JPH0329104A - Thin-film magnetic head - Google Patents

Thin-film magnetic head

Info

Publication number
JPH0329104A
JPH0329104A JP16074289A JP16074289A JPH0329104A JP H0329104 A JPH0329104 A JP H0329104A JP 16074289 A JP16074289 A JP 16074289A JP 16074289 A JP16074289 A JP 16074289A JP H0329104 A JPH0329104 A JP H0329104A
Authority
JP
Japan
Prior art keywords
magnetic
flux density
film
alloy
magnetic flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16074289A
Other languages
Japanese (ja)
Inventor
Yoshihiro Hamakawa
濱川 佳弘
Isamu Yuhito
勇 由比藤
Koji Takano
公史 高野
Naoki Koyama
直樹 小山
Hidetoshi Moriwaki
森脇 英稔
Shinobu Sasaki
忍 佐々木
Kazuo Shiiki
椎木 一夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP16074289A priority Critical patent/JPH0329104A/en
Priority to US07/525,666 priority patent/US5126907A/en
Publication of JPH0329104A publication Critical patent/JPH0329104A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To simplify stages and to improve a recording capacity and reproducing efficiency by using two layers of laminated films consisting of a specific high saturation magnetic flux density material of an amorphous alloy or multilayered magnetic alloy and a specific alloy for an upper or lower magnetic pole and exposing only the specific high saturation magnetic flux material on the medium facing surface. CONSTITUTION:The two layers of the films 9, 10 formed by laminating the high saturation magnetic flux density film 10 having >=1.2T, more preferably >=1.3T saturation magnetic flux density, <=1.00e coercive force, >=700 magnetic permeability measured at 5MHz, and <=+ or -5X10<-7> magneto-restriction and the magnetic film 9 having <=1.0T saturation magnetic flux density, >=1500 magnetic permeability measured at 5MHz, and<=+ or -5X10<-7> magneto-restriction are used for the magnetic pole 3. Further, only the high saturation magnetic flux density film 10 having >=1.2T, more preferably>=1.3T saturation magnetic flux density among the magnetic films constituting the magnetic pole 3 is exposed on the medium-facing surface 11 of the thin-film head. The thin-film head with which the generation of wiggling is obviated and which has the excellent reproducing effect is obtd. in this way and the recording capacity is improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は,高密度磁気記録に適する薄薄磁気ヘッドに係
わり、特に,高飽和磁束密度材料を用い、書き込み能力
にすぐれた薄;換磁気ヘッドに関する.〔従来の技術〕 磁気記録の高密度化,^性能化の進展には、近年めざま
しいものがある.特に大型コンピュータ用の磁気ディス
ク装置の分野においては、記録密度の大幅な向上により
、大容量化が図られてきた.磁気ディスク装置では、従
来のフエライト梨ヘッドに比べてインダクタンスが小さ
く、品周波透磁率が大きく、狭トラック幅の可能な薄膜
磁気ヘッドが一部実川化されている. 従来,特開昭55 − 87323号に見られるように
、飽和磁東密度ITのNi−Fa(パーマロイ)合金を
用いて#膜磁気ヘッドが作躾されていた.第3v4に、
N i − F e合金を用いて形成した薄膜磁気ヘッ
ドの例を示す.同図において、A Ii gos − 
Ti Cセラミック# AmxOs−’1’i0a( セラミックス,SiC,Znフエライト,Ni−Znフ
エライト,Mn−Znフエライト等からできた絶縁基板
l上に,スパツタAIltOa膜2を形成する.次に,
下部磁極3として、Ni−}’a合金スバツタ法で形成
する.次に、磁気ギャップ4を構成するAjlsOsを
スパッタ法で形成する.また,導体コイル5はCuを用
いてスバッタ法で形成した.コイル導体の絶縁層6とし
ては、耐熱性ポリイミド系樹脂、あるいは、レジストを
用いる.次に,上部磁極7は,下部磁極3とおなじよう
にしてNi−Fa合金をスバツタ法で形成する.なお.
Ni−Fe合金の代表的な組成は,磁歪が0となる19
wt%−81wt%Feである.さらに、約20μmの
AjlzOaの保護[8が形成される.ここで,下部磁
極3,磁気ギャップ4,コイル導体5,上部磁極7のパ
ターンニングは、イオンミリング法により形成する. ところで記#1¥N度を向上させるためには、媒体の高
保磁力化が必要であり,それに対応するために、ヘッド
磁極先端から多くの磁場がでるように、磁極厚みを大き
くする必要がある.ところが磁極厚みを厚くすると,再
生分解能が低下するという問題がある.今後記録密度の
向上に伴う媒体の高保磁力化,再生分解能の低下の両方
の問題に対応するためには従来の飽和磁束密度ITのN
 i −Fe合金では不十分で,磁極磁性膜に高飽和磁
束密度磁性材科を用いる必要があると言われている.こ
のような轟飽和磁束磁性膜として4 5/5 5Ni−
Fa合金が知られている.但し,45/55Ni−Fa
合金は磁歪が正で大きいことからそれを用いた薄膜ヘッ
ドの再生出力の変動が大きいこと、また透磁率が130
0ないし1400と小さいことから、再生出力も8 1
 / 1 9 N i 一Fe(パーマロイ)を使川し
た薄膜磁気ヘッドに比較して小さいという問題がある. この問題に対して、特開昭60−10410号では、磁
極の先端領域のみに飽mm束密度の大きい45/ 5 
5 N i一ト゜e合金を使用し,その他の本質的に再
生出力を決定している部分は透磁率が高く、磁歪が負で
小さい8 1 / l 9 N i − F e合金を
使用することで対処している. また,轟飽和磁束密度材として,Co″Zr系非晶質合
金膜が知られている,CoZr系非晶質合金は、スパツ
タ直後の異方性磁界が大きく、透磁率は700から,8
00と小さいのでこれを用いた薄膜磁気ヘッドは、再生
出力が小さいという問題がある. この問題に対して,特開昭58−ti8211号は、C
o−Fe−B系非晶質膜を高透磁率磁性膜とC o Z
 r非晶質膜を組み合わせることで対処している. また,特開昭58−68211号は,磁極のギャップ近
傍に磁束が集中することにかんがみ、磁極を2種類の磁
性膜で形成し,ギャップ近傍の磁性展の方の飽和磁束密
度をより大きくすることで対処している. 〔発明が解決しようとするIIIM) ところが,特開昭60−10410号の#WA磁気ヘッ
ドは、磁極先端のみに高飽和磁束密度材を適用するため
に、作製プロセスが凍雑になると言う欠点があった.ま
た,特開昭58−68211号の場合は,作製プロセス
は単純であるが,CoZr非晶質合金のa歪が3×10
″″8と正で大きく、磁極の全面にCoZr非晶質合金
を用いると再生出力の変動,再生波形の歪というウイグ
ル現象が起こる問題があった. また、特開昭58 − 6821 1号は,磁極の先端
すなわち薄膜磁気ヘッドの媒体対抗一に飽和磁束密度の
低い磁性膜がでてくるため、媒体対抗ml全面に高飽和
磁束密度材料が躇出しているものよりも,磁極厚みを厚
くする必要があり、高記録密度が得られないという問題
があった. 本発明の目的は、上述の問題を解決し、作製プロセスが
油単で、記録能力に優れ、かつ再生効率にも優れた薄膜
