JP3367161B2 - Method of manufacturing magnetoresistive head - Google Patents

Method of manufacturing magnetoresistive head

Info

Publication number
JP3367161B2
JP3367161B2 JP23965293A JP23965293A JP3367161B2 JP 3367161 B2 JP3367161 B2 JP 3367161B2 JP 23965293 A JP23965293 A JP 23965293A JP 23965293 A JP23965293 A JP 23965293A JP 3367161 B2 JP3367161 B2 JP 3367161B2
Authority
JP
Japan
Prior art keywords
film
magnetic
protective film
antiferromagnetic
head
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP23965293A
Other languages
Japanese (ja)
Other versions
JPH0793719A (en
Inventor
直樹 古賀
秀俊 松本
弘 冨安
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP23965293A priority Critical patent/JP3367161B2/en
Publication of JPH0793719A publication Critical patent/JPH0793719A/en
Application granted granted Critical
Publication of JP3367161B2 publication Critical patent/JP3367161B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Magnetic Heads (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は磁気ディスク装置等の磁
気記録装置に用いられる磁気抵抗効果型磁気ヘッドの
造方法に関するものである。
The present invention relates to relates to a manufacturing <br/> method for producing the magnetoresistive heads used in magnetic recording device such as a magnetic disk device.

【0002】[0002]

【従来の技術】磁気記録分野における小型化・大容量化
の要求には目ざましいものがある。例えば、磁気ディス
ク装置を見てみるとディスク径は、3.5インチから
2.5インチ、 1.8インチと小さくなってきており、
磁気ディスク一枚当りの容量も2.5インチ100メガ
バイトと言われている。
2. Description of the Related Art There is a remarkable demand for miniaturization and large capacity in the magnetic recording field. For example, looking at a magnetic disk device, the disk diameter is decreasing from 3.5 inches to 2.5 inches, 1.8 inches,
The capacity per magnetic disk is also said to be 2.5 inches and 100 megabytes.

【0003】これらの要求に応えるため磁気ディスクと
して高保磁力、高残留磁束密度、低ノイズの特徴を有す
る金属薄膜ディスクが開発され、磁気ヘッドとしてメタ
ルインギャップヘッドや薄膜ヘッド、さらに、金属磁性
膜を積層した積層型磁気ヘッド等が開発されてきた。
In order to meet these demands, a metal thin film disk having characteristics of high coercive force, high residual magnetic flux density and low noise has been developed as a magnetic disk. As a magnetic head, a metal in-gap head, a thin film head, and a metal magnetic film are used. Laminated laminated magnetic heads have been developed.

【0004】しかし、これらの磁気ヘッドは全て電磁誘
導現象を利用したものであり、その再生出力は磁気ヘッ
ド,磁気ディスク間相対速度に比例する。そのため、さ
らに磁気ディスクの径が小さくなると、もはや十分な再
生出力を得ることが出来なくなっている。そのため、現
在磁気抵抗効果を利用して磁気ディスクからの磁束を感
磁する磁気抵抗効果型磁気ヘッド(以下MRヘッドと略
す)が提案されている。
However, all of these magnetic heads utilize the phenomenon of electromagnetic induction, and the reproduction output thereof is proportional to the relative speed between the magnetic head and the magnetic disk. Therefore, when the diameter of the magnetic disk is further reduced, it is no longer possible to obtain a sufficient reproduction output. Therefore, a magnetoresistive effect type magnetic head (hereinafter abbreviated as an MR head) that senses the magnetic flux from the magnetic disk by utilizing the magnetoresistive effect is currently proposed.

【0005】ここで、図13は従来のMRヘッドを示す
正面図である。図中1はAl23TiC等のセラミッ
ク材からなる基板であり、2はAl23 ,SiO2
からなる絶縁層、3はNiFe等の軟磁性体からなる下
部シールド層、4はAl2 3 ,SiO2 等からなり下
部再生ギャップとなる絶縁層、5はアモルファス合金,
NiFe等からなる磁気抵抗効果膜7(以下MR膜と略
す)に横バイアス磁界を与えるための軟磁性膜、6はT
a,Ti,SiO2 等からなり軟磁性膜5とMR膜7と
を磁気的に分離する中間層、8はFeMn系合金等から
なりMR膜7の磁区を制御するための反強磁性膜、9は
例えばAu,W等のリード層、10はAl23 ,Si
2 等からなり上部再生ギャップとなる絶縁層、11は
NiFe等からなる上部シールド層、12はAl2
3 ,SiO2 等からなり再生ヘッドであるMRヘッドと
記録ヘッドとを分離する絶縁層、13はNiFe等から
なり記録ヘッドの下部コアとなる軟磁性層、14はAl
23 ,SiO2 等からなり記録ギャップとなる絶縁
層、15はNiFe等からなり記録ヘッドの上部コアと
なる軟磁性層、16はAl23 等からなり全体の保護
層となる絶縁層である。
FIG. 13 shows a conventional MR head.
It is a front view. 1 in the figure is Al2 O3Ceramic such as TiC
Substrate made of black material, 2 is Al2 O3 , SiO2 etc
Insulating layer 3 made of soft magnetic material such as NiFe
Part shield layer, 4 is Al2 O 3 , SiO2 Consists of etc.
Insulating layer that becomes the reproduction gap of the part, 5 is an amorphous alloy,
Magnetoresistive film 7 made of NiFe or the like (hereinafter referred to as MR film)
A soft magnetic film for applying a lateral bias magnetic field to the
a, Ti, SiO2 Soft magnetic film 5 and MR film 7
Is an intermediate layer for magnetically separating the
Is an antiferromagnetic film for controlling the magnetic domains of the MR film 7, and 9 is
For example, a lead layer of Au, W, etc., 10 is Al2 O3 , Si
O2 Insulating layer 11 made of
An upper shield layer made of NiFe or the like, 12 is Al2 O
3 , SiO2 And MR head which is a reproducing head.
An insulating layer for separating the recording head, 13 is made of NiFe or the like
Is a soft magnetic layer that serves as the lower core of the recording head, and 14 is Al
2 O3 , SiO2 Insulation that is a recording gap
The layer, 15 is made of NiFe or the like and serves as an upper core of the recording head.
Soft magnetic layer, 16 is Al2 O3 Protection of the whole
It is an insulating layer serving as a layer.

