JPH0785427A - Magnetoresistance effect magnetic head - Google Patents

Magnetoresistance effect magnetic head

Info

Publication number
JPH0785427A
JPH0785427A JP23119593A JP23119593A JPH0785427A JP H0785427 A JPH0785427 A JP H0785427A JP 23119593 A JP23119593 A JP 23119593A JP 23119593 A JP23119593 A JP 23119593A JP H0785427 A JPH0785427 A JP H0785427A
Authority
JP
Japan
Prior art keywords
film
magnetoresistive effect
antiferromagnetic
layer
magnetoresistive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23119593A
Other languages
Japanese (ja)
Inventor
Naoki Koga
直樹 古賀
Hiroshi Tomiyasu
弘 冨安
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP23119593A priority Critical patent/JPH0785427A/en
Publication of JPH0785427A publication Critical patent/JPH0785427A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Heads (AREA)

Abstract

PURPOSE:To improve the reliability of an MR head, reduce thermal noises and prevent the generation of Barkhausen noises by regulating the distance between the contact boundary of an antiferromagnetic film and an MR film and the contact boundary of a lead layer and the MR film in the direction of a sense current in a predetermined range. CONSTITUTION:An MR head is generally in the same constitution as a conventional one. When is particularly different from the conventional one is that the distance (d) in the direction of a sense current between the contact boundary 50 of an antiferromagnetic film 8 and an MR film 7 and the contact boundary 51 of a lead layer 9 and the MR layer 7 is regulated to be 1.5 to 4mum. At this time, even when a track width is narrowed to not larger than 5mum to achieve a high density, the MR head shows an electric resistance as represented by a theoretical value and to deterioration of sensitivity without Barkhausen noises.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は磁気ディスク装置等の磁
気記録装置に用いられる磁気抵抗効果型磁気ヘッド(以
下MRヘッドと略す)に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetoresistive effect magnetic head (hereinafter abbreviated as MR head) used in a magnetic recording device such as a magnetic disk device.

【0002】[0002]

【従来の技術】磁気記録分野における小型化・大容量化
の要求には目ざましいものがある。例えば、磁気ディス
ク装置を見てみるとディスク径は、3.5インチから
2.5インチ、 1.8インチと小さくなってきており、
磁気ディスク一枚当りの容量も2.5インチ150メガ
バイトと言われている。
2. Description of the Related Art There is a remarkable demand for miniaturization and large capacity in the magnetic recording field. For example, looking at a magnetic disk device, the disk diameter is decreasing from 3.5 inches to 2.5 inches, 1.8 inches,
The capacity of one magnetic disk is also said to be 2.5 inches and 150 megabytes.

【0003】これらの要求に応えるため磁気ディスクと
して高保磁力、高残留磁束密度、低ノイズの特徴を有す
る金属薄膜ディスクが開発され、磁気ヘッドとしてメタ
ルインギャップヘッドや薄膜ヘッド、さらに、金属磁性
膜を積層した積層型磁気ヘッド等が開発されてきた。
In order to meet these demands, a metal thin film disk having characteristics of high coercive force, high residual magnetic flux density and low noise has been developed as a magnetic disk. As a magnetic head, a metal in-gap head, a thin film head, and a metal magnetic film are used. Laminated laminated magnetic heads have been developed.

【0004】しかし、これらの磁気ヘッドは全て電磁誘
導現象を利用したものであり、その再生出力は磁気ヘッ
ド,磁気ディスク間相対速度に比例する。そのため、さ
らに磁気ディスクの径が小さくなると、もはや十分な再
生出力を得ることが出来なくなっている。そのため、現
在磁気抵抗効果を利用して磁気ディスクからの磁束を感
磁する磁気抵抗効果型磁気ヘッド(以下MRヘッド)が
提案されている。
However, all of these magnetic heads utilize the phenomenon of electromagnetic induction, and the reproduction output thereof is proportional to the relative speed between the magnetic head and the magnetic disk. Therefore, when the diameter of the magnetic disk is further reduced, it is no longer possible to obtain a sufficient reproduction output. Therefore, a magnetoresistive effect type magnetic head (hereinafter referred to as an MR head), which senses the magnetic flux from the magnetic disk by utilizing the magnetoresistive effect, is currently proposed.