磁気ヘッドを得ることにある。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a thin magnetic head suitable for high-density magnetic recording, and in particular, a thin magnetic head that uses a high saturation magnetic flux density material and has excellent writing ability; Regarding the head. [Prior Art] In recent years, there has been remarkable progress in increasing the density and performance of magnetic recording. Particularly in the field of magnetic disk drives for large computers, large capacity improvements have been made due to significant improvements in recording density. In magnetic disk drives, some thin-film magnetic heads have been commercialized that have lower inductance, higher frequency permeability, and are capable of narrower track widths than conventional ferrite heads. Conventionally, as seen in Japanese Patent Laid-Open No. 55-87323, a #film magnetic head has been fabricated using a Ni-Fa (permalloy) alloy with a saturation magnetic east density IT. In the 3rd v4,
An example of a thin film magnetic head formed using a Ni-Fe alloy is shown below. In the same figure, A Ii gos −
TiC ceramic #AmxOs-'1'i0a (A sputtered AIltOa film 2 is formed on an insulating substrate l made of ceramics, SiC, Zn ferrite, Ni-Zn ferrite, Mn-Zn ferrite, etc.. Next,
The lower magnetic pole 3 is formed by Ni-}'a alloy sputtering method. Next, AjlsOs constituting the magnetic gap 4 is formed by sputtering. Further, the conductor coil 5 was formed using Cu by the spatter method. As the insulating layer 6 of the coil conductor, heat-resistant polyimide resin or resist is used. Next, the upper magnetic pole 7 is formed of Ni-Fa alloy by the sputtering method in the same manner as the lower magnetic pole 3. In addition.
A typical composition of Ni-Fe alloy is 19 where the magnetostriction is 0.
wt%-81wt%Fe. Furthermore, about 20 μm of AjlzOa protection [8 is formed. Here, the patterning of the lower magnetic pole 3, magnetic gap 4, coil conductor 5, and upper magnetic pole 7 is performed by ion milling. By the way, #1 In order to improve the N degree, it is necessary to increase the coercive force of the medium, and in order to cope with this, it is necessary to increase the thickness of the magnetic pole so that more magnetic field can be emitted from the tip of the head magnetic pole. .. However, increasing the thickness of the magnetic pole causes a problem in that the reproduction resolution decreases. In order to deal with both the problems of higher coercive force of media and lower reproduction resolution due to improved recording density in the future, it is necessary to
It is said that i-Fe alloy is insufficient and that it is necessary to use a high saturation magnetic flux density magnetic material for the pole magnetic film. As such a high saturation magnetic flux magnetic film, 4 5/5 5Ni-
Fa alloys are known. However, 45/55Ni-Fa
Since the alloy has a large positive magnetostriction, the reproduction output of a thin-film head using it will fluctuate greatly, and the magnetic permeability is 130.
Since it is small from 0 to 1400, the playback output is also 8 1
/19Ni There is a problem in that it is smaller than a thin film magnetic head that uses Fe (permalloy). To solve this problem, Japanese Patent Application Laid-open No. 10410/1983 discloses a 45/5 saturated flux density in only the tip region of the magnetic pole.
Use a 5Ni-Fe alloy, and use an 81/19Ni-Fe alloy with high magnetic permeability and negative and small magnetostriction for other parts that essentially determine the reproduction output. I am dealing with this. In addition, CoZr-based amorphous alloy films are known as materials with high saturation magnetic flux density. CoZr-based amorphous alloys have a large anisotropic magnetic field immediately after sputtering, and their magnetic permeability ranges from 700 to 8.
00, so a thin film magnetic head using this has a problem of low reproduction output. Regarding this problem, Japanese Patent Application Laid-Open No. 58-ti8211
o-Fe-B amorphous film and high permeability magnetic film
This is dealt with by combining r-amorphous films. In addition, in consideration of the concentration of magnetic flux near the gap between the magnetic poles, JP-A No. 58-68211 discloses that the magnetic pole is formed of two types of magnetic films, and the saturation magnetic flux density of the magnetic expansion near the gap is made larger. I am dealing with this. [IIIM to be solved by the invention] However, the #WA magnetic head of JP-A-60-10410 has the drawback that the manufacturing process is complicated because a high saturation magnetic flux density material is applied only to the tip of the magnetic pole. there were. In addition, in the case of JP-A No. 58-68211, the manufacturing process is simple, but the a-strain of the CoZr amorphous alloy is 3×10