【0006】このヘッドの場合、記録のトラック幅と再
生のトラック幅とを個別に設定できるため、ワイドライ
ト−ナローリード(広く記録して狭く再生する。)が可
能となっている。また、出力の線形性を保つための横バ
イアス方式としてSAL(Soft−Adjacent
−Layer)バイアス方式と呼ばれる方法を用いてお
り、MR膜7に流れるセンス電流により発生する磁界で
軟磁性膜5を磁化させ、軟磁性膜5の磁化から発生する
磁界によりMR膜7にバイアス磁界を印加するものであ
る。また、反強磁性膜8はMRヘッド特有のバルクハウ
ゼンノイズを抑制するためにMR膜7の磁区を制御する
ためのものであり、MR膜7との間に働く交換結合磁界
によりトラック幅方向(図中矢印で示す)に抑制磁界を
与えMR膜7を単磁区化するものである。
In this head, since the recording track width and the reproducing track width can be set individually, wide write-narrow read (wide recording and narrow reproducing) is possible. Further, as a lateral bias method for maintaining the linearity of the output, SAL (Soft-Adjacent) is used.
-Layer) bias method is used. The soft magnetic film 5 is magnetized by the magnetic field generated by the sense current flowing through the MR film 7, and the bias magnetic field is applied to the MR film 7 by the magnetic field generated by the magnetization of the soft magnetic film 5. Is applied. The antiferromagnetic film 8 is for controlling the magnetic domains of the MR film 7 in order to suppress Barkhausen noise peculiar to the MR head, and the exchange coupling magnetic field working with the MR film 7 causes the magnetic field in the track width direction ( (Indicated by an arrow in the figure), a suppressing magnetic field is applied to make the MR film 7 into a single magnetic domain.

【0007】このような構成のMRヘッドの動作を簡単
に説明する。記録ヘッドにより磁気記録媒体に記録され
た磁化から発生する磁界がMR膜7のトラック部に流入
するとその磁束の大きさによって電気抵抗が変化する。
このとき、MR膜7にはセンス電流を流しているため電
気抵抗の変化を電圧変化として検出することが出来る。
The operation of the MR head having such a configuration will be briefly described. When the magnetic field generated by the magnetization recorded on the magnetic recording medium by the recording head flows into the track portion of the MR film 7, the electric resistance changes depending on the magnitude of the magnetic flux.
At this time, since the sense current is flowing through the MR film 7, the change in electric resistance can be detected as a voltage change.

【0008】この時、軟磁性膜5の膜厚や飽和磁束密度
の大きさを変えることによりバイアス磁界の大きさを変
え最適バイアスを与えるようにする。
At this time, by changing the thickness of the soft magnetic film 5 and the magnitude of the saturation magnetic flux density, the magnitude of the bias magnetic field is changed to provide the optimum bias.

【0009】[0009]

【発明が解決しようとする課題】しかしながら前記従来
の構成では、反強磁性膜8は一般的に腐食し易い材料で
構成されるために、反強磁性膜8を形成した直後に腐食
することがあり、その結果MRヘッドの特性が劣化した
り、また形成直後に腐食しなくても長期間使用すること
によって、反強磁性膜8が次第に腐食し、やはりMRヘ
ッドの特性が劣化することがあった。このMRヘッドの
特性の劣化の原因として、例えば、反強磁性膜8が腐食
することによってリード層9との間の電気抵抗が大きく
なり、サーマルノイズが発生し、反強磁性膜8そのもの
の機能が低下する等が考えられる。
However, in the above-mentioned conventional structure, since the antiferromagnetic film 8 is generally made of a material that easily corrodes, the antiferromagnetic film 8 may be corroded immediately after it is formed. As a result, the characteristics of the MR head may deteriorate, or the antiferromagnetic film 8 may gradually corrode due to long-term use even if the MR head does not corrode immediately after its formation, which also deteriorates the characteristics of the MR head. It was As a cause of the deterioration of the characteristics of the MR head, for example, corrosion of the antiferromagnetic film 8 increases the electric resistance between the antiferromagnetic film 8 and the lead layer 9 to generate thermal noise, and the function of the antiferromagnetic film 8 itself. May decrease.

【0010】また、反強磁性膜8は温度の上昇に対し反
強磁性体から常磁性体へと徐々に変化していく傾向にあ
るために図14に示すようにMR膜7の磁区を制御する
ための磁界(交換結合磁界)は徐々に減少してゆく。従
ってMRヘッドの温度がリード層等の発熱によって温度
が上がった場合、磁区を制御するための磁界の向きと異
なる方向に外部から磁界が加わると、温度が低下した時
に磁区を制御するための磁界の向きが変化してしまい、
そのためデータ再生中にバルクハウゼンノイズが発生し
データの読み取りエラーが生じてしまうことがあった。
Further, since the antiferromagnetic film 8 tends to gradually change from the antiferromagnetic material to the paramagnetic material with increasing temperature, the magnetic domain of the MR film 7 is controlled as shown in FIG. The magnetic field (exchange-coupling magnetic field) for reducing gradually decreases. Therefore, when the temperature of the MR head rises due to heat generation of the lead layer or the like, if a magnetic field is applied from the outside in a direction different from the direction of the magnetic field for controlling the magnetic domain, the magnetic field for controlling the magnetic domain when the temperature decreases. Has changed its direction,
As a result, Barkhausen noise may occur during data reproduction, resulting in a data reading error.

【0011】従って上述の様に従来の構成では、反強磁
性膜8の腐食や、反強磁性膜8の温度上昇によって生じ
るMRヘッドの特性劣化が生じることがあり、信頼性が
低いという問題点があった。
Therefore, as described above, in the conventional structure, the characteristics of the MR head may be deteriorated due to corrosion of the antiferromagnetic film 8 or the temperature rise of the antiferromagnetic film 8, resulting in low reliability. was there.

【0012】本発明は前記従来の課題を解決するもの
で、信頼性を向上させることができる磁気抵抗効果型磁
気ヘッドの製造方法を提供することを目的としている。
[0012] The present invention is intended to provide the intended to solve the conventional problems, the method for manufacturing a magneto-resistance effect type magnetic heads which can improve reliability.

