JP2702997B2 - Thin film magnetic head and magnetic disk device - Google Patents

Thin film magnetic head and magnetic disk device

Info

Publication number
JP2702997B2
JP2702997B2 JP63279276A JP27927688A JP2702997B2 JP 2702997 B2 JP2702997 B2 JP 2702997B2 JP 63279276 A JP63279276 A JP 63279276A JP 27927688 A JP27927688 A JP 27927688A JP 2702997 B2 JP2702997 B2 JP 2702997B2
Authority
JP
Japan
Prior art keywords
magnetic
film
thin
amorphous
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63279276A
Other languages
Japanese (ja)
Other versions
JPH01282713A (en
Inventor
雅章 佐野
尊雄 今川
浩一 西岡
真治 成重
雅信 華園
隆 大西
敏博 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP62282850A external-priority patent/JPH01124108A/en
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63279276A priority Critical patent/JP2702997B2/en
Publication of JPH01282713A publication Critical patent/JPH01282713A/en
Application granted granted Critical
Publication of JP2702997B2 publication Critical patent/JP2702997B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Magnetic Heads (AREA)
  • Thin Magnetic Films (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、薄膜磁気ヘツドに係り、特に高記録密度用
薄膜磁気ヘツド及び磁気デイスク装置に関し、これらに
適した飽和磁束密度の高い材料を開発、発明しその材料
を薄膜磁気ヘツドのコアとして用いることにより優れた
性能の高記録密度用薄膜磁気ヘツド及び磁気デイスク装
置を提供するものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin film magnetic head, and more particularly to a thin film magnetic head and a magnetic disk device for high recording density, and develops a material having a high saturation magnetic flux density suitable for these. The present invention provides a thin-film magnetic head for high recording density and a magnetic disk device having excellent performance by using the material as a core of the thin-film magnetic head.

〔従来の技術〕[Conventional technology]

従来の薄膜磁気ヘツド用磁気コア材としては、主とし
てめつき法、蒸着法、スパツタリング法等により堆積さ
れた飽和磁束密度が約1.0テスラ(T)のパーマロイ(8
0Ni−20Fe)膜が用いられているが、飽和磁束密度が約
1.0T程度のパーマロイでは高記録密度を図るには限界が
あり、従来の磁気コア材料では、大型電子計算機の大容
量・高記録密度化には十分対応することができず、さら
に1.3テスラ以上の飽和磁束密度の高い材料の出現が望
まれている。
As a conventional magnetic core material for a thin film magnetic head, a permalloy (8) having a saturation magnetic flux density of about 1.0 Tesla (T) deposited by a plating method, a vapor deposition method, a sputtering method, or the like is mainly used.
0Ni-20Fe) film, but the saturation magnetic flux density is about
With permalloy of about 1.0T, there is a limit in achieving high recording density, and conventional magnetic core materials cannot sufficiently cope with the large capacity and high recording density of large-scale computers. The emergence of a material having a high saturation magnetic flux density is desired.

又、薄膜磁気ヘツド用コア材料に要求される磁気特性
として優れた一軸異方性を有し、かつ高透磁率化のため
に異方性磁界が3〜5エルステツド(Oe)と低く、磁化
困難軸方向の保磁力が1Oe以下とすることが必要とされ
ている。さらに重要なことは、外部応力の影響を受けに
くくするために、磁歪定数をできる限り零に近づけるこ
とである。望ましくは、磁気コアの形状あるいは磁気コ
アの上にスパツタリングされるAl2O3膜の応力との関係
から磁歪定数は+0.5〜−2.0×10-6の範囲の値とするこ
とが必要とされている。
In addition, it has excellent uniaxial anisotropy as a magnetic property required for a core material for a thin film magnetic head, and has a low anisotropic magnetic field of 3 to 5 oersteds (Oe) for high magnetic permeability, making it difficult to magnetize. It is required that the coercive force in the axial direction be 1 Oe or less. More importantly, the magnetostriction constant should be as close to zero as possible to make it less susceptible to external stress. Desirably, the magnetostriction constant needs to be in the range of +0.5 to −2.0 × 10 −6 from the relationship with the shape of the magnetic core or the stress of the Al 2 O 3 film sputtered on the magnetic core. Have been.

これらの要求に対して、非晶質合金薄膜は結晶磁気異
方性を無視できることから非晶質合金薄膜を用いたもの
の開発が各種行なわれている。中でも、飽和磁束密度が
1.3T以上と高くすることが可能なCo−Zr系あるいはCo−
Hf系の金属−金属系の非晶質合金薄膜が見出されてい
る。しかしながら、これらはいずれも磁歪定数が2×10
-6と正でしかも大きな値を示すので、磁歪定数を低減さ
せる元素として知られているNb,Ta,Wなどを添加した3
次元の非晶質膜が提案されている。この代表例としては
Co−Zr−Ta非晶質膜を用いたもの、あるいは特開昭60−
21504号、及び特開昭60−22727号公報に記載されている
ように、Co−Hf−Ta非晶質膜を用いたものが知られてい
る。
In response to these requirements, various types of amorphous alloy thin films using an amorphous alloy thin film have been developed because the crystalline magnetic anisotropy can be ignored. Among them, the saturation magnetic flux density
Co-Zr or Co- can be as high as 1.3T or more
An Hf-based metal-metal-based amorphous alloy thin film has been found. However, each of them has a magnetostriction constant of 2 × 10
-6, which is a positive and large value, contains Nb, Ta, W, etc., which are known as elements that reduce the magnetostriction constant.
Two-dimensional amorphous films have been proposed. A typical example of this is
One using a Co-Zr-Ta amorphous film;
As described in Japanese Patent No. 21504 and Japanese Patent Application Laid-Open No. 60-22727, those using a Co-Hf-Ta amorphous film are known.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

しかしながら、これら従来のCo−Zr−Ta3元系あるい
はCo−Hf−Ta3元系の非晶質合金は、酸化しやすいZr,Ta
等を多量に含むために、Zr,Ta等が大気中の水分により
酸化して磁性を損なうという点で耐食性に難点があり、
薄膜磁気ヘツドとしての高信頼性に乏しいという問題点
があつた。
However, these conventional Co-Zr-Ta ternary or Co-Hf-Ta ternary amorphous alloys are susceptible to oxidation of Zr and Ta.
Since Zr, Ta, etc. are oxidized by moisture in the atmosphere to impair magnetism, there is a problem in corrosion resistance in that
There is a problem that high reliability as a thin film magnetic head is poor.

また、Co−Hf−Ta3元系は飽和磁束密度が高く、かつ
磁歪定数が零付近にまで低くなる組成領域が非常に狭い
ために薄膜磁気ヘツドの磁性膜を安定して成膜すること
が難しいという問題点があつた。
In addition, since the Co-Hf-Ta ternary system has a high saturation magnetic flux density and a very narrow composition region where the magnetostriction constant decreases to near zero, it is difficult to stably form a magnetic film of a thin-film magnetic head. There was a problem.

本発明の目的は、上記の問題点を解決するとともに、
磁性膜の耐食性が優れ、飽和磁束密度が高く、かつ磁歪
定数の低くなる組成範囲が広く安定して成膜することの
できる薄膜磁気ヘツド及び磁気ヘッド用非晶質磁性合金
薄膜を提供することにある。
The object of the present invention is to solve the above problems,
An object of the present invention is to provide a thin film magnetic head and an amorphous magnetic alloy thin film for a magnetic head which can be formed stably with a wide composition range in which the magnetic film has excellent corrosion resistance, high saturation magnetic flux density, and low magnetostriction constant. is there.