``''8 is a large positive value, and when a CoZr amorphous alloy is used on the entire surface of the magnetic pole, there is a problem in that a wiggle phenomenon occurs in which the reproduction output fluctuates and the reproduction waveform becomes distorted. Furthermore, in JP-A-58-6821-1, a magnetic film with a low saturation magnetic flux density appears at the tip of the magnetic pole, that is, the area facing the medium of a thin-film magnetic head, so a high saturation magnetic flux density material appears over the entire area facing the medium. The problem was that the magnetic poles needed to be thicker than those with conventional magnetic poles, making it impossible to obtain high recording density. SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems and to obtain a thin film magnetic head that can be manufactured using an oil-based manufacturing process, has excellent recording ability, and has excellent reproduction efficiency.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために,本発明では、飽和磁束密度
が1 . 2 ’r以上、より望ましくは1.3T以上
を有し、保磁力が1 . 0 0 a 以下.5MHz
で測定した透磁率が700以上、磁歪が±5×10−7
以下の高飽和磁束密度磁性膜と飽和磁束密度1 . O
 T以ト,5MHZで測定した透磁率が1500以上,
磁歪が±5XIO−’以トの磁性膜とを積層した2層膜
を磁極に用いることとした.さらに薄膜ヘッドの媒体対
抗面には,磁極を構成する磁性臆の中で飽和磁束密度1
.2T以上より望ましくは1 . 3 ’r以上の^飽
和磁束密度磁性膜のみが露出するようにした. このような構造にする事によって、再生特性の優れた薄
膜ヘッドが得られるようになった・また、媒体対抗而に
鱒出する部分に高飽和磁束密度材料を使用することによ
って、記録能力も,従来のパーマロイのみを磁極に用い
たヘッドより向上した.〔作用〕 本発咽によれば、低透磁率低6J&歪品飽和磁束密度材
料と、^透磁率低磁歪低飽和磁束密度材料を組み合わせ
ることで、書き込み能力が優れ、しかも再生特性の優れ
た薄膜磁気ヘットが得られる.〔実施例〕 以下、実施例により本発明を詳述する.(実施例1) 第1図に本発明の一実施例による蓚膜磁気ヘッドの断面
構造を示す. AQzOa−’riCセラミック,AQzOa一’l’
 i 0 *セラミックス,SiC,Znフエライト、
Ni−Znフエライト,Mn−Znフェライト等からで
きた絶縁基板1上に、スバッタAjlzOaMを形成す
る.次に、下部磁極19として、Ni−?’e合金スパ
ッタ法で形成した後にイオンミリング法により磁極に加
工する. 次に,下部磁I4III10として、Cosz’l’a
aZra非晶質合金スパッタ膜を形威した後にイオンミ
リング法によって磁極に加工する。
In order to achieve the above object, the present invention has a saturation magnetic flux density of 1. 2'r or more, more preferably 1.3T or more, and has a coercive force of 1. 0 0 a or less. 5MHz
Magnetic permeability measured at 700 or more, magnetostriction ±5×10-7
The following high saturation magnetic flux density magnetic films and saturation magnetic flux density 1. O
T or more, magnetic permeability measured at 5MHZ is 1500 or more,
A two-layer film consisting of a magnetic film with a magnetostriction of ±5XIO-' or more was used for the magnetic pole. Furthermore, the surface of the thin film head facing the medium has a saturation magnetic flux density of 1 within the magnetic layer that constitutes the magnetic pole.
.. 2T or more, preferably 1. Only the magnetic film with a saturation magnetic flux density of 3'r or higher is exposed. By adopting this structure, it became possible to obtain a thin film head with excellent reproduction characteristics.In addition, by using a high saturation magnetic flux density material in the part that protrudes against the medium, the recording ability can be improved. This is an improvement over the conventional head that uses only permalloy for the magnetic pole. [Function] According to this invention, by combining a low magnetic permeability low 6J & distorted saturation magnetic flux density material and a low magnetic permeability low magnetostriction low saturation magnetic flux density material, a thin film with excellent writing ability and excellent reproduction characteristics can be created. A magnetic head is obtained. [Example] The present invention will be explained in detail below using Examples. (Example 1) Fig. 1 shows the cross-sectional structure of a magnetic head made of silk according to an example of the present invention. AQzOa-'riC ceramic, AQzOa-'l'
i 0 *ceramics, SiC, Zn ferrite,
A spatter AjlzOaM is formed on an insulating substrate 1 made of Ni--Zn ferrite, Mn--Zn ferrite, or the like. Next, as the lower magnetic pole 19, Ni-? 'e After forming by alloy sputtering method, it is processed into magnetic poles by ion milling method. Next, as the lower magnet I4III10, Cosz'l'a
After shaping the aZra amorphous alloy sputtered film, it is processed into a magnetic pole by ion milling.

