JP3204252B2 - Thin film magnetic head - Google Patents

Thin film magnetic head

Info

Publication number
JP3204252B2
JP3204252B2 JP19122899A JP19122899A JP3204252B2 JP 3204252 B2 JP3204252 B2 JP 3204252B2 JP 19122899 A JP19122899 A JP 19122899A JP 19122899 A JP19122899 A JP 19122899A JP 3204252 B2 JP3204252 B2 JP 3204252B2
Authority
JP
Japan
Prior art keywords
magnetic
film
head
magnetic pole
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP19122899A
Other languages
Japanese (ja)
Other versions
JP2000036108A (en
Inventor
佳弘 濱川
勇 由比藤
公史 ▲高▼野
英稔 森脇
一夫 椎木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP19122899A priority Critical patent/JP3204252B2/en
Publication of JP2000036108A publication Critical patent/JP2000036108A/en
Application granted granted Critical
Publication of JP3204252B2 publication Critical patent/JP3204252B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高密度磁気記録に
適する薄膜磁気ヘッドに係わり、特に、高飽和磁束密度
材料を用い、書き込み能力にすぐれた薄膜磁気ヘッドに
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin film magnetic head suitable for high-density magnetic recording, and more particularly to a thin film magnetic head using a material having a high saturation magnetic flux density and having excellent write performance.

【0002】[0002]

【従来の技術】磁気記録の高密度化,高性能化の進展に
は、近年めざましいものがある。特に大型コンピュータ
用の磁気ディスク装置の分野においては、記録密度の大
幅な向上により、大容量化が図られてきた。磁気ディス
ク装置では、従来のフェライト型ヘッドに比べてインダ
クタンスが小さく、高周波透磁率が大きく、狭トラック
幅の可能な薄膜磁気ヘッドが一部実用化されている。従
来、特開昭55−87323に見られるように、飽和磁束密度
1TのNi−Fe(パーマロイ)合金を用いて薄膜磁気
ヘッドが作製されていた。図4にNi−Fe合金を用い
て形成した薄膜磁気ヘッドの磁極部の断面図を示す。図
4において、Al23−TiCセラミック、Al23
TiO2セラミックス、SiC,Znフェライト、Ni
−Znフェライト、Mn−Znフェライト等からできた
絶縁基板1上に、スパッタAl23膜12を形成する。
次に、下部磁極2として、Ni−Fe合金スパッタ法で
形成する。膜厚は、1.5μmとした。次に磁気ギャッ
プ3をAl23をスパッタ法で形成する。
2. Description of the Related Art In recent years, progress in increasing the density and performance of magnetic recording has been remarkable. In particular, in the field of magnetic disk drives for large computers, a large increase in capacity has been achieved by a significant improvement in recording density. In a magnetic disk device, a thin film magnetic head that has a smaller inductance, a higher high-frequency magnetic permeability, and a smaller track width than a conventional ferrite type head has been partially put to practical use. Conventionally, as seen in JP-A-55-87323, a thin-film magnetic head has been manufactured using a Ni-Fe (permalloy) alloy having a saturation magnetic flux density of 1T. FIG. 4 is a sectional view of a magnetic pole portion of a thin-film magnetic head formed using a Ni—Fe alloy. In FIG. 4, Al 2 O 3 —TiC ceramic, Al 2 O 3
TiO 2 ceramics, SiC, Zn ferrite, Ni
A sputtered Al 2 O 3 film 12 is formed on an insulating substrate 1 made of -Zn ferrite, Mn-Zn ferrite, or the like.
Next, the lower magnetic pole 2 is formed by a Ni-Fe alloy sputtering method. The film thickness was 1.5 μm. Next, a magnetic gap 3 is formed by sputtering Al 2 O 3 .