更に、本発明の目的は、当該薄膜磁気ヘツドを用い、
高記録密化に対することができる磁気デイスク装置を提
供することにある。
Further, an object of the present invention is to use the thin-film magnetic head,
An object of the present invention is to provide a magnetic disk device capable of achieving high recording density.

即ち、スパツタリング法によつて得られる非晶質磁性
薄膜について種々研究を重ねた結果、コバルトを主成分
として、それに非晶質化元素であるタンタル及びハウニ
ウムを添加する。その時、耐食性に難点のあるタンタル
の量を出来るだけ少なくする。その分耐食性に優れるハ
ウニウムを多目に添加し、それに耐食性に優れ、かつ磁
歪定数を低減するパラジウムを適当量添加する。この4
元系組成の非晶質磁性薄膜は、飽和磁束密度が高く、磁
歪低数が零付近を示し、かつ耐食性に優れた薄膜磁気ヘ
ツド用のコア材料として好適な材料である。
That is, as a result of various studies on an amorphous magnetic thin film obtained by a sputtering method, cobalt is used as a main component, and tantalum and haunium, which are amorphous elements, are added thereto. At that time, the amount of tantalum having difficulty in corrosion resistance is reduced as much as possible. Haunium, which is excellent in corrosion resistance, is added to that much, and palladium, which is excellent in corrosion resistance and reduces the magnetostriction constant, is added in an appropriate amount. This 4
The amorphous magnetic thin film having the original composition has a high saturation magnetic flux density, shows a low magnetostriction near zero, and is a material suitable as a core material for a thin film magnetic head having excellent corrosion resistance.

〔課題を解決するための手段〕[Means for solving the problem]

本発明による薄膜磁気ヘツドは、非磁性の基板の上下
に相対して配置された一対の磁性膜を有し、前記磁性膜
が、コバルトを主成分とし、原子比でハフミュウム3.5
〜7%,タンタル1〜4%及びパラジュウム0.2〜6%
を添加成分とする4元系非晶質合金薄膜からつくられ
る。該磁性膜は飽和磁束密度が高く、磁歪定数が零付近
でかつ耐食性に優れた材料である。
A thin-film magnetic head according to the present invention has a pair of magnetic films disposed above and below a non-magnetic substrate, wherein the magnetic film contains cobalt as a main component and has a hafnium 3.5 atomic ratio.
-7%, Tantalum 1-4% and Palladium 0.2-6%
From an quaternary amorphous alloy thin film containing The magnetic film is a material having a high saturation magnetic flux density, a magnetostriction constant near zero, and excellent corrosion resistance.

本発明は、コバルトを主成分とし、原子比で、ハフニ
ュウム3.5〜7%,タンタル1〜4%及びパラジュウム
0.2〜6%を含むことを特徴とする磁気ヘッド用非晶質
磁性合金薄膜にある。
The present invention comprises cobalt as a main component, and has an atomic ratio of hafnium of 3.5 to 7%, tantalum of 1 to 4%, and palladium.
An amorphous magnetic alloy thin film for a magnetic head, comprising 0.2 to 6%.

本発明は、情報を記録する磁気ディスクと、該磁気デ
ィスクに対して情報の書き込み及び読み出しを行う薄膜
磁気ヘッドと、前記磁気ディスクを回転させる手段と、
前記薄膜磁気ヘッドと、前記磁気ディスクを回転させる
手段と、前記薄膜磁気ヘッドの位置決め手段とを具備す
る磁気ディスク装置において、前記薄膜磁気ヘッドは、
下部磁気コアと、下部磁気コア上に形成され、一端が下
部磁気コアの一端に接し、他端が下部磁気コアの他端と
磁気ギャップを介して対向する上部磁気コアと、前記両
磁気コア間に磁気回路と交差するように巻回された導体
コイルと、上部磁気コアと下部磁気コアとの間に介在し
た絶縁層とを具備し、前記上部磁気コアと前記下部磁気
コアの少なくとも1つが、コバルトを主成分とし、原子
比でハフニュウム3.5〜7%,タンタル1〜4%及びパ
ラジュウム0.2〜6%を含む非晶質磁性合金薄膜からな
ることを特徴とする。
The present invention provides a magnetic disk for recording information, a thin-film magnetic head for writing and reading information to and from the magnetic disk, a unit for rotating the magnetic disk,
In the magnetic disk device including the thin-film magnetic head, means for rotating the magnetic disk, and means for positioning the thin-film magnetic head, the thin-film magnetic head includes:
A lower magnetic core, an upper magnetic core formed on the lower magnetic core, one end of which contacts one end of the lower magnetic core and the other end of which faces the other end of the lower magnetic core via a magnetic gap; A conductive coil wound so as to intersect with the magnetic circuit, and an insulating layer interposed between the upper magnetic core and the lower magnetic core, wherein at least one of the upper magnetic core and the lower magnetic core includes: It is characterized by being composed of an amorphous magnetic alloy thin film containing cobalt as a main component and containing 3.5 to 7% of hafnium, 1 to 4% of tantalum and 0.2 to 6% of palladium in atomic ratio.

本発明の比較例として、従来技術であるCo−Hf−Ta3
元系非晶質合金薄膜の組成と飽和磁束密度Bsおよび磁歪
定数λとの関係を第2図に示す。飽和磁束密度が1.3テ
スラ以上と高く、かつ磁歪定数が+1.0×10-6〜2.0×10
-6好ましくは+0.5×10-6〜−2.0×10-6と零付近から負
の側になる薄膜磁気ヘツドの磁性膜として適した組成領
域は、第2図の中のa,b,cをつなぐ太線で囲まれた範囲
であり、極めて狭いので安定な磁性膜を作製することが
難しい。
As a comparative example of the present invention, Co-Hf-Ta3
FIG. 2 shows the relationship between the composition of the binary amorphous alloy thin film and the saturation magnetic flux density Bs and the magnetostriction constant λ. High saturation magnetic flux density of 1.3 Tesla or more and magnetostriction constant of + 1.0 × 10 -6 to 2.0 × 10
-6, preferably + 0.5 × 10 −6 to −2.0 × 10 −6, and the composition region suitable for the magnetic film of the thin-film magnetic head from near zero to the negative side is a, b, b in FIG. This is a range surrounded by a thick line connecting c and is extremely narrow, so that it is difficult to produce a stable magnetic film.