下部磁極Iと下部磁極11の形状をそれぞれ第2図に示
す(a),(b)とする事によって,媒体対抗r6rl
lに、Co@zTasZra非晶質合金スバツタ膜のみ
が露出するようにした. なお、スバツタ直後の(;oez’rasZra非晶質
合金スパッタ膜の透磁率は700(5MHzで測定)、
保磁力は1.OOe(困難輔方向の保磁カ),Ni−F
e合金の透磁率は1500(5MHzで測定)であった
.また(;osz’l’a1Zra非晶質合金スパッタ
!換の磁歪は−I X I O1、N i − Fa合
金の磁歪は−IXIO−7であった.また、Cosz”
l’aaZra非晶質合金スパッタ膜の磁歪はヘッド作
製プロセス中の熱履歴によって±2XlO−7程度変化
する. 次に、磁気ギャップ4を構成するAQxOsk4を翫ヘ
ツタ法で形成する.コイル導体5はCuを用?てスバッ
タ法で形成する.コイル導体6の絶縁層としては、耐熱
性ポリイミド系樹脂,あるいは,レジストを用いる. 上部磁極1 (1 2)には、飽和磁束密度1.3・L
・のC。9■TasZra非晶貿合金膜をスパッタ法で
形成したのちイオンミリング法により磁極に加工する.
さらに、上記磁極■(13)として飽和磁束密度11′
のNi一ドθをスパッタ法で形成し同様にイオンミリン
グ法により磁極に加工する.上部磁極112,下部磁極
1113の磁極形状は、それぞれ第2図に示す(b).
(a)のようにすることで、媒体対抗向1lに、Coe
zTaaZra非晶質合金スバッタ膜のみが露出するよ
うにする.さらに,約20μmのA 11 z O a
の保護喚8を形成する. なお,スパツタ直後のC o @i’l’ a aZ,
r a非晶質合金スバッタ膜の透磁率は゛700(5M
Hzで測・定)、保磁力は1.OOe (困M軸方向の
保磁カ)、N i − Fe合金の透磁率は1500(
5MHzで’IJ45,)であった.またC o sz
’ra sZr s非晶質合金スバツタ膜の磁歪は−I
XIO−’、N i − F a合金の磁歪は−IXI
O−”であった.また、Co*zTaaZra非晶質合
金スパッ−タ膜の磁歪はヘッド作製プロセス中の熱m歴
によって±2×10−″7樫度変化する.一ト部磁極1
9,  下部磁極ljlO,a気ギャップ4,コイル導
体5,上部磁極l12,上部磁極ul3のパターンニン
グは、イオンミリング法により形成した. 比較のために、ヘッド構造は同じで、Coi’aZr非
晶質合金スパッタ膜の飽和磁束密度を1 . 3 ’1
’ と固定し、’l’ aとZrの組成比を変えること
でagiを変えたヘッドを作製した.また,Go’l’
aZr非晶質合金スパッタ膜は磁場中熱処理によって熱
処理する事によって、異方性磁界を低減し透磁率を向上
させることができる.従って、比較のために,磁場中で
の熱処理によってG o ’1’ a Z r非晶質合
金スバツタ膜の透磁率を変化させた磁極を持った薄膜磁
気ヘッドも作製した. さらに比較のために、G o ’l’ a Z r非晶
質合金スパツタ膜の′11とZrの組成比を一定に保ち
,磁歪を±2X10−7以下に保ち.Co組成を変える
ことによって磁極の飽和磁束密度を変えた薄膜磁気ヘッ
ドを試作した. 以上のようにして作製した、薄膜ヘッドについて保磁力
4000e.膜厚0.4μmのγ一Fears塗布媒体
を用いて.スペーシング0.25μmで再生特性並びに
オーバーライト特姓を評価した.第4図は磁極に用いた
C o ’1’ a ’l r非晶質合金スバツタ膜の
磁歪と再生特性(再生出力,ウイグル発生率》との関係
について示す.磁歪は、ヘッド作製プロセス最終工程後
の磁歪で示す.また再生出力は、同一構造でパーマロイ
のみを用いた薄膜磁気ヘッドの再生出力を基準とした、
相対再生出力とした.一方ウイグル発生率は、同一条件
で形成した#膜磁気ヘッド100個のうちで、ウイグル
が発生した薄膜磁気ヘッドの数とし、%で示した. 再生出力は、磁歪が正で大きくなるに従って大きくなる
傾向にあるが、磁歪が5 X 1 0−″7以上に出力
がパーマロイヘッド並みでウイグル発生率が10%以下
で有るためには,Go’l’aZr非晶質合金スバツタ
膜の磁歪は,±5XIO″″7以下が望ましい. 第5図は磁場中熱処理を行なって磁極の透磁率を変化さ
せたヘッドの透磁率と再生特性(再生出力,ウイグル発
生串)との関係を示す.磁性1摸の透磁率が大きくなる
と,再生出力が大きくなる傾向にあるが,透磁率が40
00以上になるとウイグル発生率が急激に大きくなる.
また、透磁率が約700以上あれば、パーマロイヘッド
並の再生出力が得られる.以上の結果は、パーマロイの
磁歪を±5XIO−’の範囲で変化させて測定したが,
変化しなかった. 第6図に、C o ’l’ a Z r非晶質合金スパ
ツタ膜の飽和磁束密度とオーバーライトSNとの関係を
示す.パーマロイのみを使ったヘッドのオーバーライト
SNは.20dBであった* C o ’ra Z r
非晶質合金スパツタ膜の飽和磁束密度が1 . 0 T
〜1 . 1 ”l’ の時オーバーライトSNは、パ
ーマロイのみを使ったヘッドとほぼ同じであった.飽和
磁束密度が1 . 2 ’r以上から飽和・磁束密度の
増大によるオーバーライトSN増加の効果が大きくなり
始め,1.3”l’以上で顕著である.またこの結果は
、G o ’1’ a・Hf非晶質合金,C o′ra
 H f P d系非晶質合金等の飽和磁束密度が大き
い非晶質合金についても,同様の結果を得た.また.F
’eSiRu合金とパーマロイ合金の多層1漠、あるい
は?’ e C合金とパーマロイ合金との多層膜のよう
な結晶質材料についても同様の結果が得られた. 〔発明の効果〕 以上述べたように、本発明では、飽和磁束密度1.2T
以上より望ましくは1.3T以上,保磁力が1.OOe
 以下,5MHzで測定した透磁率が700以上,磁歪
が±5X10−7以下の高飽和磁束密度磁性膜と飽和磁
束密度1 . 0 ’1’以下,5MHzで測定した透
磁率が1500以上,磁歪が±5X10−’以下の磁性
膜とを積層した2層膜を磁極に用いることとした.さら
に#膜ヘッドの媒体対抗血には、磁極を構成する磁性吸
の中で飽和磁束密度1.2T以上より望ましくは1.3
・1・以上の高飽和磁束密度磁性膜のみが露出するよう
にした。
By making the shapes of the lower magnetic pole I and the lower magnetic pole 11 as shown in FIG. 2 (a) and (b), the medium resistance r6rl
1, only the Co@zTasZra amorphous alloy spatter film was exposed. In addition, the magnetic permeability of the (; oez'rasZra amorphous alloy sputtered film immediately after sputtering is 700 (measured at 5 MHz),
The coercive force is 1. OOe (coercive force in difficult direction), Ni-F
The magnetic permeability of the e-alloy was 1500 (measured at 5MHz). In addition, the magnetostriction of (;osz'l'a1Zra amorphous alloy sputtering!) was -IXIO1, and the magnetostriction of Ni-Fa alloy was -IXIO-7.
The magnetostriction of the l'aaZra amorphous alloy sputtered film varies by about ±2XlO-7 depending on the thermal history during the head manufacturing process. Next, AQxOsk 4, which constitutes the magnetic gap 4, is formed by the cylindrical method. Is Cu used for coil conductor 5? It is formed using the spatter method. As the insulating layer of the coil conductor 6, heat-resistant polyimide resin or resist is used. The upper magnetic pole 1 (1 2) has a saturation magnetic flux density of 1.3 L.
・C. 9. After forming a TasZra amorphous alloy film by sputtering, it is processed into a magnetic pole by ion milling.
Furthermore, the saturation magnetic flux density is 11' as the magnetic pole (13).
A Ni-do θ is formed using a sputtering method, and similarly processed into a magnetic pole using an ion milling method. The magnetic pole shapes of the upper magnetic pole 112 and the lower magnetic pole 1113 are shown in FIG. 2(b).
By doing as shown in (a), Coe
Only the zTaaZra amorphous alloy spatter film is exposed. Furthermore, about 20 μm of A 11 z O a
form a protective order 8. In addition, C o @i'l' a aZ immediately after sputtering,
The magnetic permeability of the ra amorphous alloy spatter film is ゛700 (5M
(measured in Hz), coercive force is 1. OOe (coercive force in the M-axis direction), the magnetic permeability of the Ni-Fe alloy is 1500 (
It was 'IJ45,) at 5MHz. Also, C o sz
'ra sZr s The magnetostriction of the amorphous alloy sputter film is -I
XIO-', the magnetostriction of Ni-Fa alloy is -IXI
Furthermore, the magnetostriction of the Co*zTaaZra amorphous alloy sputtered film changes by ±2×10−″7 degrees depending on the thermal history during the head fabrication process. Partial magnetic pole 1