【0013】[0013]

【課題を解決するための手段】上記目的を達成するため
に、基板上に磁気抵抗効果膜を形成し、磁気抵抗効果膜
上にFeMn系合金で構成された反強磁性膜を積層し、
反強磁性膜上に保護膜を形成する磁気抵抗効果型磁気ヘ
ッドの製造方法であって、反強磁性膜及び保護膜を真空
中で成膜するとともに、反強磁性膜を形成した後に、真
空を破る事なく引き続いて保護膜を形成し、保護膜の上
にリード層を形成し、保護膜の上にリード層を形成し、
保護膜を構成する材料としてFe,Mnよりも酸化物形
成エネルギーが小さい元素のうち少なくとも1種の元素
あるいはアモルファス合金を用いた。また、保護膜とし
てCoNiPt,CoPt,CoCrPt,CoCrT
a,CoCrTaPt,CoNiCr,CoNiCrP
t,CoNiのうち1種を用いる構成を有する。
In order to achieve the above object, a magnetoresistive film is formed on a substrate, and an antiferromagnetic film composed of FeMn-based alloy is laminated on the magnetoresistive film,
A method of manufacturing a magnetoresistive effect magnetic head, comprising forming a protective film on an antiferromagnetic film, comprising: forming an antiferromagnetic film and a protective film in a vacuum; the subsequent protective film is formed without break, on the protective film
To form a lead layer on the protective film,
Oxide type rather than Fe and Mn as the material for the protective film
At least one element among the elements with small energy
Alternatively, an amorphous alloy was used. Also, as a protective film
CoNiPt, CoPt, CoCrPt, CoCrT
a, CoCrTaPt, CoNiCr, CoNiCrP
It has a configuration using one of t and CoNi.

【0014】[0014]

【作用】本発明は上記構成により、低電気抵抗化を達成
することができMRヘッドの信頼性を向上し、かつサー
マルノイズを低減することができる。また、MRヘッド
の動作時のデータ読み取りの信頼性を向上することがで
き高性能のMRヘッドを得ることができる。
With the above structure, the present invention can achieve low electric resistance, improve reliability of the MR head, and reduce thermal noise. Further, the reliability of data reading during operation of the MR head can be improved and a high performance MR head can be obtained.

【0015】[0015]

【実施例】【Example】

(実施例1)図1は本発明の一実施例における磁気抵抗
効果型磁気ヘッドを示す正面図である。図1において、
1は基板、2は絶縁層、3は下部シールド層、4は絶縁
層、5は軟磁性膜、6は中間層、7はMR膜、8は反強
磁性膜、9はリード層、10は絶縁層、11は上部シー
ルド層、12は絶縁層、13は軟磁性層、14は絶縁
層、15は軟磁性層、16は絶縁層でこれらは従来の構
成と同じである。
(Embodiment 1) FIG. 1 is a front view showing a magnetoresistive magnetic head according to an embodiment of the present invention. In FIG.
1 is a substrate, 2 is an insulating layer, 3 is a lower shield layer, 4 is an insulating layer, 5 is a soft magnetic film, 6 is an intermediate layer, 7 is an MR film, 8 is an antiferromagnetic film, 9 is a lead layer, 10 is An insulating layer, 11 is an upper shield layer, 12 is an insulating layer, 13 is a soft magnetic layer, 14 is an insulating layer, 15 is a soft magnetic layer, and 16 is an insulating layer, which are the same as in the conventional structure.

【0016】17は反強磁性膜8とリード層9との間に
設けられた保護膜で、保護膜17はCr,Ta,Ti,
Ni,Cu等のFe,Mnよりも酸化物形成エネルギー
が小さい金属のうち少なくとも1種の金属あるいはアモ
ルファス合金から構成されている。アモルファス合金と
して、本実施例ではCoNbZrTaを用いたが、アモ
ルファス合金は耐食性に優れているので、他の組成でも
同等の効果を得ることができる。この保護膜17を腐食
し易い反強磁性膜8上に設けることによって、反強磁性
膜8の腐食を防止できるので、MRヘッドの特性劣化を
防止することができる。なお、本実施例では保護膜17
は反強磁性膜8上にしか設けなかったが、反強磁性膜8
を挟む様に保護膜17を設けると、更に耐食性を向上さ
せることができる。
Reference numeral 17 is a protective film provided between the antiferromagnetic film 8 and the lead layer 9, and the protective film 17 is made of Cr, Ta, Ti,
It is composed of at least one kind of metal or amorphous alloy of metals having smaller oxide formation energy than Fe and Mn such as Ni and Cu. Although CoNbZrTa was used as the amorphous alloy in this embodiment, the amorphous alloy is excellent in corrosion resistance, so that the same effect can be obtained with other compositions. By providing the protective film 17 on the antiferromagnetic film 8 which is easily corroded, the antiferromagnetic film 8 can be prevented from being corroded, so that the characteristic deterioration of the MR head can be prevented. In this embodiment, the protective film 17
Was provided only on the antiferromagnetic film 8,
If the protective film 17 is provided so as to sandwich it, the corrosion resistance can be further improved.

【0017】次に以上の様に構成されたMRヘッドにつ
いて以下その製造方法を図5〜図12を用いて説明す
る。
Next, a method of manufacturing the MR head having the above-mentioned structure will be described below with reference to FIGS.

【0018】まず、図5に示す様にAl23 ,TiC
等のセラミック材よりなる基板1上にスパッタリング法
等によって、Al23 ,SiO2 等からなる絶縁層2
を2〜3μm程度成膜し、その上にスパッタリング法ま
たは鍍金法等によってNiFe,FeAlSi等の軟磁
性材料より構成される下部シールド層3を所定の形状と
なるように形成する。この時下部シールド層3の厚みは
2μm程度で形成した。また下部シールド層3を所定の
形状にするためには、予め絶縁層2の上にレジスト等を
用いてパターンを形成した後に成膜したり、成膜した後
にミリング等によって所定の形状に加工を行う。
First, as shown in FIG. 5, Al 2 O 3 , TiC
An insulating layer 2 made of Al 2 O 3 , SiO 2 or the like is formed on a substrate 1 made of a ceramic material such as Al by sputtering.
Is deposited to a thickness of about 2 to 3 μm, and the lower shield layer 3 made of a soft magnetic material such as NiFe or FeAlSi is formed thereon by a sputtering method or a plating method so as to have a predetermined shape. At this time, the lower shield layer 3 was formed to have a thickness of about 2 μm. Further, in order to form the lower shield layer 3 into a predetermined shape, a film is formed after forming a pattern on the insulating layer 2 using a resist or the like in advance, or the film is processed into a predetermined shape by milling or the like. To do.