そこで、磁歪定数を小さくし、飽和磁束密度を下げる
とともに大気中の水分で酸化しやすいという特性を有す
るTaの添加量を減らし、その減らした分を、比較的飽和
磁束密度の低減が小さく、磁歪定数は正の大きな値とな
るが安定な非晶質を形成し、耐食性のよい等の特性を有
するハフニウムを増して非晶質化を安定させ、飽和磁束
密度を比較的高く維持したまま磁歪定数を+1.0〜+2.0
×10-6の正の大きな値の組成としておく、次いで、その
組成に、磁歪定数を小さくして酸化しにくくする特性を
有するPdを添加して、飽和磁束密度の低減を少ない値に
保ちつつ、磁歪定数を負の値とする。例えば、第2図中
のAの組成すなわち、93at%Co,2at%Ta,5at%Hfの組成
の膜(飽和磁束密度:1.4テスラ、磁歪定数を2×10-6
にPdを添加した場合の飽和磁束密度および磁歪定数の変
化を第3A図,第3B図に示す。Pdを2.2〜4at%添加するこ
とにより飽和磁束密度1.3テスラ以上で磁歪定数は+0.5
×10-6〜−0.5×10-6とほぼ零に近い値にすることがで
きる。また、第2図中のBの組成すなわち、95at%Co,1
at%Ta,4at%Hfの組成の膜(飽和磁束密度:1.45テス
ラ、磁歪定数+0.8×10-6)にPdを添加した場合の飽和
磁束密度および磁歪定数の変化を第3A図、第3B図に併記
した。Pd添加量0.2at%〜4.5at%の範囲で磁歪定数は+
0.5×10-6〜−2×10-6と広範囲に適正値を示す上に、
飽和磁束密度は1.3テスラ以上と高い値を示すことがわ
かる。
Therefore, reducing the magnetostriction constant, lowering the saturation magnetic flux density, and reducing the amount of Ta that has the property of being easily oxidized by atmospheric moisture, the reduced amount is used to reduce the saturation magnetic flux density relatively small, The constant is a large positive value, but a stable amorphous is formed, hafnium having characteristics such as good corrosion resistance is increased, amorphousization is stabilized, and the magnetostriction constant is maintained while maintaining a relatively high saturation magnetic flux density. +1.0 to +2.0
× 10 -6 as a composition with a large positive value, and then add Pd, which has the property of reducing the magnetostriction constant and making it difficult to oxidize, to keep the saturation magnetic flux density at a low value , And the magnetostriction constant is a negative value. For example, the composition of A in FIG. 2, that is, a film having a composition of 93 at% Co, 2 at% Ta, and 5 at% Hf (saturation magnetic flux density: 1.4 Tesla, magnetostriction constant is 2 × 10 −6 )
3A and 3B show changes in the saturation magnetic flux density and the magnetostriction constant when Pd is added to the steel. By adding 2.2 to 4 at% of Pd, the magnetostriction constant is +0.5 at a saturation magnetic flux density of 1.3 Tesla or more.
It can be set to a value close to zero, such as × 10 −6 to −0.5 × 10 −6 . The composition of B in FIG. 2, that is, 95 at% Co, 1
Fig. 3A shows the changes in the saturation magnetic flux density and magnetostriction constant when Pd was added to a film with a composition of at% Ta and 4at% Hf (saturation magnetic flux density: 1.45 Tesla, magnetostriction constant + 0.8 x 10-6 ). Also shown in Fig. 3B. The magnetostriction constant is + within the range of 0.2 at% to 4.5 at% of Pd addition.
In addition to showing appropriate values in a wide range of 0.5 × 10 -6 to-2 × 10 -6 ,
It can be seen that the saturation magnetic flux density shows a high value of 1.3 Tesla or more.

また、飽和磁束密度をあまり下げない範囲でHf及びTa
の含有量を多くし、非晶質として安定な組成について検
討した。即ち、第2図中のの組成、すなわち、90.5at
%Co,3.5at%Ta,6.0at%Hfの組成の膜(飽和磁束密度1.
3テスラ、磁歪定数+2×10-6)にPdを添加した場合の
飽和磁束密度および磁歪定数の変化を第3A図,第3B図に
示す。Pd添加量2at%〜5at%の範囲で磁歪定数は+1.0
×10-6〜−1.0×10-6と広範囲に適正値を示す上に、飽
和磁束密度は1.2テスラ以上と高い値を示すことがわか
る。
Also, Hf and Ta should be set within a range where the saturation magnetic flux density is not significantly reduced.
The content of was increased, and a composition stable as amorphous was studied. That is, the composition in FIG.
% Co, 3.5at% Ta, 6.0at% Hf film (saturation magnetic flux density 1.
FIGS. 3A and 3B show changes in saturation magnetic flux density and magnetostriction constant when Pd is added to 3 Tesla and magnetostriction constant + 2 × 10 −6 ). The magnetostriction constant is +1.0 when the Pd content is in the range of 2 at% to 5 at%.
It can be seen that, in addition to showing an appropriate value over a wide range of × 10 -6 to -1.0 × 10 -6 , the saturation magnetic flux density shows a high value of 1.2 Tesla or more.

しかしながら、Pd添加量に対する磁歪定数の変化は第
2図中のの組成の場合と全く同じ傾向を示すが、出発
点即ちPd含有量零の組成(第2図中)においてに比
べTa及びHf共に多いために飽和磁束密度がの場合に比
べ低くなるきらいがある。
However, the change of the magnetostriction constant with respect to the amount of added Pd shows exactly the same tendency as in the case of the composition shown in FIG. 2, but the starting point, that is, the Ta and Hf are both smaller than those of the composition having zero Pd content (shown in FIG. 2). Because of the large number, the saturation magnetic flux density tends to be lower than that in the case.

従つて、飽和磁束密度を高い値に保つためにはTa,Hf,
Pd等の含有量は出来るだけ少ない方が好ましい。即ち、
好ましくはTa:1〜3at%,Hf:3.5〜5.5at%,Pd:0.2〜3.0a
tがよい。
Therefore, to keep the saturation magnetic flux density high, Ta, Hf,
The content of Pd or the like is preferably as small as possible. That is,
Preferably, Ta: 1 to 3 at%, Hf: 3.5 to 5.5 at%, Pd: 0.2 to 3.0 a
t is good.

また薄膜磁気ヘツドは第1の層と第2の層の少なくと
も1つが非磁性材料からなる層を介した多層構造を有す
ることが好ましい。例えば、非磁性材料にはCr,Ta等又
はAl2O3等絶縁材が考えられる。
The thin-film magnetic head preferably has a multilayer structure in which at least one of the first layer and the second layer includes a layer made of a nonmagnetic material. For example, the non-magnetic material may be an insulating material such as Cr, Ta, or Al 2 O 3 .

そして、磁気デイスク装置は、第5図に示すように情
報を記録する磁気デイスク、と磁気デイスクに対して情
報の書き込み及び読み出しを行う薄膜磁気ヘツドと、磁
気デイスクを回転させる手段と、薄膜磁気ヘツドの位置
を決める手段を具備する。
As shown in FIG. 5, the magnetic disk device includes a magnetic disk for recording information, a thin-film magnetic head for writing and reading information to and from the magnetic disk, a means for rotating the magnetic disk, and a thin-film magnetic head. Means for determining the position of

薄膜磁気ヘツドは、下部磁気コアと、下部磁気コア上
に形成され、一端が下部磁気コアの一端に接し、他端が
下部磁気コアの他端と磁気ギヤツプを介して対向する上
部磁気コアと、両磁気コア間に磁気回路と交差するよう
に巻回された導体コイルと、上部磁気コアと下部磁気コ
アとの間に介在した絶縁層とを具備する。
The thin-film magnetic head includes a lower magnetic core, an upper magnetic core formed on the lower magnetic core, one end of which is in contact with one end of the lower magnetic core, and the other end of which faces the other end of the lower magnetic core via a magnetic gap. A conductive coil wound between the two magnetic cores so as to cross the magnetic circuit, and an insulating layer interposed between the upper magnetic core and the lower magnetic core.

上部磁気コアと下部磁気コアとの少なくとも1つはコ
バルトを主成分とし、前述のハフニウム、タンタル及び
パラジユウムを含む4元系の非晶質磁性合金からなるこ
とにより本発明は達成される。
The present invention is attained when at least one of the upper magnetic core and the lower magnetic core is composed of a quaternary amorphous magnetic alloy containing cobalt as a main component and the above-mentioned hafnium, tantalum and palladium.