【0005】ここで、図8は従来のMRヘッドを示す正
面図である。図中1はAl2 3 ,TiC等のセラミッ
ク材から構成された基板、2はAl2 3 ,SiO2
から構成された絶縁層、3はNiFe等の軟磁性材料か
ら構成される下部シールド層、4はAl2 3 ,SiO
2 等の絶縁材料からなり下部再生ギャップとなる絶縁
層、7はNiFe等の磁気抵抗効果現象を示す材料で構
成された磁気抵抗効果膜(以下MR膜と略す)、5はア
モルファス合金,NiFe等の軟磁性材料より構成さ
れ、MR膜7に横バイアス磁界を与えるための軟磁性
膜、6はTa,Ti,SiO2 等からなり軟磁性膜5と
MR膜7とを磁気的に分離する中間層、8はFeMn系
合金等からなりMR膜7の磁区を制御するための反強磁
性膜、9は例えばAu、W等の導電性材料より構成され
たリード層、10はAl2 3 ,SiO 2 等の絶縁材料
より構成され、上部再生ギャップとなる絶縁層、11は
NiFe等の軟磁性材料からなる上部シールド層、12
はAl2 3 ,SiO2 等からなり再生ヘッドであるM
Rヘッドと記録ヘッドとを分離する絶縁層、13はNi
Fe等の軟磁性層からなる記録ヘッドの下部コア層、1
4はAl2 3 ,SiO2等からなり記録ギャップとな
る絶縁層、15はNiFe等の軟磁性層からなる記録ヘ
ッドの上部コア層、16はAl2 3 等からなり全体の
保護層となる絶縁層である。
Here, FIG. 8 shows a conventional MR head.
It is a side view. 1 in the figure is Al2O3, TiC, etc.
Substrate composed of black material, 2 is Al2O3, SiO2etc
Insulating layer composed of 3 is soft magnetic material such as NiFe
Lower shield layer composed of 4 and Al2O3, SiO
2Insulation that is made of insulating material such as
The layer 7 is made of a material exhibiting a magnetoresistive effect phenomenon such as NiFe.
The formed magnetoresistive film (hereinafter abbreviated as MR film),
Composed of soft magnetic material such as morphus alloy, NiFe
Soft magnetism for applying a lateral bias magnetic field to the MR film 7.
Film, 6 is Ta, Ti, SiO2And the soft magnetic film 5
An intermediate layer that magnetically separates from the MR film 7, 8 is FeMn-based
Antiferromagnet for controlling magnetic domain of MR film 7 made of alloy or the like
The conductive film 9 is made of a conductive material such as Au or W.
Lead layer, 10 is Al2O3, SiO 2Insulation material such as
Insulating layer 11, which is composed of
An upper shield layer made of a soft magnetic material such as NiFe, 12
Is Al2O3, SiO2M which is a reproducing head consisting of
An insulating layer for separating the R head and the recording head, 13 is Ni
Lower core layer of a recording head composed of a soft magnetic layer such as Fe, 1
4 is Al2O3, SiO2And recording gap
Is an insulating layer, and 15 is a recording layer made of a soft magnetic layer such as NiFe.
Upper core layer of the pad, 16 is Al2O3Consists of etc.
An insulating layer that serves as a protective layer.

【0006】このヘッドの場合、記録のトラック幅と再
生のトラック幅とを個別に設定できるため、ワイドライ
ト−ナローリード(広く記録して狭く再生する。)が可
能となっている。また、出力の線形性を保つための横バ
イアス方式としてSAL(Soft−Adjacent
−Layer)バイアス方式を呼ばれる方法を用いてお
り、MR膜7に流れるセンス電流により発生する磁界で
軟磁性膜5を磁化させ、軟磁性膜5の磁化から発生する
磁界によりMR膜7にバイアス磁界を印加するものであ
る。また、反強磁性膜8はMRヘッド特有のバルクハウ
ゼンノイズを抑制するためにMR膜7の磁区を制御する
ためのものであり、MR膜7との間に働く交換結合磁界
によりトラック幅方向(図中矢印で示す)に抑制磁界を
与えMR膜7を単磁区化するものである。
In this head, since the recording track width and the reproducing track width can be set individually, wide write-narrow read (wide recording and narrow reproducing) is possible. Further, as a lateral bias method for maintaining the linearity of the output, SAL (Soft-Adjacent) is used.
-Layer) bias method is used, the soft magnetic film 5 is magnetized by a magnetic field generated by a sense current flowing through the MR film 7, and a bias magnetic field is applied to the MR film 7 by a magnetic field generated by the magnetization of the soft magnetic film 5. Is applied. The antiferromagnetic film 8 is for controlling the magnetic domains of the MR film 7 in order to suppress Barkhausen noise peculiar to the MR head, and the exchange coupling magnetic field working with the MR film 7 causes the magnetic field in the track width direction ( (Indicated by an arrow in the figure), a suppressing magnetic field is applied to make the MR film 7 into a single magnetic domain.