【0003】コイル導体4の絶縁層5としては、耐熱性
ポリイミド系樹脂、あるいは、レジストを用いる。ま
た、コイル導体4は、Cuを用いてスパッタ法で形成す
る。次に、上部磁極10は、下部磁極2とおなじように
してNi−Fe合金スパッタ法で形成する。膜厚は2.
0μmとした。なお、 Ni−Fe合金の代表的な組成
は、磁歪が0となる19wt%−81wt% Feであ
る。さらに、約20μmのAl23の保護膜7からでき
ている。下部磁極2,磁気ギャップ3,コイル導体4、
上部磁極10のパターニングは、イオンミリング法によ
り形成する。ところで記録密度を向上させるため、媒体
の高保磁力化が必要であり、それに対応するために、ヘ
ッド磁極先端から多くの磁場が出るように、磁極厚みを
大きくする必要がある。ところが磁極厚みを厚くする
と、再生分解能が低下するという問題がある。今後記録
密度の向上に伴う媒体の高保磁力化、再生分解能の低下
の両方の問題に対応するためには従来の飽和磁束密度1
TのNi−Fe合金では不十分で、磁極磁性膜に高飽和
磁束密度磁性材料を用いる必要があるといわれている。
As the insulating layer 5 of the coil conductor 4, a heat-resistant polyimide resin or resist is used. The coil conductor 4 is formed by sputtering using Cu. Next, the upper magnetic pole 10 is formed in the same manner as the lower magnetic pole 2 by a Ni-Fe alloy sputtering method. The film thickness is 2.
It was set to 0 μm. A typical composition of the Ni—Fe alloy is 19 wt% -81 wt% Fe at which the magnetostriction becomes zero. Further, it is made of a protective film 7 of Al 2 O 3 of about 20 μm. Lower magnetic pole 2, magnetic gap 3, coil conductor 4,
The upper magnetic pole 10 is formed by ion milling. By the way, in order to improve the recording density, it is necessary to increase the coercive force of the medium. In order to cope with this, it is necessary to increase the thickness of the magnetic pole so that a large magnetic field is emitted from the tip of the head magnetic pole. However, when the thickness of the magnetic pole is increased, there is a problem that the reproduction resolution is reduced. In order to cope with both the problem of increasing the coercive force of the medium and the reduction of the reproduction resolution accompanying the improvement of the recording density, the conventional saturation magnetic flux density of 1
It is said that the Ni-Fe alloy of T is insufficient, and it is necessary to use a high saturation magnetic flux density magnetic material for the magnetic pole magnetic film.

【0004】近年、高飽和磁束密度で高性能の磁性膜と
して非晶質スパッタ膜が開発されつつある。この中で
も、特にガラス化元素がZr、Hfからなる非晶質合金
は、耐食性、耐摩耗性に優れており、磁気ヘッド用磁性
膜として優れた特性を有している。具体的にはMaTb
Acの組成式で表せる。ここで、Mは磁気モーメントを
有するCo、Fe、Niなどの少なくとも一種であり、
AはZr、Hfなどの少なくとも一種である。TはM及
びA以外の遷移金属である。特に特開昭58−9882
4、特開昭60−21504、特開昭62−28285
0で示されるようなCoTaZr系非晶質合金、 Co
TaHf系非晶質合金、 CoTaPd系非晶質合金が
磁歪零において飽和磁束密度が1.3T得られることか
ら薄膜磁気ヘッド用磁性膜として有望視されている。ま
た、結晶質合金膜としては、特開昭59−130408
に見られるように、Fe―C合金とNi−Fe合金との
多層膜、FeSiRu合金とNi−Fe合金との多層膜
が高飽和磁束密度で高性能の磁性膜として開発されてい
る。
In recent years, an amorphous sputtered film has been developed as a high-performance magnetic film having a high saturation magnetic flux density. Among them, an amorphous alloy in which the vitrifying element is made of Zr or Hf is particularly excellent in corrosion resistance and abrasion resistance, and has excellent characteristics as a magnetic film for a magnetic head. Specifically, MaTb
It can be represented by the composition formula of Ac. Here, M is at least one of Co, Fe, Ni, etc. having a magnetic moment,
A is at least one of Zr and Hf. T is a transition metal other than M and A. In particular, JP-A-58-9882
4, JP-A-60-21504, JP-A-62-28285
0, a CoTaZr-based amorphous alloy such as Co
TaHf-based amorphous alloys and CoTaPd-based amorphous alloys are considered to be promising as magnetic films for thin-film magnetic heads because a saturated magnetic flux density of 1.3 T can be obtained at zero magnetostriction. Japanese Patent Application Laid-Open No. S59-130408 discloses a crystalline alloy film.
As described in U.S. Pat. No. 5,838,898, a multilayer film of an Fe--C alloy and a Ni--Fe alloy and a multilayer film of an FeSiRu alloy and a Ni--Fe alloy have been developed as high-performance magnetic films with high saturation magnetic flux density.