〔作用〕[Action]

コバルトを主成分とする非晶質合金Co−Hf−Ta−Pd4
元系合金において、コバルト(Co)は強磁性材であつ
て、高い飽和磁束密度を有し、ハフニウム(Hf)は非晶
質を形成しやすいが、磁歪定数を大きくし、飽和磁束密
度を下げる特性があり、タンタル(Ta)は磁歪定数を小
さくするが飽和磁束密度を下げ、酸化しやすいという特
性があり、パラジウム(Pd)は磁歪定数を小さくし、酸
化しにくいという特性がある。
Co-Hf-Ta-Pd4 amorphous alloy containing cobalt as a main component
In the base alloy, cobalt (Co) is a ferromagnetic material and has a high saturation magnetic flux density. Hafnium (Hf) easily forms an amorphous phase, but increases the magnetostriction constant and lowers the saturation magnetic flux density. Tantalum (Ta) has a characteristic that it reduces the magnetostriction constant but lowers the saturation magnetic flux density and is easily oxidized. Palladium (Pd) has a characteristic that it has a small magnetostriction constant and is hardly oxidized.

薄膜磁気ヘツドの両磁性膜の材質をCo−Hf−Ta−Pd4
元系非晶質合金とすることは、磁性膜の飽和磁束密度を
高くでき、磁歪定数を低くできるため組成範囲を広くす
ることができ、さらに耐酸化性を高めることができる。
The material of both magnetic films of the thin film magnetic head is Co-Hf-Ta-Pd4
The use of the original amorphous alloy can increase the saturation magnetic flux density of the magnetic film and reduce the magnetostriction constant, so that the composition range can be widened and the oxidation resistance can be further improved.

そこで、それ等の各元素の組成割合が重要であり、特
に非晶質磁性薄膜においてはHf量とTa量が重要であつ
て、これらの2つの元素の量を適正化することによりPd
の効果を有効にすることができる。
Therefore, the composition ratio of each of these elements is important, and particularly in an amorphous magnetic thin film, the amounts of Hf and Ta are important, and by optimizing the amounts of these two elements, Pd
Can be effective.

即ち、Co−Hf−Ta3元系において、Pdの効果は1at%当
り飽和磁束密度を0.025T低下させ、磁歪定数を0.6×10
-6低下させることを実験結果により見出した。従つて、
これらの実験結果をふまえてHf,Taの量を決定すること
が重要である。
That is, in the Co-Hf-Ta ternary system, the effect of Pd is to reduce the saturation magnetic flux density by 0.025 T per 1 at% and to reduce the magnetostriction constant by 0.6 × 10
-6 was found to be reduced by the experimental results. Therefore,
It is important to determine the amounts of Hf and Ta based on these experimental results.

Hfに関しては3.5at%以下にすると結晶化し、優れた
軟磁性を示さず、7at%以上になると非晶質化は安定と
なるが、飽和磁束密度の低下が大きくなり好ましくな
い。Taに関しては、この量が多いと耐食性を劣化させる
ので、できるだけ少ないことが望ましく、Hfと相まつて
1at%以下にすると結晶化の恐れがあること、磁歪定数
の初期値が正に大きくなりすぎること、4at%以上にな
ると耐食性が悪くすることと飽和磁束密度の低下が大き
くなることのため好ましくない。従つて、Hfを3.5〜7at
%、Taを1〜4at%、残部をCoとし、飽和磁束密度1.35
〜1.45Tと高い値に保ち、磁歪定数は最大で+3〜10-6
に抑える。これにPdをHfとTaの量との兼ね合いで添加す
ることにより飽和磁束密度を1.2T以上と好ましくは1.3T
以上で、かつ磁歪定数を零付近若しくは負の状態になる
ように、0.2〜6at%の範囲で添加量を調整する。
With respect to Hf, if it is 3.5 at% or less, it crystallizes and does not show excellent soft magnetism, and if it is 7 at% or more, the amorphization becomes stable, but the saturation magnetic flux density is greatly reduced, which is not preferable. As for Ta, if this amount is large, the corrosion resistance is degraded. Therefore, it is desirable that Ta be as small as possible.
If it is 1 at% or less, there is a possibility of crystallization, the initial value of the magnetostriction constant is too large, and if it is 4 at% or more, the corrosion resistance is deteriorated and the saturation magnetic flux density is undesirably increased. . Therefore, Hf is 3.5 to 7 at.
%, Ta is 1 to 4 at%, the balance is Co, and the saturation magnetic flux density is 1.35.
Keep high value up to 1.45T, magnetostriction constant up to + 3 ~ 10 -6
To keep. By adding Pd to this in consideration of the amounts of Hf and Ta, the saturation magnetic flux density is increased to 1.2 T or more, preferably 1.3 T or more.
As described above, the addition amount is adjusted in the range of 0.2 to 6 at% so that the magnetostriction constant is close to zero or negative.

〔実施例〕〔Example〕

以下に、本実施例の詳細について説明する。 Hereinafter, details of the present embodiment will be described.

第1実施例 第1A図,第1B図において、表面を十分に研摩し洗浄し
た厚み4〜5mmのセラミツク基板1の上に下部磁性膜2a
として膜厚1〜2μmのCo−Hf−Ta−Pd4元系非晶質合
金膜をR.Fスパツタリング法により積層する。このと
き、磁性膜2の組成は第2図中に示したAの組成(93at
%Co,2at%Ta,5at%Hf)のターゲツトを用い、ターゲツ
ト上に厚さ1mm,4mm角のPdチツプを20枚載せてスパツタ
リングした。高周波出力は300W、スパツタリングガスは
アルゴンガスとし、基板1は水冷とした。別途ダミー基
板上にスパツタリングした膜の組成は、91.2at%Co,1.7
at%Ta,5.1at%Hf,2.0at%Pdであり、飽和磁束密度は1.
3テスラ、磁歪定数−0.5×10-6であつた。
First Embodiment In FIGS. 1A and 1B, a lower magnetic film 2a is placed on a ceramic substrate 1 having a thickness of 4 to 5 mm whose surface has been sufficiently polished and cleaned.
For example, a Co-Hf-Ta-Pd quaternary amorphous alloy film having a film thickness of 1 to 2 μm is laminated by an RF sputtering method. At this time, the composition of the magnetic film 2 is the composition of A shown in FIG.
% Co, 2 at% Ta, 5 at% Hf), and 20 Pd chips of 1 mm and 4 mm square were mounted on the target and sputtered. The high-frequency output was 300 W, the sputtering gas was argon gas, and the substrate 1 was water-cooled. The composition of the film sputtered separately on the dummy substrate is 91.2 at% Co, 1.7
at% Ta, 5.1at% Hf, 2.0at% Pd and saturation magnetic flux density 1.
It was 3 Tesla and the magnetostriction constant was -0.5 × 10 -6 .

スパツタリング直後の薄膜の異方性磁界は大きく、し
たがつて透磁率が小さい。
The anisotropic magnetic field of the thin film immediately after sputtering is large, and therefore the magnetic permeability is small.

この異方性磁界を小さくするには回転磁界中で熱処理
することが有効であることが知られている。
It is known that heat treatment in a rotating magnetic field is effective in reducing the anisotropic magnetic field.

そこで、下部磁性膜2aをスパツタリングした後の基板
を350℃で1時間回転磁界中で熱処理を施し、その後イ
オンミリング法により所定の磁気コア6の形状にパター
ニングされた。
Therefore, the substrate after the lower magnetic film 2a was sputtered was subjected to a heat treatment at 350 ° C. for 1 hour in a rotating magnetic field, and then patterned into a predetermined shape of the magnetic core 6 by an ion milling method.