9. The patterning of the lower magnetic pole ljlO, the a-gap 4, the coil conductor 5, the upper magnetic pole l12, and the upper magnetic pole ul3 was formed by ion milling. For comparison, the head structure is the same, and the saturation magnetic flux density of the Coi'aZr amorphous alloy sputtered film is 1. 3'1
' was fixed, and a head with different agi was created by changing the composition ratio of 'l' a and Zr. Also, Go'l'
The aZr amorphous alloy sputtered film can be heat-treated in a magnetic field to reduce the anisotropic magnetic field and improve its magnetic permeability. Therefore, for comparison, a thin film magnetic head with a magnetic pole in which the magnetic permeability of a G o '1' a Z r amorphous alloy sputter film was changed by heat treatment in a magnetic field was also fabricated. Furthermore, for comparison, the composition ratio of '11 and Zr of the Go'l'aZr amorphous alloy sputtered film was kept constant, and the magnetostriction was kept below ±2X10-7. We prototyped a thin-film magnetic head in which the saturation magnetic flux density of the magnetic pole was changed by changing the Co composition. The thin film head produced as described above had a coercive force of 4000e. Using a γ-Fears coating medium with a film thickness of 0.4 μm. The reproduction characteristics and overwrite characteristics were evaluated with a spacing of 0.25 μm. Figure 4 shows the relationship between the magnetostriction of the Co'1'a'lr amorphous alloy spatter film used for the magnetic pole and the reproduction characteristics (reproduction output, wiggle generation rate). This is shown in magnetostriction below.The reproduction output is based on the reproduction output of a thin-film magnetic head with the same structure but using only permalloy.
Relative playback output. On the other hand, the wiggle occurrence rate is the number of thin film magnetic heads in which wiggles occurred out of 100 # film magnetic heads formed under the same conditions, and is expressed as a percentage. The playback output tends to increase as the magnetostriction becomes positive and larger, but in order for the magnetostriction to be 5 x 10-''7 or higher, the output is comparable to that of a permalloy head, and the wiggle generation rate is below 10%, Go' The magnetostriction of the l'aZr amorphous alloy sputter film is preferably ±5XIO''''7 or less. Figure 5 shows the magnetic permeability and reproduction characteristics (reproduction output) of a head whose magnetic permeability has been changed by heat treatment in a magnetic field. , Uigur generation skewer).The reproduction output tends to increase as the magnetic permeability increases, but when the magnetic permeability increases to 40
When the number exceeds 00, the Uighur incidence increases rapidly.
Also, if the magnetic permeability is about 700 or more, a reproduction output comparable to that of a permalloy head can be obtained. The above results were measured by changing the magnetostriction of permalloy in the range of ±5XIO-'.
It didn't change. FIG. 6 shows the relationship between the saturation magnetic flux density and overwrite SN of the Co'l'aZr amorphous alloy sputtered film. The overwrite SN of the head using only permalloy is. It was 20dB* C o 'ra Z r
The saturation magnetic flux density of the amorphous alloy sputtered film is 1. 0 T
~1. At 1 ``l'', the overwrite SN was almost the same as that of a head using only permalloy.When the saturation magnetic flux density exceeded 1.2'r, the effect of increasing the overwrite SN due to the increase in saturation and magnetic flux density became large. It starts to appear, and becomes noticeable above 1.3"l'. This result also shows that Go '1' a・Hf amorphous alloy, Co'ra
Similar results were obtained for amorphous alloys with high saturation magnetic flux density, such as HfPd-based amorphous alloys. Also. F
'eSiRu alloy and permalloy alloy multi-layered, or? Similar results were obtained for crystalline materials such as multilayer films of C alloy and permalloy alloy. [Effects of the Invention] As described above, in the present invention, the saturation magnetic flux density is 1.2T.
From the above, it is preferable that the coercive force is 1.3T or more. OOe
Hereinafter, a high saturation magnetic flux density magnetic film with a magnetic permeability of 700 or more and a magnetostriction of ±5X10-7 or less measured at 5 MHz and a saturation magnetic flux density of 1. We decided to use a two-layer film for the magnetic pole, consisting of a magnetic film with a magnetic permeability of 0'1' or less, a magnetic permeability of 1500 or more measured at 5MHz, and a magnetostriction of ±5X10-' or less. Furthermore, for the #film head against the medium, the saturation magnetic flux density in the magnetic absorption constituting the magnetic pole is 1.2T or more, preferably 1.3T.
- Only the magnetic film with a high saturation magnetic flux density of 1 or more is exposed.