【0005】[0005]

【発明が解決しようとする課題】ところが、以上示した
高飽和磁束密度材料は、いずれも、熱的に準安定な材料
であり、従来使用されていたNi−Fe合金に比較して
極めて熱安定性に劣るという問題がある。例えば、上記
CoTaZr非晶質合金膜を上部磁極、下部磁極に用い
て、図3、図4と同様の構造の薄膜磁気ヘッドを形成し
た。ところが、薄膜ヘッド作製プロセス中の熱履歴によ
って、下部磁極のCoTaZr非晶質磁性膜の磁気特性
が劣化し、図3、図4の構造の薄膜磁気ヘッドよりも再
生効率の低いヘッドしか得られなかった。
However, all of the high saturation magnetic flux density materials described above are thermally metastable materials, and are extremely thermally stable as compared with conventionally used Ni-Fe alloys. There is a problem that it is inferior. For example, a thin film magnetic head having a structure similar to that shown in FIGS. 3 and 4 was formed by using the CoTaZr amorphous alloy film for the upper magnetic pole and the lower magnetic pole. However, due to the thermal history during the thin-film head manufacturing process, the magnetic properties of the CoTaZr amorphous magnetic film of the lower magnetic pole deteriorate, and only a head having a lower reproducing efficiency than the thin-film magnetic head having the structure shown in FIGS. 3 and 4 can be obtained. Was.

【0006】本発明の目的は、上述の問題を解決し、記
録能力に優れ、かつ再生効率にも優れた薄膜磁気ヘッド
を得ることにある。
An object of the present invention is to solve the above-mentioned problems and to obtain a thin-film magnetic head having excellent recording capability and excellent reproduction efficiency.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、本発明では、飽和磁束密度1.3T以上の熱的に準
安定な高飽和磁束密度磁性材料を上部磁極の少なくとも
一部だけに適用し、下部磁極は従来の飽和磁束密度1T
で熱安定性に優れたNi−Fe合金(パーマロイ)を適
用することにした。
In order to achieve the above object, according to the present invention, a thermally metastable high saturation magnetic flux density magnetic material having a saturation magnetic flux density of 1.3 T or more is provided on at least a part of an upper magnetic pole. Apply, the lower pole is the conventional saturation magnetic flux density 1T
Therefore, a Ni—Fe alloy (permalloy) having excellent thermal stability was applied.

【0008】このような構造にすることによって、熱的
に準安定な高飽和磁束密度材料を用いても、薄膜ヘッド
プロセスの熱履歴による磁気特性劣化がなく、再生効率
の優れた薄膜ヘッドが得られるようになった。また、上
部に高飽和磁束密度材料を使用することによって、記録
能力も、従来のパーマロイのみを磁極に用いたヘッドよ
りも向上した。
With this structure, even if a thermally metastable high-saturation magnetic flux density material is used, a magnetic head is not deteriorated by the thermal history of the thin-film head process, and a thin-film head having excellent reproduction efficiency can be obtained. Is now available. In addition, by using a high saturation magnetic flux density material for the upper part, the recording ability was improved as compared with the conventional head using only permalloy for the magnetic pole.

【0009】本発明によれば、熱的に準安定な高飽和磁
束密度材料を上部磁極に用いる構造を取ることにより、
薄膜磁気ヘッド作製プロセスの熱履歴による高飽和磁束
密度材料の軟磁気特性の劣化を伴う事がないので、書き
込み能力が優れしかも、再生効率の優れた薄膜磁気ヘッ
ドが得られる。
According to the present invention, by employing a structure in which a thermally metastable high saturation magnetic flux density material is used for the upper magnetic pole,
Since the soft magnetic characteristics of the high saturation magnetic flux density material are not deteriorated due to the heat history of the thin film magnetic head manufacturing process, a thin film magnetic head having excellent writing performance and excellent reproduction efficiency can be obtained.

【0010】[0010]

【発明の実施の形態】以下、実施例により本発明を詳述
する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to examples.

