Soft magnetic alloy thin film
US5411813A (en) Ferhgasi soft magnetic materials for inductive magnetic heads
JPS58100412A (en) Manufacture of soft magnetic material
JPH0462162B2 (en)
JP3036891B2 (en) Thin film magnetic head
JPH03106003A (en) Soft magnetic amorphous alloy thin film
JP3232592B2 (en) Magnetic head
JPH05114530A (en) Manufacture of soft magnetic alloy film and manufacture of magnetic head
JPH0282601A (en) Multilayer magnetic film
JPH0917632A (en) Soft magnetic film and magnetic head using the same
JP2950921B2 (en) Soft magnetic thin film
JP2911284B2 (en) Soft magnetic alloy film
JP3087265B2 (en) Magnetic alloy
JP3181723B2 (en) Soft magnetic alloy film
JP2727274B2 (en) Soft magnetic thin film
KR100193703B1 (en) Manufacturing method of soft magnetic alloy film, magnetic head and soft magnetic alloy film
JP2638739B2 (en) Magnetic thin film and method of manufacturing the same
JPH05243046A (en) Soft magnetic alloy film
JPH0789525B2 (en) Soft magnetic thin film for magnetic head
JPH04144210A (en) Soft magnetic film with high saturation magnetic flux density
JPH0613236A (en) Soft magnetic thin film

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980407