このような構造にする小によって、ウイグル現象が赳こ
らず再生効果の優れた薄膜ヘッドが得られるようになっ
た。また、媒体対抗而で廁出する磁極に高飽和磁束密度
材料を使用することによって、記録能力も、従来のパー
マロイのみを磁極に用いたヘッドよりも向上した。また
このヘッド構造では、磁性膜を基板全面にスパツタして
磁極を形或するためにプロセスが比較的簡単である.
By using such a small structure, it has become possible to obtain a thin film head that does not suffer from the Uiggle phenomenon and has excellent reproduction effects. Furthermore, by using a high saturation magnetic flux density material for the magnetic pole that protrudes between the media and the medium, the recording performance is also improved compared to the conventional head that uses only permalloy for the magnetic pole. Furthermore, in this head structure, the process is relatively simple because the magnetic film is sputtered over the entire surface of the substrate to form the magnetic poles.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の薄膜磁気ヘッドの断血図、
箪2図は本発明の一実施例の磁極形状を示す平面図、第
3図はパーマロイのみを磁極に用いた従来の#膜磁気ヘ
ッドの断向図、弟4図は本発明の実施例の薄膜磁気ヘッ
ドの磁極の磁歪と再生特性を示す図、第5図は本発明の
実施例の薄膜磁気ヘッドの磁極の透磁率と再生特性との
関係を示す図、第6図は本発明の実施例の薄般磁気ヘッ
ドの磁極の飽和磁束密度と、オーバーライトSNとの関
係を示す図である. l・・・基板,2・・・AQxOs、3・・・下部磁極
、4・゜・磁気ギャップ、5:・・導体コイル、6・・
・絶縁層、7゜“上部磁極、8・・・保護膜、9・・・
下部磁極1,10・・・下部磁極■、11・・・媒体対
抗面、12・・・上部磁極■、13・・・上部磁極U. 第 函 VJ 2 品 (α) (ν) 第 3 団 名 S ■ を 臘 牽 (xto3) 鵞 争 面 ス血盃 ( X tO’ ) 名 b 1男 噌已和ぶ主東意度 (丁)
FIG. 1 is a blood cut diagram of a thin film magnetic head according to an embodiment of the present invention.
Fig. 2 is a plan view showing the magnetic pole shape of an embodiment of the present invention, Fig. 3 is a sectional view of a conventional # film magnetic head using only permalloy for the magnetic pole, and Fig. 4 is a plan view of the magnetic pole shape of an embodiment of the present invention. A diagram showing the magnetostriction and reproduction characteristics of the magnetic pole of a thin film magnetic head. FIG. 5 is a diagram showing the relationship between magnetic permeability and reproduction characteristics of the magnetic pole of a thin film magnetic head according to an embodiment of the present invention. FIG. FIG. 6 is a diagram showing the relationship between the saturation magnetic flux density of the magnetic pole of the example thin general magnetic head and the overwrite SN. l...Substrate, 2...AQxOs, 3...Lower magnetic pole, 4...Magnetic gap, 5:...Conductor coil, 6...
・Insulating layer, 7゜Top magnetic pole, 8... Protective film, 9...
Lower magnetic poles 1, 10...Lower magnetic pole ■, 11...Medium opposing surface, 12... Upper magnetic pole ■, 13... Upper magnetic pole U. Box VJ 2 Product (α) (ν) 3rd group name S ■ wo (xto3) Goose face blood cup (X tO') Name b 1st son's name (α) (v)