【0011】実施例1 図1,図3にそれぞれ本発明の一実施例による薄膜磁気
ヘッドの断面図,斜視図を示す。図1において、Al2
3−TiCセラミック、Al23−TiO2セラミック
ス、SiC,Znフェライト,Ni− Znフェライ
ト, Mn−Znフェライト等からできた絶縁基板1上
に、スパッタAl23膜12を形成する。次に、下部磁
極2としてNi−Fe合金をスパッタ法で形成する。膜
厚は1.5μmとした。次に、磁気ギャップ3をAl2
3をスパッタ法で形成する。コイル導体4の絶縁層5
としては、耐熱性ポリイミド系樹脂、あるいは、レジス
トを用いる。また、コイル4はCuを用いてスパッタ法
で形成する。次に、上部磁極6は、飽和磁束密度1.3
TのCo92Ta5Zr3非晶質合金膜をスパッタ法で形成する。
膜厚は2.0μmとした。さらに、約20μmのAl2
3の保護膜7からできている。下部磁極2,磁気ギャ
ップ3,コイル導体4,上部磁極6のパターニングは、
イオンミリング法により形成する。
Embodiment 1 FIGS. 1 and 3 are a sectional view and a perspective view, respectively, of a thin-film magnetic head according to an embodiment of the present invention. In FIG. 1, Al 2
O 3 -TiC ceramic, Al 2 O 3 -TiO 2 ceramics, SiC, Zn ferrite, Ni- Zn ferrite, on an insulating substrate 1 made from Mn-Zn ferrite or the like, to form a sputtering an Al 2 O 3 film 12. Next, a Ni-Fe alloy is formed as the lower magnetic pole 2 by a sputtering method. The film thickness was 1.5 μm. Next, the magnetic gap 3 is set to Al 2
O 3 is formed by a sputtering method. Insulating layer 5 of coil conductor 4
, A heat-resistant polyimide resin or a resist is used. The coil 4 is formed by sputtering using Cu. Next, the upper magnetic pole 6 has a saturation magnetic flux density of 1.3.
A T Co92Ta5Zr3 amorphous alloy film is formed by a sputtering method.
The film thickness was 2.0 μm. Furthermore, about 20 μm Al 2
It is made of a protective film 7 of O 3 . Patterning of the lower magnetic pole 2, the magnetic gap 3, the coil conductor 4, and the upper magnetic pole 6,
It is formed by an ion milling method.