次いで、薄膜技術によりアルミナ等の厚み0.2〜1μ
mのギヤツプ非磁性膜3、厚み10μmの絶縁層4、導体
コイル5を堆積するとともにイオンミリング法あるいは
ウエツトエツチング法等により所定の形状に仕上げる。
その上に、下部磁性膜2aと同様に上部磁性膜2bをスパツ
タリングした後、同様に300℃、1時間回転磁界中の熱
処理を施し、次いでイオンミリング法により所定の磁気
コア6の形状にパターニングする。その後、基板全面に
アルミナ等の絶縁膜をスパツタリング法により堆積し、
保護膜7とする。次いで、基板1より切り出し、磁気ヘ
ツド先端側を所定の寸法まで研摩し、磁気ギヤツプgを
構成し、1個の薄膜磁気ヘツド10とする。
Then, use a thin film technique to make the thickness of alumina
A gap non-magnetic film 3, an insulating layer 4 having a thickness of 10 μm, and a conductor coil 5 are deposited and finished in a predetermined shape by an ion milling method or a wet etching method.
After the upper magnetic film 2b is sputtered thereon in the same manner as the lower magnetic film 2a, heat treatment is performed in a rotating magnetic field at 300 ° C. for 1 hour, and then patterned into a predetermined shape of the magnetic core 6 by ion milling. . After that, an insulating film such as alumina is deposited on the entire surface of the substrate by sputtering,
The protective film 7 is used. Next, the magnetic head g is cut out from the substrate 1 and the front end side of the magnetic head is polished to a predetermined size to form a magnetic gap g.

第1A図に切り出した薄膜磁気ヘツドの斜視図を、第1B
図にその薄膜磁気ヘツドの磁気コア部の断面図を示す。
このようにして作製した薄膜磁気ヘツドの電気特性を、
従来のパーマロイを用いた薄膜磁気ヘツドの電気特性と
比較した。その結果、パーマロイを用いた薄膜磁気ヘツ
ドに比べ、オーバライト特性、すなわち20KHzの高周波
磁界により記録媒体上の記録をどれくらい消せるかを示
す特性は約4〜5dB向上し、記録磁界強度は約30%向上
し、高記録密度用高保持力媒体にも十分適用可能であ
る。
FIG. 1A is a perspective view of the thin-film magnetic head cut out in FIG. 1A.
The figure shows a sectional view of the magnetic core portion of the thin-film magnetic head.
The electrical characteristics of the thin-film magnetic head thus manufactured are
The electrical characteristics of a thin-film magnetic head using conventional permalloy were compared. As a result, the overwrite characteristic, that is, the characteristic indicating how much the recording on the recording medium can be erased by a high-frequency magnetic field of 20 KHz, is improved by about 4 to 5 dB, and the recording magnetic field intensity is increased by about 30% as compared with the thin film magnetic head using permalloy. It is improved and is sufficiently applicable to a medium having a high coercive force for a high recording density.

第2実施例 第1実施例と同様にして、第1A図,第1B図に示すよう
にセラミツク基板1上に1μm厚さのCo−Hf−Ta−Pd4
元系非晶質合金膜をR.Fスパツタリング法により堆積し
た。このとき、磁性膜2の組成は第3図中に示したBの
組成(95at%Co,1.0at%Ta,4.0at%Hf)のターゲツトを
用い、ターゲツト上に厚さ1mm,4mm角のパラジウムチツ
プを8枚載せてスパツタリングした。スパツタリング条
件は第1実施例と同様である。別途ダミー基板上にスパ
ツタリングした膜は組成は、94at%Co,1.0at%Ta,4.0at
%Hf、1.0at%Pdであり、飽和磁束密度は1.40テスラ、
磁歪定数は−0.1×10-6であつた。スパツタリング後、
第1実施例と同様の工程で薄膜磁気ヘツドを作製し、そ
の電気特性を測定した。その結果は、第1実施例に比べ
若干オーバライト特性は優れていることを確認した。
Second Embodiment In the same manner as in the first embodiment, as shown in FIGS. 1A and 1B, a 1 μm-thick Co-Hf-Ta-Pd4
Original amorphous alloy films were deposited by RF sputtering. At this time, the target of the composition of B (95 at% Co, 1.0 at% Ta, 4.0 at% Hf) shown in FIG. 3 was used as the composition of the magnetic film 2, and 1 mm thick and 4 mm square palladium was formed on the target. Eight chips were placed and sputtered. Sputtering conditions are the same as in the first embodiment. The composition of the film sputtered separately on the dummy substrate is 94 at% Co, 1.0 at% Ta, 4.0 at
% Hf, 1.0at% Pd, saturation magnetic flux density is 1.40 Tesla,
The magnetostriction constant was −0.1 × 10 −6 . After spaghetti,
A thin-film magnetic head was manufactured in the same process as in the first embodiment, and its electrical characteristics were measured. As a result, it was confirmed that the overwrite characteristics were slightly superior to those of the first example.

第3実施例 第1実施例と同様にして第1A図,第1B図に示すように
セラミツクス基板1上に1μm厚さのCo−Hf−Ta−Pd4
元系非晶質合金膜をR.Fスパツタリング法により堆積し
た。この時、磁性膜2の組成は第2図中に示したの組
成(90.5at%Co,3.5at%Ta,6.0at%Hf)のターゲツトを
用い、ターゲツト上に厚さ1mm,4mm角のパラジウムチツ
プを35枚載せてスパツタリングした。スパツタリング条
件は第1実施例と同様である。別途ダミー基板上にスパ
ツタリングした膜の組成は87.3at%Co,3.4at%Ta、5.8a
t%Hf、3.5at%Pdであり、第1及び第2実施例に比べ膜
の組成はTa,Hf,Pd共に多い値を示した。従つて、飽和磁
束密度はそれらに比べ若干低い値を示し1.24テスラであ
つた。磁歪定数は第1及び第2実施例と同様に小さく、
−0.1×10-6であつた。
Third Embodiment In the same manner as in the first embodiment, as shown in FIGS. 1A and 1B, a 1 μm thick Co—Hf—Ta—Pd4 layer is formed on a ceramics substrate 1.
Original amorphous alloy films were deposited by RF sputtering. At this time, the composition of the magnetic film 2 was a target having the composition shown in FIG. 2 (90.5 at% Co, 3.5 at% Ta, 6.0 at% Hf), and a 1 mm thick, 4 mm square palladium was formed on the target. We sputtered 35 chips. Sputtering conditions are the same as in the first embodiment. The composition of the film sputtered separately on the dummy substrate is 87.3 at% Co, 3.4 at% Ta, 5.8 a
t% Hf and 3.5at% Pd, and the composition of the film showed larger values for both Ta, Hf and Pd than those of the first and second examples. Therefore, the saturation magnetic flux density was slightly lower than those, and was 1.24 Tesla. The magnetostriction constant is small as in the first and second embodiments,
It was −0.1 × 10 −6 .

スパツタリング後、第1実施例と同様の工程で薄膜磁
気ヘツドを作製し、その電気特性を測定した。その結果
は、第1実施例に比べ若干低いか、ほぼ同等のオーバラ
イト特性を示した。
After sputtering, a thin-film magnetic head was manufactured in the same process as in the first embodiment, and its electrical characteristics were measured. As a result, the overwrite characteristics were slightly lower or almost equal to those of the first embodiment.