【0019】次に図6に示す様に下部シールド層3の上
にスパッタリング法等によってAl 23 ,SiO2
からなり、下部再生ギャップとなる絶縁層4を1000
〜2000Å程度成膜し、更に絶縁層4の上にスパッタ
リング法または真空蒸着法等によってNiFeRh,ア
モルファス合金等の横バイアス磁界を与えるための軟磁
性膜5を200〜300Å程度の膜厚で形成し、更に軟
磁性膜5の上にスパッタリング法及び真空蒸着法によっ
てTa,Ti,SiO2 等からなる中間層6を100〜
300Å程度の膜厚で形成し、次に中間層6の上にスパ
ッタリング法または真空蒸着法等によってNiFe等か
らなるMR膜7を膜厚200〜500Åの膜厚で形成す
る。
Next, as shown in FIG. 6, on the lower shield layer 3.
Al by sputtering method 2 O3 , SiO2 etc
The insulating layer 4 which is made of
Approximately 2000 Å film is formed and then sputtered on the insulating layer 4.
NiFeRh, a vacuum deposition method, etc.
Soft magnet for applying transverse bias magnetic field such as morphus alloy
The flexible film 5 is formed with a film thickness of about 200 to 300 Å and further softened.
The magnetic film 5 is formed on the magnetic film 5 by sputtering and vacuum deposition.
Ta, Ti, SiO2 The intermediate layer 6 consisting of
It is formed with a film thickness of about 300Å, and then a spa is formed on the intermediate layer 6.
NiFe or the like by the tertering method or vacuum deposition method
The MR film 7 made of a film having a thickness of 200 to 500 Å
It

【0020】その後、図7に示す様に、フォトレジスト
21によって反強磁性膜8及びリード層9を所定の形状
に形成するパターンを作製する。
After that, as shown in FIG. 7, a pattern is formed by the photoresist 21 to form the antiferromagnetic film 8 and the lead layer 9 into a predetermined shape.

【0021】その後、図8に示す様にスパッタリング法
等によってFeMn系合金からなる反強磁性膜8を20
0〜300Å程度の膜厚で成膜し、真空を破る事なく連
続して保護膜17を成膜する。ここで、真空を破ること
なく成膜を行える装置としては連続スパッタ装置等が考
えられる。保護膜17の形成膜厚としては、50〜50
0Åの範囲が望ましく、好ましくは100〜300Åの
範囲がよい。本実施例ではTaを200Åの膜厚で成膜
した。
Thereafter, as shown in FIG. 8, an antiferromagnetic film 8 made of a FeMn-based alloy is formed by a sputtering method or the like.
The protective film 17 is formed with a film thickness of about 0 to 300Å and continuously without breaking the vacuum. Here, as a device capable of forming a film without breaking the vacuum, a continuous sputtering device or the like can be considered. The film thickness of the protective film 17 is 50 to 50.
The range of 0Å is desirable, and the range of 100 to 300Å is preferable. In this example, Ta was deposited to a film thickness of 200Å.

【0022】次に図9に示す様に真空蒸着法等を用いて
Au等からなるリード層9を1000〜2000Åの膜
厚で成膜する。
Next, as shown in FIG. 9, a lead layer 9 made of Au or the like is formed to a film thickness of 1000 to 2000 Å by using a vacuum evaporation method or the like.

【0023】次に図10に示す様にリフトオフ等を施し
てフォトレジスト21を除去することでMR膜7に電流
を供給するリード層9が形成される。
Next, as shown in FIG. 10, the photoresist 21 is removed by performing lift-off or the like to form a lead layer 9 for supplying a current to the MR film 7.

【0024】その後に図11に示す様にスパッタリング
法等によってAl23 ,SiO2等から構成される上
部再生ギャップとなる絶縁層10を1000〜2000
Å程度の膜厚で形成する。その上にスパッタリング法ま
たは鍍金法等によってNiFe等から構成される上部シ
ールド層11を所定の形状で、しかも膜厚1〜3μmで
形成する。
After that, as shown in FIG. 11, an insulating layer 10 made of Al 2 O 3 , SiO 2 or the like, which is to be an upper reproduction gap, is formed in a thickness of 1000 to 2000 by a sputtering method or the like.
It is formed with a film thickness of about Å. An upper shield layer 11 made of NiFe or the like is formed thereon in a predetermined shape and has a film thickness of 1 to 3 μm by a sputtering method or a plating method.

【0025】次に図12に示す様にスパッタリング法等
によってAl23 ,SiO2 等からなり、再生ヘッド
であるMRヘッドと記録ヘッドを分離する絶縁層12を
約1μm程度成膜し、その後に記録ヘッドの下部コアと
なる軟磁性層13を形成する。次に軟磁性層13の上に
記録ギャップとなる絶縁層14を介して記録ヘッドの上
部コアとなる軟磁性層15を形成する。軟磁性層13,
15はそれぞれNiFe等の軟磁性材料をスパッタリン
グ法や鍍金法等の薄膜形成技術を施す事によって膜厚2
〜4μmで形成される。さらに絶縁層14はAl2
3 ,SiO2 等の非磁性材料にスパッタリング法等を施
すことによって膜厚0.6μm程度で形成される。最後
にAl23 等にスパッタリング法等を施す事によって
保護膜となる絶縁層16を成膜する。
Next, as shown in FIG. 12, an insulating layer 12 made of Al 2 O 3 , SiO 2, etc., which separates the MR head, which is a reproducing head, from the recording head, is formed to a thickness of about 1 μm by a sputtering method or the like, and thereafter. Then, the soft magnetic layer 13 which will be the lower core of the recording head is formed. Next, a soft magnetic layer 15 that serves as an upper core of the recording head is formed on the soft magnetic layer 13 with an insulating layer 14 that serves as a recording gap interposed therebetween. Soft magnetic layer 13,
15 is a soft magnetic material such as NiFe which is formed into a film thickness 2 by applying a thin film forming technique such as a sputtering method or a plating method.
It is formed with a thickness of about 4 μm. Further, the insulating layer 14 is made of Al 2 O.
It is formed with a film thickness of about 0.6 μm by subjecting a non-magnetic material such as 3 , SiO 2 or the like to a sputtering method or the like. Finally, the insulating layer 16 serving as a protective film is formed by subjecting Al 2 O 3 or the like to a sputtering method or the like.