【0012】Co92Ta5Zr3非晶質合金スパッタ膜は、スパ
ッタ直後の状態では異方性磁界が大きいので、磁場中熱
処理する必要がある。磁場中熱処理は、 Al23保護
膜を形成した後に施した。絶縁層5に耐熱性ポリイミド
系樹脂を用いた場合は、高温の磁場中熱処理ができるの
で、まず、磁極のトラック幅方向に平行に8kOe磁場
を印加して380℃1時間の磁場中処理を行った後、ト
ラック幅方向に垂直に8kOe磁場を印加して350℃
1時間の磁場中熱処理を施した。絶縁層5にレジストを
用いた場合は、レジストの耐熱温度よりも磁場中熱処理
温度を低くする必要がある。このときは、まず、磁極の
トラック幅方向に平行に8kOe磁場を印加して250
℃1時間の磁場中熱処理を行った後、トラック幅方向に
垂直に8kOe磁場を印加して230℃1時間の磁場中
熱処理を施した。比較として、ヘッド構造は同じで、下
部磁極2と上部磁極6ともCo92Ta5Zr3非晶質合金スパッ
タ膜を用いたヘッドも作製した。このヘッドを作製する
ときには、下部磁極を形成した後、異方性磁界を低減さ
せるための磁場中熱処理を施した。このとき、まず、膜
の容易軸方向に8kOe磁場を印加して380℃1時間
の磁場中熱処理を行った後、膜の困難軸方向に8kOe
磁場を印加して330℃1時間の磁場中熱処理を施し
た。この熱処理により、Co92Ta5Zr3非晶質合金スパッタ
膜の異方性磁界は、16Oeから5Oe程度まで低減で
き、透磁率は700から2500程度まで向上できた。
ところが、その後のプロセスを流れると、異方性磁界が
増大し、透磁率が低下した。具体的には、例えば、絶縁
層5に耐熱性ポリイミド樹脂を用いた場合には、約35
0℃1時間の熱履歴を経るため、異方性磁界は元の16O
e程度まで増大し、透磁率は700まで低下してしま
う。また、絶縁層5にレジストを用いた場合には、約2
75℃5時間の熱履歴を受けるため、異方性磁界は10
Oeまで増大し、透磁率は1200まで低下した。ところ
が、パーマロイ膜については、磁気特性の劣化はなっか
た。
Since the Co92Ta5Zr3 amorphous alloy sputtered film has a large anisotropic magnetic field immediately after sputtering, it is necessary to perform heat treatment in a magnetic field. The heat treatment in a magnetic field was performed after forming the Al 2 O 3 protective film. When a heat-resistant polyimide resin is used for the insulating layer 5, heat treatment can be performed in a high-temperature magnetic field. First, a magnetic field of 8 kOe is applied in parallel to the track width direction of the magnetic pole, and the magnetic field treatment is performed at 380 ° C. for 1 hour. After that, a magnetic field of 8 kOe was applied perpendicularly to the track width direction to
Heat treatment in a magnetic field for 1 hour was performed. When a resist is used for the insulating layer 5, the heat treatment temperature in a magnetic field needs to be lower than the heat resistant temperature of the resist. At this time, first, an 8 kOe magnetic field is applied in parallel to the track width direction of the magnetic pole to obtain
After performing the heat treatment in a magnetic field at 1 ° C. for 1 hour, a magnetic field of 8 kOe was applied perpendicularly to the track width direction to perform the heat treatment in a magnetic field at 230 ° C. for 1 hour. For comparison, heads having the same head structure and using a Co92Ta5Zr3 amorphous alloy sputtered film for both the lower magnetic pole 2 and the upper magnetic pole 6 were also manufactured. When manufacturing this head, after forming the lower magnetic pole, heat treatment in a magnetic field was performed to reduce the anisotropic magnetic field. At this time, first, an 8 kOe magnetic field is applied in the easy axis direction of the film to perform heat treatment in a magnetic field at 380 ° C. for 1 hour, and then 8 kOe in the hard axis direction of the film.
A magnetic field was applied to perform a heat treatment in a magnetic field at 330 ° C. for 1 hour. By this heat treatment, the anisotropic magnetic field of the Co92Ta5Zr3 amorphous alloy sputtered film could be reduced from 16 Oe to about 5 Oe, and the magnetic permeability could be improved from 700 to 2500.
However, when flowing through the subsequent process, the anisotropic magnetic field increased, and the magnetic permeability decreased. Specifically, for example, when a heat-resistant polyimide resin is used for the insulating layer 5, about 35
After passing through a heat history of 0 ° C for 1 hour, the anisotropic magnetic field
e, and the magnetic permeability decreases to 700. When a resist is used for the insulating layer 5, about 2
Due to the thermal history of 75 ° C for 5 hours, the anisotropic magnetic field is 10
Oe increased and permeability decreased to 1200. However, the magnetic properties of the permalloy film did not deteriorate.

【0013】以上のようにして作製した、薄膜ヘッドに
ついて保磁力400Oe、膜厚0.4μmのγ−Fe2O3
布媒体を用いて、スペーシング0.25μmで再生出
力、並びにオーバーライト特性を評価した。表1にそれ
ぞれのヘッドで得られた記録再生特性を示す。
Using the γ-Fe 2 O 3 coating medium having a coercive force of 400 Oe and a film thickness of 0.4 μm, the reproduction output and overwrite characteristics of the thin film head manufactured as described above are obtained at a spacing of 0.25 μm. evaluated. Table 1 shows the recording / reproducing characteristics obtained with each head.

【0014】[0014]

【表1】 [Table 1]

【0015】本発明による薄膜ヘッドは、従来のパーマ
ロイヘッド並みの再生出力が得られ、しかも、オーバー
ライト特性は、パーマロイヘッドに比較して約10dB
も向上している。Co92Ta5Zr3非晶質磁極のみを使ったヘ
ッドは、オーバーライト特性は、パーマロイヘッドより
も約12dBも向上していたが、再生出力は、パーマロ
イヘッドの約70%しか達しなかった。これらの結果
は、CoTaHf系非晶質合金、CoTaHfPd系非晶質合金等の飽
和磁束密度が大きい非晶質合金についても、同様の結果
を得た。また、FeSiRu合金とパーマロイ合金の多
層膜、あるいはFeC合金とパーマロイ合金との多層膜
のような熱的に準安定な結晶質材料についても同様の結
果が得られた。
The thin film head according to the present invention can provide a reproduction output comparable to that of a conventional permalloy head, and has an overwrite characteristic of about 10 dB as compared with a permalloy head.
Has also improved. In the head using only the Co 92 Ta 5 Zr 3 amorphous magnetic pole, the overwrite characteristics were improved by about 12 dB as compared with the permalloy head, but the reproduction output reached only about 70% of the permalloy head. The same results were obtained for amorphous alloys having a large saturation magnetic flux density, such as a CoTaHf-based amorphous alloy and a CoTaHfPd-based amorphous alloy. Similar results were obtained for thermally metastable crystalline materials such as a multilayer film of an FeSiRu alloy and a permalloy alloy, or a multilayer film of an FeC alloy and a permalloy alloy.