【0007】このような構成のMRヘッドの動作を簡単
に説明する。記録ヘッドにより磁気記録媒体に記録され
た磁化から発生する磁界がMR膜7のトラック部に流入
するとその磁束の大きさによって電気抵抗が変化する。
このとき、MR膜7にはセンス電流を流しているため電
気抵抗の変化を電圧変化として検出することが出来る。
The operation of the MR head having such a configuration will be briefly described. When the magnetic field generated by the magnetization recorded on the magnetic recording medium by the recording head flows into the track portion of the MR film 7, the electric resistance changes depending on the magnitude of the magnetic flux.
At this time, since the sense current is flowing through the MR film 7, the change in electric resistance can be detected as a voltage change.

【0008】この時、軟磁性膜5の膜厚や飽和磁束密度
の大きさを変えることによりバイアス磁界の大きさを変
え最適バイアスを与えるようにする。
At this time, by changing the thickness of the soft magnetic film 5 and the magnitude of the saturation magnetic flux density, the magnitude of the bias magnetic field is changed to provide the optimum bias.

【0009】また、このように反強磁性膜8間の幅がリ
ード層間の幅よりも広い構造はすでに特開昭62−40
610号公報に示されている。
Further, such a structure in which the width between the antiferromagnetic films 8 is wider than the width between the lead layers has already been disclosed in JP-A-62-40.
No. 610 publication.

【0010】[0010]

【発明が解決しようとする課題】しかしながら、上記従
来例では反強磁性膜間の幅とリード層間の幅との差につ
いては何の言及もしていなかった。
However, in the above-mentioned conventional example, no mention is made of the difference between the width between the antiferromagnetic films and the width between the lead layers.

【0011】現在、上述したように記録密度の向上とと
もにリード層間の間隔が狭くなる。即ちトラック幅が狭
くなってきている。このとき反強磁性膜間の幅とリード
層間の幅との差が小さくなるということは反強磁性膜間
の間隔が狭くなることを示している。反強磁性膜間の間
隔が狭くなるとMR膜との界面で発生している交換結合
磁界のトラック部への影響が強くなってしまい、MR膜
の感度が低下するという課題があった。また、リード層
が直接MR膜に接している部分が狭くなるため、リード
層を含めたMR素子間の電気抵抗が増加してしまい、こ
の電気抵抗に依存した熱雑音が増えるためSN比が低下
したり、電流による発熱が増加するといった課題があっ
た。
At present, as described above, the gap between the lead layers becomes narrower as the recording density is improved. That is, the track width is becoming narrower. At this time, the fact that the difference between the width between the antiferromagnetic films and the width between the lead layers becomes small indicates that the distance between the antiferromagnetic films becomes narrow. When the distance between the antiferromagnetic films becomes narrow, the effect of the exchange coupling magnetic field generated at the interface with the MR film on the track portion becomes strong, and there is a problem that the sensitivity of the MR film decreases. Further, since the portion where the lead layer is in direct contact with the MR film is narrowed, the electrical resistance between the MR elements including the lead layer increases, and thermal noise depending on this electrical resistance increases, so the SN ratio decreases. However, there is a problem that heat generation due to electric current increases.

【0012】また、逆に反強磁性膜間の間隔がリード層
間の間隔に比べて広すぎると、電気抵抗は理論値通りの
値になるものの交換結合磁界の効果がなくなりバルクハ
ウゼンノイズ抑制の効果が低下するという課題があっ
た。
On the contrary, if the distance between the antiferromagnetic films is too wide as compared with the distance between the lead layers, the electric resistance becomes a value according to the theoretical value, but the effect of the exchange coupling magnetic field disappears and the effect of suppressing Barkhausen noise is reduced. However, there was a problem that

【0013】従って、本発明は上記課題を解決し、Fe
Mn系合金を用いたMRヘッドの低電気抵抗化を図ると
ともに感度の低下がなくかつバルクハウゼンノイズの発
生しない高性能のMRヘッドを提供することを目的とし
ている。
Therefore, the present invention solves the above-mentioned problems, and
It is an object of the present invention to provide a high-performance MR head that uses an Mn-based alloy to reduce the electric resistance, does not lower sensitivity, and does not generate Barkhausen noise.