【0026】以上の様に構成されたMRヘッド(膜厚等
は上述の条件)について従来例との電気抵抗の比較を行
った。ヘッドはトラック幅4μmとしてMR素子部の高
さが2μmとなるように加工して、その時の電気抵抗を
測定した。20個の測定結果を(表1)に示す。
The electrical resistance of the MR head (thickness and other conditions described above) constructed as described above was compared with that of the conventional example. The head was processed so that the track width was 4 μm and the height of the MR element portion was 2 μm, and the electrical resistance at that time was measured. The results of 20 measurements are shown in (Table 1).

【0027】[0027]

【表1】 [Table 1]

【0028】従来例ではおそらく酸化の程度が異なるた
めと推察されるが、電気抵抗が高くそのばらつきも大き
い。しかし、実施例では電気抵抗が低くほぼ理論値通り
の値となっておりそのばらつきも小さくなっている。
In the conventional example, it is presumed that the degree of oxidation is probably different, but the electric resistance is high and the variation is large. However, in the example, the electric resistance is low and almost equal to the theoretical value, and the variation is small.

【0029】なお、リード層9をAu,W等の単層膜で
はなく下地層を持つような複合膜で形成した場合、例え
ば保護膜17をTaとしてリード層9をTa/Auの2
層膜とするように保護膜17とリード層9の下地層とを
同一の材料とすることによりさらに効果が大きくなる。
When the lead layer 9 is formed of not a single layer film of Au, W or the like but a composite film having an underlayer, for example, the protective film 17 is Ta and the lead layer 9 is Ta / Au.
The effect is further enhanced by using the same material for the protective film 17 and the underlayer of the lead layer 9 so as to form a layer film.

【0030】(実施例2)図2は本発明の第2の実施例
におけるMRヘッドを示す正面図である。図1で示した
ものと同一の番号は同一の機能を示すものであり説明は
省略する。本実施例では反強磁性膜8で規制された幅と
リード層18(製法、構成材料等はリード層9とほぼ同
じ)で規制された幅(即ちトラック幅)が異なる構成と
なっている。本実施例の場合、FeMn系合金を成膜し
た後に再度フォトレジスト等によりリード層18を成膜
するためのパターンを形成する必要がある。従って、F
eMn系合金はこのパターンを形成する工程を通ること
になり、当然現像液や純水等に浸漬されるため、保護膜
17を設ける効果は実施例1に比べて大きくなる。特
に、この場合腐食等によりFeMn系合金の機能が低下
することを防げる効果がある。
(Embodiment 2) FIG. 2 is a front view showing an MR head according to a second embodiment of the present invention. The same reference numerals as those shown in FIG. 1 indicate the same functions, and the description thereof will be omitted. In this embodiment, the width regulated by the antiferromagnetic film 8 is different from the width regulated by the lead layer 18 (the manufacturing method and the constituent materials are almost the same as those of the lead layer 9) (that is, the track width). In the case of the present embodiment, it is necessary to form a pattern for forming the lead layer 18 again with a photoresist or the like after forming the FeMn-based alloy. Therefore, F
Since the eMn-based alloy goes through the step of forming this pattern and is naturally immersed in a developing solution, pure water, or the like, the effect of providing the protective film 17 is greater than that of the first embodiment. Particularly, in this case, there is an effect of preventing the function of the FeMn-based alloy from being deteriorated due to corrosion or the like.

【0031】本実施例のMRヘッドと比較例として本実
施例の構成で保護膜17がないMRヘッドとの記録再生
特性の比較を行った。記録再生は各々10個のMRヘッ
ドについて3.5インチの薄膜磁気ディスクを用い、周
速8m/s,記録周波数6MHzで行った。測定方法は
6MHzの信号を連続して10回記録再生を行い、その
平均値(x)とばらつき(σ)を求め、記録再生の安定
度の指標としてσ/xを求めた。10個のヘッドについ
てのσ/xの平均値とばらつきを(表2)に示す(膜厚
等は実施例1と同じ)。
The recording / reproducing characteristics of the MR head of this embodiment and a MR head having the structure of this embodiment and having no protective film 17 were compared as a comparative example. Recording and reproduction were performed at a peripheral speed of 8 m / s and a recording frequency of 6 MHz using a 3.5-inch thin film magnetic disk for each of 10 MR heads. As a measuring method, recording / reproduction of a 6 MHz signal was performed 10 times continuously, the average value (x) and the variation (σ) thereof were calculated, and σ / x was calculated as an index of the stability of recording / reproduction. The average value and variation of σ / x for 10 heads are shown in (Table 2) (film thickness and the like are the same as in Example 1).

【0032】[0032]

【表2】 [Table 2]

【0033】比較例においては平均値、ばらつきとも大
きくなっておりMR膜7の磁区の制御にばらつきがある
のに対し、本実施例ではσ/xの平均値、ばらつきとも
に小さくなっていることがわかる。
In the comparative example, both the average value and the variation are large and the control of the magnetic domain of the MR film 7 varies, but in the present example, both the average value and the variation of σ / x are small. Recognize.

【0034】(実施例3)図3は本発明の第3の実施例
における磁気抵抗効果型磁気ヘッドを示す正面図であ
る。19は反強磁性膜8とリード層18の間に設けられ
た硬質磁性体であり、その他の構成は(実施例2)と同
様である。硬質磁性体19としてCoNiPt,CoP
t,CoCrPt,CoCrTa,CoCrTaPt,
CoNiCr,CoNiCrPt,CoNiのうち1種
を用いることができる。更に硬質磁性体19の膜厚によ
って発生する磁界の大きさを制御することができるが、
あまり厚くすると再生ギャップが厚くなるため好ましく
ない。従って硬質磁性体19の膜厚としては100〜1
000Å、好ましくは200〜500Åの範囲で選択す
ることが好ましい。本実施例では例えば150℃以上に
温度が上昇して反強磁性膜8が反強磁性体から常磁性体
へと変化したとしても、反強磁性膜8の上に設けている
硬質磁性体19により磁界がトラック幅方向に加わって
いるため、磁区を制御する磁界の方向が外部の磁界によ
って乱されることがないため安定してMR膜7の磁区を
制御することができる。また、付随する効果として硬質
磁性体19から発生する磁界により、MR膜7や下部シ
ールド層3,上部シールド層11の磁区を制御すること
も可能である。
(Embodiment 3) FIG. 3 is a front view showing a magnetoresistive head according to a third embodiment of the present invention. Reference numeral 19 denotes a hard magnetic material provided between the antiferromagnetic film 8 and the lead layer 18, and the other configurations are the same as those in (Example 2). CoNiPt, CoP as the hard magnetic material 19
t, CoCrPt, CoCrTa, CoCrTaPt,
One of CoNiCr, CoNiCrPt, and CoNi can be used. Further, although the magnitude of the magnetic field generated can be controlled by the film thickness of the hard magnetic material 19,
If it is too thick, the reproduction gap becomes thick, which is not preferable. Therefore, the film thickness of the hard magnetic material 19 is 100 to 1
It is preferable to select 000Å, preferably 200 to 500Å. In the present embodiment, even if the antiferromagnetic film 8 changes from antiferromagnetic material to paramagnetic material due to a temperature rise of, for example, 150 ° C. or more, the hard magnetic material 19 provided on the antiferromagnetic film 8 is changed. Thus, since the magnetic field is applied in the track width direction, the direction of the magnetic field for controlling the magnetic domain is not disturbed by the external magnetic field, so that the magnetic domain of the MR film 7 can be stably controlled. Further, as an accompanying effect, it is possible to control the magnetic domains of the MR film 7, the lower shield layer 3 and the upper shield layer 11 by the magnetic field generated from the hard magnetic material 19.