しかしながら、Ta,Hf,Pd量を多くすると非晶質化は安
定となるが、飽和磁束密度は低減する方向にあるため薄
膜磁気ヘツドとしてのオーバライト特性は低減する方向
にある。従つて、高飽和磁束密度の効果を有効に生かす
ためにはTa,Hf,Pdの含有量は出来るだけ低い方が好まし
いが、あまり低すぎると後工程の熱処理あるいはプロセ
ス中の熱履歴等により結晶化する恐れがある。したがつ
て、Ta,Hf,Pdの含有量は好ましくはTa:1〜3at%、Hf:3.
5〜5.5at%、Pd:0.2〜3.0at%に規制されたものが優れ
た軟磁気特性を示すと共に高い飽和磁束密度を示す。
However, when the amount of Ta, Hf, and Pd is increased, the amorphization becomes stable, but the saturation magnetic flux density tends to decrease, so that the overwrite characteristics as a thin film magnetic head tends to decrease. Therefore, in order to effectively utilize the effect of high saturation magnetic flux density, it is preferable that the contents of Ta, Hf, and Pd are as low as possible. There is a risk of becoming. Therefore, the contents of Ta, Hf, and Pd are preferably Ta: 1 to 3 at%, and Hf: 3.
Those regulated to 5 to 5.5 at% and Pd: 0.2 to 3.0 at% show excellent soft magnetic properties and high saturation magnetic flux density.

以上のことからCo−Hf−Ta3元系で狭い組成領域でし
か達成できなかつたものが、Co−Hf−Ta−Pd4元系とす
ることにより、広い組成範囲で所望の磁気特性が得られ
ることがわかつた。
From the above, the Co-Hf-Ta-Pd quaternary system, which can be achieved only in a narrow composition region, can obtain desired magnetic characteristics in a wide composition range by using the Co-Hf-Ta-Pd quaternary system. I'm sorry.

その上、酸化しやすいTaを少なくしHfを多くして酸化
しにくいPdを添加することにより、耐食性は第4図の曲
線Iに示すようにCo−Hf−Ta3元系(曲線II)に比べ著
しく向上し、パーマロイと同等レベルに達した。
In addition, by adding Ta, which is less oxidizable, and Pd, which is less oxidizable by increasing Hf, the corrosion resistance is higher than that of the Co-Hf-Ta ternary system (curve II) as shown by the curve I in FIG. It improved remarkably and reached the same level as Permalloy.

以上の結果から、Coを主成分とするCo−Hf−Ta−Pd4
元系非晶質合金において、Hfを3.5〜7at%好ましくは3.
5〜5.5at%、Taを1〜4at%好ましくは1〜3at%,Pdを
0.2〜6at%好ましくは0.2〜3at%含むことにより、耐食
性が優れるとともに、飽和磁束密度が高く、かつ磁歪定
数が零付近となる組成範囲の広い磁性膜が得られること
が確認できた。
From the above results, Co-Hf-Ta-Pd4 containing Co as a main component
In the original amorphous alloy, Hf is 3.5 to 7 at%, preferably 3.
5 to 5.5 at%, Ta is 1 to 4 at%, preferably 1 to 3 at%, Pd
By containing 0.2 to 6 at%, preferably 0.2 to 3 at%, it was confirmed that a magnetic film having excellent corrosion resistance, high saturation magnetic flux density, and a wide composition range in which the magnetostriction constant is near zero can be obtained.

第5図は本発明の薄膜磁気ヘツドを用いた磁気デイス
ク装置の概略図である。
FIG. 5 is a schematic diagram of a magnetic disk device using the thin-film magnetic head of the present invention.

磁気デイスク装置は、第1図に示す符号1〜8の構成
要素及びボイスコイルモータ制御回路を有する。
The magnetic disk device has components indicated by reference numerals 1 to 8 shown in FIG. 1 and a voice coil motor control circuit.

符号1はベース、符号2はスピンドルである。 Reference numeral 1 denotes a base, and reference numeral 2 denotes a spindle.

一つはスピンドルに図のように複数枚の円板状の磁気
デイスク4が取り付けられる。
One is that a plurality of disk-shaped magnetic disks 4 are attached to the spindle as shown in the figure.

第1図では、1つのスピンドルに五枚の磁気デイスク
を設けた例が示されているが、五枚に限るものではな
い。
FIG. 1 shows an example in which five magnetic disks are provided on one spindle, but the number is not limited to five.

また、このように一つのスピンドルに複数枚の磁気デ
イスクを設けたものを複数個設置してもよい。
Further, a plurality of magnetic disks provided with a plurality of magnetic disks on one spindle may be provided.

符号3はスピンドル2を駆動し、磁気デイスクを回転
するためのモータである。
Reference numeral 3 denotes a motor for driving the spindle 2 and rotating the magnetic disk.

符号5はデータ用磁気ヘツドを示し、符号5aは位置決
め用磁気ヘツドを示している。
Reference numeral 5 denotes a magnetic head for data, and reference numeral 5a denotes a magnetic head for positioning.

符号6はキヤリツジ、符号7はボイスコイル、符号8
はマグネツトである。
Reference numeral 6 denotes a carriage, reference numeral 7 denotes a voice coil, reference numeral 8
Is a magnet.

ボイスコイル7とマグネツト8によりボイスコイルモ
ータが構成される。
The voice coil motor is constituted by the voice coil 7 and the magnet 8.

そして符号6,符号7,符号8の要素によりヘツドの位置
決めがなされる。
The head is positioned by the elements denoted by reference numerals 6, 7, and 8.

ボイスコイル7と磁気ヘツド5及び5aとは、ボイスコ
イルモータ制御回路を介して接続されている。
The voice coil 7 and the magnetic heads 5 and 5a are connected via a voice coil motor control circuit.

第1図において、上位装置とは、たとえばコンピユー
タシステムを示す。
In FIG. 1, the host device indicates, for example, a computer system.

〔発明の効果〕〔The invention's effect〕

本発明の構成によれば、Coを主成分とするCo−Hf−Ta
−Pd4元系の非晶質合金を薄膜磁気ヘツドの磁性膜に適
用することにより、磁性膜の耐食性が優れるとともに、
飽和磁束密度が従来のパーマロイ薄膜に比べ約1.3倍と
高いために磁気ヘツドとしての書き込み特性に優れると
共に、飽和磁束密度が高いために透磁率も高い値を示
し、読み出し特性にも優れる。この結果として高記録密
度化に十分対応可能な薄膜磁気ヘツドであることがわか
つた。
According to the configuration of the present invention, Co-Hf-Ta containing Co as a main component
-By applying Pd quaternary amorphous alloy to the magnetic film of the thin film magnetic head, the corrosion resistance of the magnetic film is excellent,
Since the saturation magnetic flux density is about 1.3 times higher than that of the conventional permalloy thin film, it has excellent write characteristics as a magnetic head, and also has a high saturation magnetic flux density, thus exhibiting a high value of magnetic permeability and excellent read characteristics. As a result, it has been found that the thin film magnetic head can sufficiently cope with high recording density.

さらに、高記録密度の磁気デイスク装置を明らかにで
きた。
In addition, a high-density magnetic disk device was clarified.

また、磁性膜を多層構造とすることにより、磁区構造
上再生質力が向上し、本発明を用いることにより、より
薄い磁性膜が実現できるので周波数特性を向上させるこ
とができた。
In addition, when the magnetic film has a multilayer structure, the reproducing quality in the magnetic domain structure is improved, and by using the present invention, a thinner magnetic film can be realized, so that the frequency characteristics can be improved.