【0014】[0014]

【課題を解決するための手段】上記目的を達成するため
に、基板上に設けられた磁気抵抗効果素子と、磁気抵抗
効果素子に接続された反強磁性膜及びリード層を備え、
反強磁性膜の先端部の磁気抵抗効果素子との接触境界と
前記リード層の先端部の磁気抵抗効果型薄膜磁気ヘッド
効果素子との接触境界のセンス電流の流れる方向に沿っ
た間隔を1.5μmから4μmで構成した。
In order to achieve the above object, a magnetoresistive effect element provided on a substrate and an antiferromagnetic film and a lead layer connected to the magnetoresistive effect element are provided,
The contact boundary between the tip of the antiferromagnetic film and the magnetoresistive effect element and the contact boundary between the tip of the lead layer and the magnetoresistive thin-film magnetic head effect element are set at intervals of 1. It was composed of 5 μm to 4 μm.

【0015】[0015]

【作用】本発明は上記構成により、低電気抵抗化を達成
することができMRヘッドの信頼性を向上し、かつ熱雑
音を低減することができるとともに感度の低下がなく、
バルクハウゼンノイズの発生しないMRヘッドを得るこ
とができる。
According to the present invention, with the above structure, a low electric resistance can be achieved, the reliability of the MR head can be improved, thermal noise can be reduced, and the sensitivity is not deteriorated.
An MR head without Barkhausen noise can be obtained.

【0016】[0016]

【実施例】【Example】

(実施例1)図1は本発明の一実施例におけるMRヘッ
ドを示す正面図である。図1においては、1は基板、2
は絶縁層、3は下部シールド層、4は絶縁層、7はMR
膜、5は軟磁性膜、6は中間層、8は反強磁性膜、9は
リード層、10は絶縁層、11は上部シールド層、12
は絶縁層、13は下部コア層、14は絶縁層、15は上
部コア層、16は絶縁層で、これらは従来例と同様の構
成となっている。
(Embodiment 1) FIG. 1 is a front view showing an MR head in an embodiment of the present invention. In FIG. 1, 1 is a substrate, 2
Is an insulating layer, 3 is a lower shield layer, 4 is an insulating layer, and 7 is MR.
Film, 5 is a soft magnetic film, 6 is an intermediate layer, 8 is an antiferromagnetic film, 9 is a lead layer, 10 is an insulating layer, 11 is an upper shield layer, 12
Is an insulating layer, 13 is a lower core layer, 14 is an insulating layer, 15 is an upper core layer, and 16 is an insulating layer. These have the same configurations as in the conventional example.

【0017】図2にMR素子部を拡大した図を示す。本
実施例において従来例と異なっているのは、反強磁性膜
8のMR膜7との接触境界50とリード層9のMR膜7
との接触境界51のセンス電流の流れる方向に沿った間
隔(図中dで示す)が1.5μmから4μmとなるよう
に規定していることである。
FIG. 2 shows an enlarged view of the MR element portion. The present embodiment is different from the conventional example in that the contact boundary 50 of the antiferromagnetic film 8 with the MR film 7 and the MR film 7 of the lead layer 9 are different.
The interval (indicated by d in the figure) along the sense current flowing direction of the contact boundary 51 with is defined to be 1.5 μm to 4 μm.

【0018】ここで、リード層9間の幅(トラック幅)
及びdの値を種々変えたMRヘッドを試作し、その時の
電気抵抗,出力,バルクハウゼンノイズの発生確率を測
定した。出力及びバルクハウゼンノイズの発生確率の測
定は2.5インチ磁気ディスクを用い、周速5.4m/
s,周波数6MHzで行った。バルクハウゼンノイズの
発生確率の定義としては32回の連続記録再生を行い、
その時の出力の平均値(X)と標準偏差(σ)を求めσ
/Xとした。
Here, the width between the lead layers 9 (track width)
MR heads having various values of d and d were prototyped, and the electrical resistance, output, and Barkhausen noise occurrence probability at that time were measured. The output and the probability of Barkhausen noise occurrence were measured using a 2.5-inch magnetic disk, with a peripheral speed of 5.4 m /
s, frequency 6 MHz. As the definition of Barkhausen noise occurrence probability, 32 times of continuous recording and reproduction are performed.
Calculate the average value (X) and standard deviation (σ) of the output at that time
/ X.