【0035】本実施例のMRヘッドと比較例として本実
施例の構成で硬質磁性体19がないMRヘッドとの記録
再生特性の比較を行った。この場合、硬質磁性体19と
して400ÅのCoNiPtを成膜している。
The recording / reproducing characteristics of the MR head of this embodiment and a MR head having no hard magnetic material 19 having the structure of this embodiment were compared as a comparative example. In this case, 400 Å of CoNiPt is deposited as the hard magnetic material 19.

【0036】記録再生は各々10個のMRヘッドについ
て3.5インチの薄膜磁気ディスクを用い、周速8m/
s,記録周波数6MHzで行った。測定方法は6MHz
の信号を連続して10回記録再生を行い、その平均値
(x)とばらつき(σ)を求め、記録再生の安定度の指
標としてσ/xを求めた。10個のヘッドについてのσ
/xの平均値とばらつきを(表3)に示す。さらにヘッ
ドを160℃雰囲気中でMR膜7の磁区を制御する磁界
と直角の方向に外部磁界を印加して、その後の記録再生
を同様に測定した。結果を(表3)にあわせて示す。
For recording and reproduction, a thin film magnetic disk of 3.5 inches was used for each of 10 MR heads, and the peripheral speed was 8 m /
s, recording frequency was 6 MHz. Measuring method is 6MHz
The signal was recorded and reproduced 10 times consecutively, the average value (x) and the variation (σ) were calculated, and σ / x was calculated as an index of the stability of recording and reproduction. Σ for 10 heads
The average value and variation of / x are shown in (Table 3). Further, an external magnetic field was applied to the head in an atmosphere at 160 ° C. in a direction perpendicular to the magnetic field for controlling the magnetic domains of the MR film 7, and the subsequent recording / reproduction was similarly measured. The results are also shown in (Table 3).

【0037】[0037]

【表3】 [Table 3]

【0038】本実施例では通常の測定においてもσ/x
の平均値、ばらつきともに小さくなっているのは、硬質
磁性体19が反強磁性膜8の腐食防止の効果も持ってい
るからである。さらに高温雰囲気を通した実験の結果で
は、比較例においては平均値、ばらつきとも通常実験よ
りも大きくなっているのに対し、本実施例では通常実験
とほぼ同じ結果となっていることがわかる。
In this embodiment, σ / x is obtained even in normal measurement.
The reason why both the average value and the variation of are small are that the hard magnetic material 19 also has the effect of preventing the corrosion of the antiferromagnetic film 8. Further, in the result of the experiment conducted through the high temperature atmosphere, it can be seen that the average value and the variation in the comparative example are larger than those in the normal experiment, whereas the results in the present example are almost the same as those in the normal experiment.

【0039】(実施例4)図4は本発明の第4の実施例
における磁気抵抗効果型磁気ヘッドを示す正面図であ
る。本実施例の特長は(実施例3)で示した硬質磁性体
19を単層構造から下地層20を設けた2層構造として
いる点である。この場合、硬質磁性体19として前述と
同様にCoNiPt,CoPt,CoCrPt,CoC
rTa,CoCrTaPt,CoNiCr,CoNiC
rPt,CoNiのうち1種を、下地層20としてCr
を用いている。前述した硬質磁性体19はCrの上では
その保磁力が大きくなることから外部の磁界に対して磁
界の向きが変化されにくく、さらに効果が大きくなる。
(Embodiment 4) FIG. 4 is a front view showing a magnetoresistive effect magnetic head according to a fourth embodiment of the present invention. The feature of this embodiment is that the hard magnetic material 19 shown in (Embodiment 3) has a two-layer structure including a single layer structure and an underlayer 20. In this case, the hard magnetic material 19 is made of CoNiPt, CoPt, CoCrPt, CoC as described above.
rTa, CoCrTaPt, CoNiCr, CoNiC
One of rPt and CoNi was used as Cr for the underlayer 20.
Is used. Since the hard magnetic material 19 described above has a large coercive force on Cr, the direction of the magnetic field is unlikely to be changed with respect to the external magnetic field, and the effect is further enhanced.

【0040】本実施例のMRヘッドも(実施例3)と同
様の効果が得られることを確認した。
It was confirmed that the MR head of the present embodiment can also obtain the same effect as that of (Embodiment 3).

【0041】なお、上記実施例ではMRヘッドと書き込
みヘッドとが分離した構造を示したが、上部シールドと
下部コアとが一体になった構造でも効果があることは明
らかであるし、横バイアスの手段についてもここではS
ALバイアスについて示したが、シャントバイアスや電
流バイアス、永久磁石バイアス等についても本実施例の
効果が得られることは明らかである。また、反強磁性膜
8自体の耐食性を向上させるためCr,Pt,Rh,N
b等を添加した場合でも同様の効果が得られる。
Although the MR head and the write head are separated from each other in the above embodiment, it is clear that the structure in which the upper shield and the lower core are integrated is also effective and the lateral bias is applied. Regarding the means here, S
Although the AL bias has been shown, it is clear that the effects of this embodiment can be obtained also with respect to the shunt bias, the current bias, the permanent magnet bias, and the like. Further, in order to improve the corrosion resistance of the antiferromagnetic film 8 itself, Cr, Pt, Rh, N
Similar effects can be obtained even when b or the like is added.