Claims (1)

【特許請求の範囲】 1、基板上に下部磁極及び上部磁極よりなる磁気コア、
前記両磁極を磁気的、電気的に分離する絶縁層、および
前記絶縁層内にあつて信号の入出力を行なうコイルを形
成してなる薄膜磁気ヘッドにおいて該上部磁極もしくは
該下部磁極に、非晶質合金あるいは多層磁性合金の、飽
和磁束密度が1.2T以上、より望ましくは1.3T以
上からなる高飽和磁束密度材料と飽和磁束密度1TのN
i−Fe(パーマロイ)合金からなる2層の積層膜を用
い、その媒体対抗面には飽和磁束密度が1.2T以上、
より望ましくは1.3T以上の高飽和磁束密度材料だけ
を露出せしめたことを特徴とする薄膜磁気ヘッド。 2、該高飽和磁束密度材料の磁歪が±5×10^−^7
以下、透磁率が700以上であり、該Ni−Fe合金の
磁歪が±5×10^−^7以下、透磁率が1500以上
であることを特徴とする特許請求の範囲第1項記載の薄
膜磁気ヘッド。 3、該非晶質合金膜が、CoTaZr、−CoTaHf
、CoTaHfPd系非晶質合金のいずれか一種である
ことを特徴とする特許請求の範囲第1項ないし第2項記
載の薄膜磁気ヘッド。 4、該多層磁性膜が、FeSiRu系合金あるいは、F
e−C系合金とNi−Fe(パーマロイ)系合金との多
層膜であることを特徴とする特許請求の範囲第1項ない
し第2項記載の薄膜磁気ヘッド。
[Claims] 1. A magnetic core consisting of a lower magnetic pole and an upper magnetic pole on a substrate;
In a thin film magnetic head comprising an insulating layer that magnetically and electrically isolates the two magnetic poles, and a coil that inputs and outputs signals within the insulating layer, the upper magnetic pole or the lower magnetic pole is made of an amorphous material. A high saturation magnetic flux density material of a high quality alloy or a multilayer magnetic alloy with a saturation magnetic flux density of 1.2 T or more, more preferably 1.3 T or more, and N with a saturation magnetic flux density of 1 T.
A two-layer laminated film made of i-Fe (permalloy) alloy is used, and the surface facing the medium has a saturation magnetic flux density of 1.2 T or more.
More preferably, a thin film magnetic head characterized in that only a material with a high saturation magnetic flux density of 1.3 T or more is exposed. 2. The magnetostriction of the high saturation magnetic flux density material is ±5×10^-^7
The thin film according to claim 1, wherein the magnetic permeability is 700 or more, the magnetostriction of the Ni-Fe alloy is ±5×10^-^7 or less, and the magnetic permeability is 1500 or more. magnetic head. 3. The amorphous alloy film is made of CoTaZr, -CoTaHf
, CoTaHfPd-based amorphous alloy. 4. The multilayer magnetic film is made of FeSiRu alloy or F
3. The thin film magnetic head according to claim 1, wherein the thin film magnetic head is a multilayer film of an e-C alloy and a Ni-Fe (permalloy) alloy.
JP16074289A 1989-05-24 1989-06-26 Thin-film magnetic head Pending JPH0329104A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP16074289A JPH0329104A (en) 1989-06-26 1989-06-26 Thin-film magnetic head
US07/525,666 US5126907A (en) 1989-05-24 1990-05-21 Thin film magnetic head having at least one magnetic core member made at least partly of a material having a high saturation magnetic flux density