【0019】図3にトラック幅を3μm、MRハイトを
2μmとした時のdの値に対する電気抵抗の変化のグラ
フを示す。dの値が1.5μm以下になると電気抵抗が
理論値からはずれ増加している。
FIG. 3 is a graph showing changes in electric resistance with respect to the value of d when the track width is 3 μm and the MR height is 2 μm. When the value of d is 1.5 μm or less, the electric resistance deviates from the theoretical value and increases.

【0020】図4にトラック幅を3μmとした時のdの
値に対するバルクハウゼンノイズの発生確率を示す。d
の値が4μmよりも大きくなると通常問題ないとされて
いる3%程度よりも大きくなっている。
FIG. 4 shows the probability of occurrence of Barkhausen noise with respect to the value of d when the track width is 3 μm. d
When the value of is larger than 4 μm, it is larger than about 3% which is generally considered to be no problem.

【0021】図5にトラック幅を変えた時のdの値に対
する出力を示す。トラック幅が6μm程度ではdの値に
対して出力はほとんど変化しないが、トラック幅が5μ
m以下になってくるとdの値が小さい程出力が低下して
いる。
FIG. 5 shows the output with respect to the value of d when the track width is changed. When the track width is about 6 μm, the output hardly changes with respect to the value of d, but the track width is 5 μm.
When it becomes m or less, the smaller the value of d, the lower the output.

【0022】本発明のようにdの値を1.5μmから4
μmとなるように規定することによって、トラック幅が
5μm以下と狭くなり高密度化した時にでも、理論値通
りの電気抵抗を持ちかつ感度の低下がなくバルクハウゼ
ンノイズのないMRヘッドを得ることができる。
As in the present invention, the value of d is changed from 1.5 μm to 4
By defining the width to be μm, it is possible to obtain an MR head that has the electric resistance according to the theoretical value, does not decrease in sensitivity, and has no Barkhausen noise even when the track width is narrowed to 5 μm or less and the density is increased. it can.

【0023】なお、リード層9に用いたAuは電気抵抗
が低くリード層9として適しているが成膜条件によって
はMR膜7との付着力がとれず電気抵抗が増加すること
があるため、リード層9としてTa,Ti,Cr,Nb
のうち一種の金属を下地膜とし主材料としてAuを用い
た2層膜あるいは前記金属によりAuを挟んだ構造の3
層膜を用いることが好ましい。
Au used for the lead layer 9 has a low electric resistance and is suitable for the lead layer 9. However, depending on the film forming conditions, the adhesive force with the MR film 7 may be lost and the electric resistance may increase. Ta, Ti, Cr, Nb as the lead layer 9
A two-layer film in which one of the metals is a base film and Au is used as a main material, or a structure in which Au is sandwiched between the metals
It is preferable to use a layer film.

【0024】(実施例2)本発明の第2の実施例を図6
に示す。図1で示したものと同一の番号は同一の機能を
示すものであり説明は省略する。本発明では反強磁性膜
8を設ける下のMR膜7の厚みを他の部分の厚みよりも
薄くしている。図7にMRとして用いているNiFeの
厚みとFeMnとNiFe間に発生する交換結合磁界と
の関係を示す。交換結合磁界はNiFeの厚みが薄くな
るほど強くなるため、本実施例のように反強磁性膜8の
下のMR膜の厚みを薄くすることにより交換結合磁界を
強くすることができる。実際には反強磁性膜8の下のM
R膜の厚みを制御することにより交換結合磁界の値を制
御することができる。
(Embodiment 2) A second embodiment of the present invention is shown in FIG.
Shown in. The same reference numerals as those shown in FIG. 1 indicate the same functions, and the description thereof will be omitted. In the present invention, the thickness of the MR film 7 below which the antiferromagnetic film 8 is provided is made smaller than the thickness of other portions. FIG. 7 shows the relationship between the thickness of NiFe used as the MR and the exchange coupling magnetic field generated between FeMn and NiFe. Since the exchange coupling magnetic field becomes stronger as the thickness of NiFe becomes thinner, the exchange coupling magnetic field can be made stronger by reducing the thickness of the MR film below the antiferromagnetic film 8 as in this embodiment. Actually, M under the antiferromagnetic film 8
The value of the exchange coupling magnetic field can be controlled by controlling the thickness of the R film.