【0042】[0042]

【発明の効果】本発明は、基板上に磁気抵抗効果膜を形
成し、磁気抵抗効果膜上にFeMn系合金で構成された
反強磁性膜を積層し、反強磁性膜上に保護膜を形成する
磁気抵抗効果型磁気ヘッドの製造方法であって、反強磁
性膜及び保護膜を真空中で成膜するとともに、反強磁性
膜を形成した後に、真空を破る事なく引き続いて保護膜
を形成し、保護膜の上にリード層を形成し、保護膜を構
成する材料としてFe,Mnよりも酸化物形成エネルギ
ーが小さい元素のうち少なくとも1種の元素あるいはア
モルファス合金を用いた。また、保護膜としてCoNi
Pt,CoPt,CoCrPt,CoCrTa,CoC
rTaPt,CoNiCr,CoNiCrPt,CoN
iのうち1種を用いる構成を有する。
According to the present invention, a magnetoresistive effect film is formed on a substrate, and an antiferromagnetic film made of FeMn-based alloy is laminated on the magnetoresistive effect film. A method of manufacturing a magnetoresistive effect magnetic head, wherein a protective film is formed on an antiferromagnetic film and a protective film in a vacuum, and after the antiferromagnetic film is formed, the vacuum is continuously maintained without breaking the vacuum. To form a protective film, form a lead layer on the protective film, and form the protective film.
Oxide formation energy than Fe and Mn
At least one element or element
Morphos alloy was used. Further, as a protective film, CoNi
Pt, CoPt, CoCrPt, CoCrTa, CoC
rTaPt, CoNiCr, CoNiCrPt, CoN
It has a configuration in which one of i is used.

【0043】上記構成により、反強磁性膜の腐食を防止
できるとともに、反強磁性膜の温度上昇によって生じる
MRヘッドの特性劣化を防止でき、信頼性が向上する。
With the above structure, corrosion of the antiferromagnetic film can be prevented, and characteristic deterioration of the MR head caused by temperature rise of the antiferromagnetic film can be prevented, so that reliability is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例における磁気抵抗効果型磁気
ヘッドを示す正面図
FIG. 1 is a front view showing a magnetoresistive head according to an embodiment of the present invention.

【図2】本発明の第2の実施例における磁気抵抗効果型
磁気ヘッドを示す正面図
FIG. 2 is a front view showing a magnetoresistive effect magnetic head according to a second embodiment of the invention.

【図3】本発明の第3の実施例における磁気抵抗効果型
磁気ヘッドを示す正面図
FIG. 3 is a front view showing a magnetoresistive effect magnetic head according to a third embodiment of the invention.

【図4】本発明の第4の実施例における磁気抵抗効果型
磁気ヘッドを示す正面図
FIG. 4 is a front view showing a magnetoresistive head according to a fourth embodiment of the present invention.

【図5】本発明の一実施例における磁気抵抗効果型磁気
ヘッドの製造方法を示す工程図
FIG. 5 is a process diagram showing a method of manufacturing a magnetoresistive effect magnetic head according to an embodiment of the present invention.

【図6】本発明の一実施例における磁気抵抗効果型磁気
ヘッドの製造方法を示す工程図
FIG. 6 is a process diagram showing a method of manufacturing a magnetoresistive effect magnetic head according to an embodiment of the present invention.

【図7】本発明の一実施例における磁気抵抗効果型磁気
ヘッドの製造方法を示す工程図
FIG. 7 is a process diagram showing a method of manufacturing a magnetoresistive effect magnetic head according to an embodiment of the present invention.

【図8】本発明の一実施例における磁気抵抗効果型磁気
ヘッドの製造方法を示す工程図
FIG. 8 is a process diagram showing a method of manufacturing a magnetoresistive effect magnetic head according to an embodiment of the present invention.

【図9】本発明の一実施例における磁気抵抗効果型磁気
ヘッドの製造方法を示す工程図
FIG. 9 is a process diagram showing a method of manufacturing a magnetoresistive effect magnetic head according to an embodiment of the present invention.

【図10】本発明の一実施例における磁気抵抗効果型磁
気ヘッドの製造方法を示す工程図
FIG. 10 is a process diagram showing a method of manufacturing a magnetoresistive effect magnetic head according to an embodiment of the present invention.

【図11】本発明の一実施例における磁気抵抗効果型磁
気ヘッドの製造方法を示す工程図
FIG. 11 is a process diagram showing a method of manufacturing a magnetoresistive effect magnetic head according to an embodiment of the present invention.

【図12】本発明の一実施例における磁気抵抗効果型磁
気ヘッドの製造方法を示す工程図
FIG. 12 is a process chart showing a method of manufacturing a magnetoresistive effect magnetic head according to an embodiment of the present invention.

【図13】従来の磁気抵抗効果型磁気ヘッドを示す正面
FIG. 13 is a front view showing a conventional magnetoresistive head.

【図14】温度と磁区を制御する磁界の大きさとの関係
を示すグラフ
FIG. 14 is a graph showing the relationship between temperature and the magnitude of a magnetic field that controls magnetic domains.

【符号の説明】[Explanation of symbols]

1 基板 2,4,10,12,14,16 絶縁層 3 下部シールド層 5 軟磁性膜 6 中間層 7 磁気抵抗効果膜 8 反強磁性膜 9 リード層 11 上部シールド層 13,15 軟磁性層 17 保護膜 18 リード層 19 硬質磁性体 20 下地層 1 substrate 2,4,10,12,14,16 Insulation layer 3 Lower shield layer 5 Soft magnetic film 6 Middle class 7 Magnetoresistive film 8 Antiferromagnetic film 9 Lead layer 11 Upper shield layer 13,15 Soft magnetic layer 17 Protective film 18 Lead layer 19 Hard magnetic material 20 Underlayer

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G11B 5/39 ─────────────────────────────────────────────────── ─── Continuation of the front page (58) Fields surveyed (Int.Cl. 7 , DB name) G11B 5/39