【0016】実施例2 図2に、本発明の他の実施例に於ける薄膜磁気ヘッドの
断面を示す。図2において、Al23−TiCセラミッ
ク、Al23−TiO2セラミックス、SiC,Znフ
ェライト、Ni−Znフェライト、Mn−Znフェライ
ト等からできた絶縁基板1上に、スパッタAl23膜1
2を形成する。次に、下部磁極18として、Ni−Fe
合金スパッタ法で形成する。膜厚は1μmとした。さら
に、下部磁極29として同様にNi−Fe合金をスパッ
タ法で形成する。膜厚は1.5μmとした。次に、磁気
ギャップ3をAl23をスパッタ法で形成する。コイル
導体4の絶縁層5としては、耐熱性ポリイミド系樹脂、
あるいは、レジストを用いる。また、コイル4は、Cu
を用いてスパッタ法で形成する。次に、上部磁極110
には、飽和磁束密度1.3TのCo92Ta5Zr3非晶質合金膜
をスパッタ法で形成する。膜厚は2.0μmとした。上
部磁極211は、パーマロイで形成する。膜厚は1.0
μmとした。最後に約20μmのAl23の保護膜7か
らできている。下部磁極8,9,磁気ギャップ3,コイ
ル導体4,上部磁極のパターンニング10,11は、イ
オンミリング法により形成する。Co92Ta5Zr3非晶質合金
スパッタ膜は、スパッタ直後の状態では異方性磁界が大
きいので、磁場中熱処理する必要があるのは、実施例1
と同じであり、実施例1と同様の磁場中熱処理を施し
た。実施例1と同じ記録再生特性の評価を行なうと、実
施例1と比較してオーバーライト特性はほぼ同じ、再生
出力は20%向上していた。再生出力が向上した原因
は、磁極の体積が増加したためと考えられる。
Embodiment 2 FIG. 2 shows a cross section of a thin-film magnetic head according to another embodiment of the present invention. In FIG. 2, a sputtered Al 2 O 3 is formed on an insulating substrate 1 made of Al 2 O 3 —TiC ceramic, Al 2 O 3 —TiO 2 ceramic, SiC, Zn ferrite, Ni—Zn ferrite, Mn—Zn ferrite, or the like. Membrane 1
Form 2 Next, Ni—Fe is used as the lower magnetic pole 18.
It is formed by an alloy sputtering method. The film thickness was 1 μm. Further, similarly, a Ni-Fe alloy is formed as the lower magnetic pole 29 by a sputtering method. The film thickness was 1.5 μm. Next, the magnetic gap 3 is formed by sputtering Al 2 O 3 . As the insulating layer 5 of the coil conductor 4, a heat-resistant polyimide resin,
Alternatively, a resist is used. The coil 4 is made of Cu
And formed by a sputtering method. Next, the upper magnetic pole 110
Then, a Co 92 Ta 5 Zr 3 amorphous alloy film having a saturation magnetic flux density of 1.3 T is formed by a sputtering method. The film thickness was 2.0 μm. The upper magnetic pole 211 is formed of permalloy. The film thickness is 1.0
μm. Finally, it is made of a protective film 7 of Al 2 O 3 of about 20 μm. The patterning 10, 11 of the lower magnetic poles 8, 9, the magnetic gap 3, the coil conductor 4, and the upper magnetic pole is formed by an ion milling method. Since the Co 92 Ta 5 Zr 3 amorphous alloy sputtered film has a large anisotropic magnetic field immediately after sputtering, it is necessary to perform heat treatment in a magnetic field in Example 1.
The same heat treatment in a magnetic field as in Example 1 was performed. When the same recording / reproduction characteristics were evaluated as in Example 1, the overwrite characteristics were almost the same and the reproduction output was improved by 20% as compared with Example 1. It is considered that the reason why the reproduction output was improved was that the volume of the magnetic pole was increased.