【図面の簡単な説明】[Brief description of the drawings]

第1A図は本発明によるCo−Hf−Ta−Pd4元系非晶質合金
を成膜して作製した薄膜磁気ヘツドの斜視図であり、第
1B図は第1A図の薄膜磁気ヘツドの1B−1B矢視断面を示す
断面図であり、第2図は本発明の基本となるCo−Hf−Ta
3元系非晶質合金の磁気特性の試験結果を示す図であ
り、第3A図は第2図のA,B,C組成においてPd添加量が磁
歪定数に及ぼす影響を示す図であり、第3B図は第2図の
A,B,C組成においてPd添加量が飽和磁束密度に及ぼす影
響を示す図であり、第4図は本発明によるCo−Hf−Ta−
Pd4元系非晶質合金の腐食試験結果を示す図であり、第
5図は磁気デイスク装置の概略図である。 1……基板、2……磁性膜、2a……下部磁性膜、2b……
上部磁性膜、3……ギヤツプ非磁性膜、4……絶縁膜、
5……導体コイル、6……磁気コア、7……保護膜、10
……薄膜磁気ヘツド。
FIG. 1A is a perspective view of a thin-film magnetic head manufactured by forming a Co-Hf-Ta-Pd quaternary amorphous alloy according to the present invention.
FIG. 1B is a cross-sectional view of the thin-film magnetic head of FIG. 1A, taken along the line 1B-1B, and FIG. 2 is a diagram of Co-Hf-Ta which is the basis of the present invention.
FIG. 3A is a diagram showing the test results of the magnetic properties of the ternary amorphous alloy, and FIG. 3A is a diagram showing the effect of the amount of Pd added on the magnetostriction constant in the compositions A, B, and C in FIG. Fig. 3B
FIG. 4 is a diagram showing the effect of the addition amount of Pd on the saturation magnetic flux density in A, B, and C compositions, and FIG. 4 shows Co-Hf-Ta- according to the present invention.
It is a figure which shows the corrosion test result of a Pd quaternary amorphous alloy, and FIG. 5 is the schematic of a magnetic disk device. 1 ... substrate, 2 ... magnetic film, 2a ... lower magnetic film, 2b ...
Upper magnetic film, 3 ... Gap non-magnetic film, 4 ... Insulating film,
5 ... conductor coil, 6 ... magnetic core, 7 ... protective film, 10
...... Thin-film magnetic head.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 成重 真治 茨城県日立市久慈町4026番地 株式会社 日立製作所日立研究所内 (72)発明者 華園 雅信 茨城県日立市久慈町4026番地 株式会社 日立製作所日立研究所内 (72)発明者 大西 隆 神奈川県小田原市国府津2880番地 株式 会社日立製作所小田原工場内 (72)発明者 吉田 敏博 神奈川県小田原市国府津2880番地 株式 会社日立製作所小田原工場内 (56)参考文献 特開 昭61−95503 (JP,A) 特開 昭60−22722(JP,A) 特開 昭63−20429(JP,A) ──────────────────────────────────────────────────の Continued on the front page (72) Inventor Shinji Narishige 4026 Kuji-cho, Hitachi City, Ibaraki Prefecture Within Hitachi Research Laboratory, Hitachi, Ltd. (72) Inventor Masanobu Kaen 4026 Kuji-cho, Hitachi City, Ibaraki Prefecture Hitachi, Ltd. Inside the laboratory (72) Inventor Takashi Onishi 2880 Kozu, Odawara City, Kanagawa Prefecture Inside Odawara Plant, Hitachi, Ltd. JP-A-61-95503 (JP, A) JP-A-60-22722 (JP, A) JP-A-63-20429 (JP, A)