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】基板上に磁気抵抗効果膜を形成し、前記磁
気抵抗効果膜上にFeMn系合金で構成された反強磁性
膜を積層し、前記反強磁性膜上に保護膜を形成する磁気
抵抗効果型磁気ヘッドの製造方法であって、反強磁性膜
及び保護膜を真空中で成膜するとともに、前記反強磁性
膜を形成した後に、真空を破る事なく引き続いて保護膜
を形成し、前記保護膜の上にリード層を形成し、前記保
護膜を構成する材料としてFe,Mnよりも酸化物形成
エネルギーが小さい元素のうち少なくとも1種の元素あ
るいはアモルファス合金を用いることを特徴とする磁気
抵抗効果型磁気ヘッドの製造方法。
1. A magnetoresistive film is formed on a substrate, an antiferromagnetic film made of a FeMn-based alloy is laminated on the magnetoresistive film, and a protective film is formed on the antiferromagnetic film. A method of manufacturing a magnetoresistive effect magnetic head, wherein an antiferromagnetic film and a protective film are formed in a vacuum, and after forming the antiferromagnetic film, a protective film is continuously formed without breaking the vacuum. Then, a lead layer is formed on the protective film, and the protective layer is formed.
Oxide formation than Fe and Mn as materials for protective film
At least one of the elements with low energy
A method of manufacturing a magnetoresistive effect magnetic head, characterized by using an amorphous alloy .
【請求項2】Fe,Mnよりも酸化物形成エネルギーが
小さい元素がCr,Ta,Ti,Ni,Cuであること
を特徴とする請求項記載の磁気抵抗効果型磁気ヘッド
の製造方法
Wherein Fe, oxide formation energy smaller elements Cr, Ta, Ti, Ni, magnetoresistive head according to claim 1, characterized in that the Cu than Mn
Manufacturing method .
【請求項3】基板上に磁気抵抗効果膜を形成し、前記磁
気抵抗効果膜上に反強磁性膜を積層し、前記反強磁性膜
上に保護膜を形成する磁気抵抗効果型磁気ヘッドの製造
方法であって、反強磁性膜及び保護膜を真空中で成膜す
るとともに、前記反強磁性膜を形成した後に、真空を破
る事なく引き続いて保護膜を形成し、前記保護膜の上に
リード層を形成し、前記保護膜として硬質磁性体を用
い、前記硬質磁性膜としてCoNiPt,CoPt,C
oCrPt,CoCrTa,CoCrTaPt,CoN
iCr,CoNiCrPt,CoNiのうち1種を用い
ることを特徴とする磁気抵抗効果型磁気ヘッドの製造方
3. A magnetoresistive film is formed on a substrate, and the magnetic
The antiferromagnetic film is laminated on the air resistance effect film,
Manufacture of a magnetoresistive effect magnetic head with a protective film formed on it
A method for forming an antiferromagnetic film and a protective film in vacuum
In addition, the vacuum is broken after the antiferromagnetic film is formed.
Without fail, form a protective film continuously on the protective film
A lead layer is formed, a hard magnetic material is used as the protective film, and CoNiPt, CoPt, C are used as the hard magnetic film.
oCrPt, CoCrTa, CoCrTaPt, CoN
NiCr, CoNiCrPt, producing side of magnetoresistance effect magnetic head you characterized by using one of the CoNi
Law .
【請求項4】反強磁性膜上に下地層を介して硬質磁性体
を設けることを特徴とする請求項記載の磁気抵抗効果
型磁気ヘッドの製造方法
4. A method of manufacturing a magnetoresistive effect type magnetic head according to claim 3, wherein a hard magnetic material is provided on the antiferromagnetic film via an underlayer.
JP23965293A 1993-09-27 1993-09-27 Method of manufacturing magnetoresistive head Expired - Lifetime JP3367161B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23965293A JP3367161B2 (en) 1993-09-27 1993-09-27 Method of manufacturing magnetoresistive head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23965293A JP3367161B2 (en) 1993-09-27 1993-09-27 Method of manufacturing magnetoresistive head

Publications (2)

Publication Number Publication Date
JPH0793719A JPH0793719A (en) 1995-04-07
JP3367161B2 true JP3367161B2 (en) 2003-01-14

Family

ID=17047893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23965293A Expired - Lifetime JP3367161B2 (en) 1993-09-27 1993-09-27 Method of manufacturing magnetoresistive head

Country Status (1)

Country Link
JP (1) JP3367161B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7061729B2 (en) * 2002-05-16 2006-06-13 International Business Machines Corporation Protective cap in lead overlay magnetic sensors

Also Published As

Publication number Publication date
JPH0793719A (en) 1995-04-07

Similar Documents

Publication Publication Date Title
JP3520170B2 (en) Composite type thin film magnetic head
US6190764B1 (en) Inductive write head for magnetic data storage media
US6221218B1 (en) Method of forming an inductive write head for magnetic data storage media
EP0851411B1 (en) Thin film magnetic head and magnetic recording/reproducing apparatus
JP3990751B2 (en) Magnetoresistive magnetic head and magnetic recording / reproducing apparatus
JP3388685B2 (en) Magnetic head
JP2817501B2 (en) Magnetic disk drive and magnetic head used therefor
JP3263018B2 (en) Magnetoresistive element and method of manufacturing the same
JP3155234B2 (en) Thin film magnetic head and method of manufacturing the same
US5959813A (en) Combination read/write thin film magnetic head using a shielding magnetic layer
JP3817399B2 (en) Magnetoresistive sensor
JP3367161B2 (en) Method of manufacturing magnetoresistive head
JPH10241125A (en) Thin film magnetic head and recording/reproducing separation type magnetic head and magnetic recording/ reproducing apparatus using the same
US6042897A (en) Combination read/write thin film magnetic head and its manufacturing method
JPH0660333A (en) Magneto-resistance effect head
JP3475868B2 (en) Magnetoresistive thin-film magnetic head
JP2001250205A (en) Thin film magnetic head and of its manufacturing method
JP3036587B2 (en) Magnetoresistive head and method of manufacturing the same
JP3204871B2 (en) Magnetoresistive head
JPH07320235A (en) Magneto-resistance effect type head and its production
JPH07254114A (en) Magnetic head
JPH08221717A (en) Magneto-resistive magnetic head
JPH08153313A (en) Magneto-resistance effect type head and magnetic disk device
JPH0785427A (en) Magnetoresistance effect magnetic head
JPH07129929A (en) Magneto-resistance effect type magnetic head

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071108

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081108

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091108

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091108

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101108

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111108

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121108

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121108

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131108

Year of fee payment: 11

EXPY Cancellation because of completion of term