【0017】[0017]

【発明の効果】以上述べたように、本発明による上部磁
極のみに、非晶質膜,多層膜等の熱的に準安定な飽和磁
束密度1.3T 以上の高飽和磁束密度材料を用い、下部
磁極には熱安定性に優れたNi−Fe(パーマロイ)合
金膜を用いた薄膜磁気ヘッドは、薄膜磁気ヘッドプロセ
スの熱履歴によって、高飽和磁束密度材料の軟磁気特性
が劣化しないので、記録特性のみならず、再生特性も優
れた薄膜磁気ヘッドが得られる。
As described above, only the upper magnetic pole according to the present invention is made of a high-saturation magnetic flux density material having a saturation metastable magnetic flux density of 1.3 T or more such as an amorphous film or a multilayer film. A thin-film magnetic head using a Ni—Fe (permalloy) alloy film having excellent thermal stability for the lower magnetic pole does not deteriorate the soft magnetic characteristics of the high saturation magnetic flux density material due to the thermal history of the thin-film magnetic head process. A thin-film magnetic head having excellent reproduction characteristics as well as characteristics can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】高飽和磁束密度材料と、パーマロイを磁極に用
いた薄膜磁気ヘッドの断面図。
FIG. 1 is a cross-sectional view of a thin-film magnetic head using a high saturation magnetic flux density material and permalloy for a magnetic pole.

【図2】高飽和磁束密度材料と、パーマロイを磁極に用
いた薄膜磁気ヘッドの断面図。
FIG. 2 is a cross-sectional view of a thin film magnetic head using a high saturation magnetic flux density material and permalloy for a magnetic pole.

【図3】薄膜磁気ヘッドの斜視図。FIG. 3 is a perspective view of a thin-film magnetic head.

【図4】パーマロイのみを極性に用いた薄膜磁気ヘッド
の磁極部の断面図。
FIG. 4 is a sectional view of a magnetic pole portion of a thin-film magnetic head using only permalloy as a polarity.

【符号の説明】[Explanation of symbols]

1…基板、2…下部磁極、3…磁気ギャップ、4…コイ
ル、5…絶縁層、6…上部磁極、7…保護膜、8…下部
磁極1、9…下部磁極2、10…上部磁極1、11…上
部磁極2、12…Al23
DESCRIPTION OF SYMBOLS 1 ... Substrate, 2 ... Lower magnetic pole, 3 ... Magnetic gap, 4 ... Coil, 5 ... Insulating layer, 6 ... Upper magnetic pole, 7 ... Protective film, 8 ... Lower magnetic pole 1, 9 ... Lower magnetic pole 2, 10 ... Upper magnetic pole 1 , 11: Upper magnetic pole 2, 12: Al 2 O 3 .

───────────────────────────────────────────────────── フロントページの続き (72)発明者 森脇 英稔 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所 中央研究所内 (72)発明者 椎木 一夫 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所 中央研究所内 (56)参考文献 特開 昭60−35315(JP,A) 特開 昭64−42012(JP,A) 特開 昭58−68211(JP,A) 特開 平1−102712(JP,A) 特開 昭60−151814(JP,A) (58)調査した分野(Int.Cl.7,DB名) G11B 5/31 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Hidetoshi Moriwaki 1-280 Higashi Koikekubo, Kokubunji-shi, Tokyo Inside Hitachi, Ltd. Central Research Laboratory (72) Inventor Kazuo Shiiki 1-280 Higashi Koikekubo, Kokubunji-shi, Tokyo Hitachi, Ltd. Central Research Laboratory (56) References JP-A-60-35315 (JP, A) JP-A-64-42012 (JP, A) JP-A-58-68211 (JP, A) JP-A-1-102712 (JP, A A) JP-A-60-151814 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) G11B 5/31