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16074289A JPH0329104A (en) 1989-06-26 1989-06-26 Thin-film magnetic head

Publications (1)

Publication Number Publication Date
JPH0329104A true JPH0329104A (en) 1991-02-07

Family

ID=15721475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16074289A Pending JPH0329104A (en) 1989-05-24 1989-06-26 Thin-film magnetic head

Country Status (1)

Country Link
JP (1) JPH0329104A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6049045A (en) * 1983-08-26 1985-03-18 Showa Denko Kk Olefin polymer composition
JPH04157607A (en) * 1990-10-19 1992-05-29 Nec Kansai Ltd Thin-film magnetic head
JPH04232606A (en) * 1990-12-28 1992-08-20 Alps Electric Co Ltd Thin film magnetic head
US5828533A (en) * 1995-06-14 1998-10-27 Nec Corporation Thin film magnetic head with differing saturation magnetic flux density films and spacer between floating surface and coil patterns
EP1199713A2 (en) * 2000-10-18 2002-04-24 Fujitsu Limited Thin film magnetic head
US6597543B1 (en) 1998-06-08 2003-07-22 Tdk Corporation Thin-film magnetic head and magnetic storage apparatus using the same
US6804088B1 (en) 1998-07-15 2004-10-12 Nec Corporation Thin film magnetic head, manufacturing method thereof and magnetic storage

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6049045A (en) * 1983-08-26 1985-03-18 Showa Denko Kk Olefin polymer composition
JPH04157607A (en) * 1990-10-19 1992-05-29 Nec Kansai Ltd Thin-film magnetic head
JPH04232606A (en) * 1990-12-28 1992-08-20 Alps Electric Co Ltd Thin film magnetic head
US5828533A (en) * 1995-06-14 1998-10-27 Nec Corporation Thin film magnetic head with differing saturation magnetic flux density films and spacer between floating surface and coil patterns
US6597543B1 (en) 1998-06-08 2003-07-22 Tdk Corporation Thin-film magnetic head and magnetic storage apparatus using the same
US7054107B2 (en) 1998-06-08 2006-05-30 Tdk Corporation Thin-film magnetic head with nonmagnetic body filled concave portion formed on a pole layer and magnetic storage apparatus using the same
US7230794B2 (en) 1998-06-08 2007-06-12 Tdk Corporation Thin-film magnetic head with nonmagnetic body filled concave portion formed on a pole layer and magnetic storage apparatus using the same
US7239482B2 (en) 1998-06-08 2007-07-03 Tdk Corporation Thin-film magnetic head and nonmagnetic body filled concave portion formed on a pole layer and magnetic storage apparatus using the same
US6804088B1 (en) 1998-07-15 2004-10-12 Nec Corporation Thin film magnetic head, manufacturing method thereof and magnetic storage
EP1199713A2 (en) * 2000-10-18 2002-04-24 Fujitsu Limited Thin film magnetic head
EP1199713A3 (en) * 2000-10-18 2007-03-07 Fujitsu Limited Thin film magnetic head

Similar Documents

Publication Publication Date Title
US6118628A (en) Thin film magnetic head with Ni-Fe alloy thin film
US5126907A (en) Thin film magnetic head having at least one magnetic core member made at least partly of a material having a high saturation magnetic flux density
US6346338B1 (en) Combination magnetoresistive/inductive thin film magnetic head and its manufacturing method
US5959813A (en) Combination read/write thin film magnetic head using a shielding magnetic layer
JPH0329104A (en) Thin-film magnetic head
JPS61258323A (en) Magneto-resistance effect head
JPH01124108A (en) Thin-film magnetic head
US5862023A (en) Metal in gap magnetic head having metal magnetic film including precious metal layer
JPS61179509A (en) Magnetic material
US6042897A (en) Combination read/write thin film magnetic head and its manufacturing method
JP2972226B2 (en) Thin film magnetic head
EP0585930A2 (en) Thin film magnetic head
JP3130407B2 (en) Manufacturing method of magnetic film and thin film magnetic head
JP2510625B2 (en) Magnetoresistive magnetic head
JPH0498608A (en) Magnetic head
JP2002140803A (en) Magnetic head, its manufacturing method, and magnetic disk device using the same
JP2702997B2 (en) Thin film magnetic head and magnetic disk device
JP3204252B2 (en) Thin film magnetic head
JP3367161B2 (en) Method of manufacturing magnetoresistive head
JPH05242433A (en) Magnetic head
JP2971212B2 (en) Method for manufacturing thin-film magnetic head
JPH0556561B2 (en)
JPH03203008A (en) Production of laminated film of fe-si-al ferromagnetic alloy for magnetic head
JPS61153813A (en) Magnetic pole for thin film magnetic head
JPH02154405A (en) Multilayer magnetic film and magnetic head using same