Claims (11)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】1つの閉じた磁気回路を形成するように配
設された磁性材料の第1及び第2の薄膜の層と、前記磁
気回路の一部において磁気ギャップを形成するように前
記第1の層と第2の層の間に配置された非磁性材料の中
間層とを備え、前記第1と第2の層の少なくとも1つ
が、コバルトを主成分とし、原子比で、ハフニュウム3.
5〜7%,タンタル1〜4%及びパラジュウム0.2〜6%
を含む非晶質磁性合金からなることを特徴とする薄膜磁
気ヘッド。
1. A method according to claim 1, wherein said first and second thin layers of magnetic material are arranged to form a closed magnetic circuit, and said first and second thin films are formed to form a magnetic gap in a portion of said magnetic circuit. An intermediate layer of a nonmagnetic material disposed between the first layer and the second layer, wherein at least one of the first and second layers contains cobalt as a main component and has an atomic ratio of hafnium 3.
5-7%, Tantalum 1-4% and Palladium 0.2-6%
A thin-film magnetic head comprising an amorphous magnetic alloy containing:
【請求項2】請求項1において、前記非晶質磁性合金が
原子比でハフニュウム3.5〜5.5%,タンタル1〜3%及
びパラジュウム0.2〜3%を含むことを特徴とする薄膜
磁気ヘッド。
2. A thin film magnetic head according to claim 1, wherein said amorphous magnetic alloy contains 3.5 to 5.5% of hafnium, 1 to 3% of tantalum and 0.2 to 3% of palladium in atomic ratio.
【請求項3】請求項1において、前記非晶質磁性合金が
1.2T以上の飽和磁束密度と1.0×10-6〜−2.0×10-6の磁
歪定数を有することを特徴とする薄膜磁気ヘッド。
3. The method according to claim 1, wherein the amorphous magnetic alloy is
A thin-film magnetic head having a saturation magnetic flux density of 1.2 T or more and a magnetostriction constant of 1.0 × 10 −6 to −2.0 × 10 −6 .
【請求項4】請求項1において、前記第1の層と第2の
層の少なくとも1つが、非磁性材料からなる層を介した
多層構造であることを特徴とする薄膜磁気ヘッド。
4. The thin-film magnetic head according to claim 1, wherein at least one of the first layer and the second layer has a multilayer structure with a layer made of a non-magnetic material interposed therebetween.
【請求項5】非磁性材料の基板と、該基板の上に積層さ
れその一部に磁気ギャップをもった閉じた磁気回路を形
成する第1と第2の磁性材料の薄膜の層と、前記磁気ギ
ャップをなす非磁性材料の中間層と、前記磁気回路を巻
回する導体コイルとを備え、前記第1と第2の層の少な
くとも1つが、コバルトを主成分とし、原子比で、ハフ
ニュウム3.5〜7%,タンタル1〜4%及びパラジュウ
ム0.2〜6%を含む非晶質磁性合金からなることを特徴
とする薄膜磁気ヘッド。
5. A substrate made of a non-magnetic material, a layer of a thin film of first and second magnetic materials formed on the substrate and forming a closed magnetic circuit partially having a magnetic gap, An intermediate layer of a non-magnetic material forming a magnetic gap; and a conductor coil winding the magnetic circuit, wherein at least one of the first and second layers contains cobalt as a main component, and has an atomic ratio of hafnium 3.5. A thin film magnetic head comprising an amorphous magnetic alloy containing about 7%, about 1% to about 4% of tantalum, and about 0.2% to about 6% of palladium.
【請求項6】請求項5において、前記非晶質磁性合金が
原子比で、ハフニュウム3.5〜5.5%,タンタル1〜3%
及びパラジュウム0.2〜3%を含むことを特徴とする薄
膜磁気ヘッド。
6. An amorphous magnetic alloy according to claim 5, wherein the atomic ratio of hafnium is 3.5 to 5.5% and tantalum is 1 to 3%.
And 0.2 to 3% of palladium.
【請求項7】請求項5において、前記非晶質磁性合金が
1.2T以上の飽和磁束密度と1.0×10-6〜−2.0×10-6の磁
歪定数を有することを特徴とする薄膜磁気ヘッド。
7. The method according to claim 5, wherein the amorphous magnetic alloy is
A thin-film magnetic head having a saturation magnetic flux density of 1.2 T or more and a magnetostriction constant of 1.0 × 10 −6 to −2.0 × 10 −6 .
【請求項8】コバルトを主成分とし、原子比でハフニュ
ウム3.5〜7%,タンタル1〜4%及びパラジュウム0.2
〜6%を含むことを特徴とする磁気ヘッド用非晶質磁性
合金薄膜。
8. Hafnium 3.5 to 7%, tantalum 1 to 4% and palladium 0.2 at the atomic ratio containing cobalt as a main component.
An amorphous magnetic alloy thin film for a magnetic head, wherein the thin film comprises about 6%.
【請求項9】請求項8において、前記非晶質磁性合金薄
膜が原子比で、ハフニュウム3.%〜5.5%,タンタル1
〜3%及びパラジュウム0.2〜3%を含むことを特徴と
する磁気ヘッド用非晶質磁性合金薄膜。
9. The amorphous magnetic alloy thin film according to claim 8, wherein the atomic ratio of hafnium is 3.% to 5.5% and tantalum is 1%.
An amorphous magnetic alloy thin film for a magnetic head, characterized in that the amorphous magnetic alloy thin film contains 0.1 to 3% and 0.2 to 3% of palladium.
【請求項10】請求項8において、前記非晶質磁性合金
薄膜が、1.2T以上の飽和磁束密度と1.0×10-6〜−2.0×
10-6の磁歪定数を有することを特徴とする磁気ヘッド用
非晶質磁性合金薄膜。
10. The amorphous magnetic alloy thin film according to claim 8, wherein said amorphous magnetic alloy thin film has a saturation magnetic flux density of 1.2 T or more and 1.0 × 10 −6 to −2.0 ×.
An amorphous magnetic alloy thin film for a magnetic head, having a magnetostriction constant of 10 -6 .
【請求項11】情報を記録する磁気ディスクと、該磁気
ディスクに対して情報の書き込み及び読み出しを行う薄
膜磁気ヘッドと、前記磁気ディスクを回転させる手段
と、前記薄膜磁気ヘッドの位置決め手段とを具備する磁
気ディスク装置において、前記薄膜磁気ヘッドは、下部
磁気コアと、下部磁気コア上に形成され、一端が下部磁
気コアの一端に接し、他端が下部磁気コアの他端と磁気
ギャップを介して対向する上部磁気コアと、前記両磁気
コア間に磁気回路と交差するように巻回された導体コイ
ルと、上部磁気コアと下部磁気コアとの間に介在した絶
縁層とを具備し、前記上部磁気コアと前記下部磁気コア
の少なくとも1つが、コバルトを主成分とし、原子比で
ハフニュウム3.5〜7%,タンタル1〜4%及びパラジ
ュウム0.2〜6%を含む非晶質磁性合金からなることを
特徴とする磁気ディスク装置。
11. A magnetic disk for recording information, a thin-film magnetic head for writing and reading information to and from the magnetic disk, means for rotating the magnetic disk, and means for positioning the thin-film magnetic head. In the magnetic disk device, the thin-film magnetic head is formed on the lower magnetic core and the lower magnetic core, one end of which is in contact with one end of the lower magnetic core, and the other end of which is in contact with the other end of the lower magnetic core via a magnetic gap. An opposing upper magnetic core, a conductor coil wound between the two magnetic cores so as to cross a magnetic circuit, and an insulating layer interposed between the upper magnetic core and the lower magnetic core. At least one of the magnetic core and the lower magnetic core contains cobalt as a main component and contains, by atomic ratio, 3.5 to 7% of hafnium, 1 to 4% of tantalum, and 0.2 to 6% of palladium. Magnetic disk apparatus, comprising the amorphous magnetic alloy.
JP63279276A 1987-11-09 1988-11-07 Thin film magnetic head and magnetic disk device Expired - Lifetime JP2702997B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63279276A JP2702997B2 (en) 1987-11-09 1988-11-07 Thin film magnetic head and magnetic disk device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP62-282850 1987-11-09
JP62282850A JPH01124108A (en) 1987-11-09 1987-11-09 Thin-film magnetic head
JP63279276A JP2702997B2 (en) 1987-11-09 1988-11-07 Thin film magnetic head and magnetic disk device

Publications (2)

Publication Number Publication Date
JPH01282713A JPH01282713A (en) 1989-11-14
JP2702997B2 true JP2702997B2 (en) 1998-01-26

Family

ID=26553248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63279276A Expired - Lifetime JP2702997B2 (en) 1987-11-09 1988-11-07 Thin film magnetic head and magnetic disk device

Country Status (1)

Country Link
JP (1) JP2702997B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100748198B1 (en) * 2005-08-12 2007-08-10 후지쯔 가부시끼가이샤 Magnetic film for a magnetic device, magnetic head for a hard disk drive, and solid-state device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6022722A (en) * 1983-07-16 1985-02-05 Alps Electric Co Ltd Thin film magnetic head
JPS6195503A (en) * 1984-10-16 1986-05-14 Sony Corp Amorphous soft magnetic thin film

Also Published As

Publication number Publication date
JPH01282713A (en) 1989-11-14

Similar Documents

Publication Publication Date Title
US6221218B1 (en) Method of forming an inductive write head for magnetic data storage media
US6190764B1 (en) Inductive write head for magnetic data storage media
US5264981A (en) Multilayered ferromagnetic film and magnetic head employing the same
JP3112850B2 (en) Soft magnetic thin film containing Co-Ni-Fe as a main component, method of manufacturing the same, magnetic head and magnetic storage device using the same
US5126907A (en) Thin film magnetic head having at least one magnetic core member made at least partly of a material having a high saturation magnetic flux density
JPH08212512A (en) Magnetic storage device and thin-film magnetic head used for the same and its production
JPH06244028A (en) Magnetic laminar structure and manufacture thereof
JP2817501B2 (en) Magnetic disk drive and magnetic head used therefor
US4939610A (en) Thin film magnetic head having magnetic core including a thin film of cobalt alloy
JP2002183909A (en) Method for manufacturing thin film magnetic head, thin film magnetic head and magnetic disk device with the same
JP4759455B2 (en) Magnetic shield and manufacturing method thereof, thin film magnetic head
US4943883A (en) Quarternary amorphous magnetic alloy thin film and magnetic head including same
WO2002015172A1 (en) A magnetic head
JP2702997B2 (en) Thin film magnetic head and magnetic disk device
JPH07105027B2 (en) Perpendicular magnetic recording medium
US4609593A (en) Magnetic recording medium
JP2510679B2 (en) Thin film magnetic head and magnetic disk device equipped with thin film magnetic head
JPH0329104A (en) Thin-film magnetic head
JPH10241125A (en) Thin film magnetic head and recording/reproducing separation type magnetic head and magnetic recording/ reproducing apparatus using the same
JPH0573839A (en) Magnetic disk device
US4641213A (en) Magnetic head
US6042897A (en) Combination read/write thin film magnetic head and its manufacturing method
JP2972226B2 (en) Thin film magnetic head
JPH083883B2 (en) Thin film magnetic head
JP3204252B2 (en) Thin film magnetic head