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 磁性材料をスパッタリングした後パターニ
ングすることによりNi-Fe合金からなる下部磁極を形成
し、該下部磁極上に絶縁材料をスパッタリングした後パ
ターニングすることによりギャップ膜を形成し、該ギャ
ップ膜上に飽和磁束密度1.3T以上の磁性材料、 Ni-
Fe合金を順次スパッタリングした後パターニングするこ
とにより上部磁極を形成することを特徴とする薄膜磁気
ヘッドの製造方法。
A magnetic material is sputtered and then patterned to form a lower magnetic pole made of a Ni-Fe alloy, and an insulating material is sputtered on the lower magnetic pole and then patterned to form a gap film. Magnetic material with saturation magnetic flux density of 1.3T or more, Ni-
A method of manufacturing a thin-film magnetic head, comprising forming an upper magnetic pole by sequentially sputtering and patterning an Fe alloy.
【請求項2】 前記飽和磁束密度1.3T以上の磁性材料
が、CoTaZr, CoTaHf, CoTaHfPd系非晶質合金のうちいず
れか一種を含む材料であることを特徴とする請求項1記
載の薄膜磁気ヘッドの製造方法。
2. The thin film magnetic material according to claim 1, wherein said magnetic material having a saturation magnetic flux density of 1.3 T or more is a material containing any one of CoTaZr, CoTaHf, and CoTaHfPd-based amorphous alloy. Head manufacturing method.
JP19122899A 1999-07-06 1999-07-06 Thin film magnetic head Expired - Lifetime JP3204252B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19122899A JP3204252B2 (en) 1999-07-06 1999-07-06 Thin film magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19122899A JP3204252B2 (en) 1999-07-06 1999-07-06 Thin film magnetic head

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP1128818A Division JP2972226B2 (en) 1989-05-24 1989-05-24 Thin film magnetic head

Publications (2)

Publication Number Publication Date
JP2000036108A JP2000036108A (en) 2000-02-02
JP3204252B2 true JP3204252B2 (en) 2001-09-04

Family

ID=16271038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19122899A Expired - Lifetime JP3204252B2 (en) 1999-07-06 1999-07-06 Thin film magnetic head

Country Status (1)

Country Link
JP (1) JP3204252B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102071215B1 (en) 2017-10-05 2020-01-30 니혼 고꾸 덴시 고교 가부시끼가이샤 Connector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102071215B1 (en) 2017-10-05 2020-01-30 니혼 고꾸 덴시 고교 가부시끼가이샤 Connector

Also Published As

Publication number Publication date
JP2000036108A (en) 2000-02-02

Similar Documents

Publication Publication Date Title
US6221218B1 (en) Method of forming an inductive write head for magnetic data storage media
US6490131B2 (en) Thin film magnetic head with electroplated Ni-Fe alloy thin film having small average crystal grain size range
JP3090128B2 (en) Perpendicular magnetic recording media
US7532433B2 (en) Thin film perpendicular magnetic recording head, their fabrication process and magnetic disk drive using it
US5126907A (en) Thin film magnetic head having at least one magnetic core member made at least partly of a material having a high saturation magnetic flux density
JP4515690B2 (en) Perpendicular multilayer magnetic recording medium
JP3184465B2 (en) Thin film magnetic head and method of manufacturing the same
JP4759455B2 (en) Magnetic shield and manufacturing method thereof, thin film magnetic head
JP3204252B2 (en) Thin film magnetic head
JP2990885B2 (en) Thin-film magnetic head and magnetic disk drive using the same
JP2972226B2 (en) Thin film magnetic head
JPH01124108A (en) Thin-film magnetic head
JPH0329104A (en) Thin-film magnetic head
JP3232592B2 (en) Magnetic head
JP2702997B2 (en) Thin film magnetic head and magnetic disk device
JP3177852B2 (en) Thin film magnetic head
JPH06295418A (en) Combined magnetic head and magnetic recording and reproducing device
JPH05166130A (en) Thin film magnetic head
JPH07118061B2 (en) Magnetoresistive head
JPH0555036A (en) Soft magnetic thin film and its manufacture, soft magnetic multilayer film and its manufacture as well as magnetic head
JPH0529144A (en) Metal magnetic thin film and multilayer magnetic thin film, and magnetic head using said films
JP2001167405A (en) Thin-film magnetic head
JPH11175914A (en) Composite magnetic head and its manufacture
JPH10208935A (en) Magnetic recording medium
JPH05234751A (en) Soft magnetic alloy film and magnetic head having high saturation magnetic flux density for thin film magnetic head

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080629

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090629

Year of fee payment: 8

EXPY Cancellation because of completion of term