【0025】[0025]

【発明の効果】本発明は、上述した構成により、トラッ
ク幅が狭くなった時でも、低電気抵抗化を達成できると
ともに、感度の低下がなくかつバルクハウゼンノイズの
発生しない高密度化に適したMRヘッドを得ることがで
きる。
The present invention, which has the above-described structure, is suitable for achieving a high electric density even when the track width is narrowed, achieving a low electric resistance, and not causing a decrease in sensitivity and causing no Barkhausen noise. An MR head can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の(実施例1)における磁気抵抗効果型
磁気ヘッドを示す正面図
FIG. 1 is a front view showing a magnetoresistive effect magnetic head according to a first embodiment of the present invention.

【図2】本発明の(実施例1)における磁気抵抗効果型
磁気ヘッドの拡大図
FIG. 2 is an enlarged view of a magnetoresistive effect magnetic head according to (Embodiment 1) of the present invention.

【図3】dの値と電気抵抗との関係を示すグラフFIG. 3 is a graph showing the relationship between the value of d and electric resistance.

【図4】dの値とバルクハウゼンノイズの発生確率との
関係を示すグラフ
FIG. 4 is a graph showing the relationship between the value of d and the occurrence probability of Barkhausen noise.

【図5】dの値と出力との関係を示すグラフFIG. 5 is a graph showing the relationship between the value of d and the output.

【図6】本発明の(実施例2)における磁気抵抗効果型
磁気ヘッドを示す正面図
FIG. 6 is a front view showing a magnetoresistive effect magnetic head according to a second embodiment of the present invention.

【図7】NiFe膜厚と交換結合磁界との関係を示すグ
ラフ
FIG. 7 is a graph showing the relationship between the NiFe film thickness and the exchange coupling magnetic field.

【図8】従来の磁気抵抗効果型磁気ヘッドを示す正面図FIG. 8 is a front view showing a conventional magnetoresistive effect magnetic head.

【符号の説明】[Explanation of symbols]

1 基板 2,4,10,12,14,16 絶縁層 3 下部シールド層 5 軟磁性膜 6 中間層 7 磁気抵抗効果膜(MR膜) 8 反強磁性膜 9 リード層 11 上部シールド層 13 下部コア層 15 上部コア層 1 Substrate 2,4,10,12,14,16 Insulating Layer 3 Lower Shield Layer 5 Soft Magnetic Film 6 Intermediate Layer 7 Magnetoresistive Effect Film (MR Film) 8 Antiferromagnetic Film 9 Lead Layer 11 Upper Shield Layer 13 Lower Core Layer 15 Upper core layer

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】基板と、前記基板上に設けられた磁気抵抗
効果素子と、前記磁気抵抗効果素子に接続された反強磁
性膜と、前記反強磁性膜上に設けられしかも前記磁気抵
抗効果素子膜に接続され更に前記磁気抵抗効果素子にセ
ンス電流を供給するリード層とを備え、前記反強磁性膜
の先端部の磁気抵抗効果素子との接触境界と前記リード
層の先端部の磁気抵抗効果型薄膜磁気ヘッド効果素子と
の接触境界のセンス電流の流れる方向に沿った間隔を
1.5μmから4μmで構成したことを特徴とする磁気
抵抗効果型磁気ヘッド。
1. A substrate, a magnetoresistive effect element provided on the substrate, an antiferromagnetic film connected to the magnetoresistive effect element, and the magnetoresistive effect provided on the antiferromagnetic film. A lead layer connected to the element film and supplying a sense current to the magnetoresistive effect element, the contact boundary between the magnetoresistive effect element at the tip of the antiferromagnetic film and the magnetoresistance at the tip of the lead layer. Effect type thin film magnetic head A magnetoresistive effect type magnetic head, characterized in that the interval between the contact boundary with the effect element is 1.5 μm to 4 μm along the direction in which the sense current flows.
【請求項2】磁気抵抗効果膜の反強磁性膜が接触する部
分の厚みを他の部分の厚みよりも薄くしたことを特徴と
する請求項1記載の磁気抵抗効果型磁気ヘッド。
2. A magnetoresistive effect type magnetic head according to claim 1, wherein a thickness of a portion of the magnetoresistive effect film in contact with the antiferromagnetic film is made thinner than that of other portions.
【請求項3】磁気抵抗効果膜としてNiFe合金を用
い、反強磁性膜としてFeMn系合金を用い、リード層
としてTa,Ti,Cr,Nbのうち一種の金属を下地
膜とし主材料としてAuを用いた2層膜あるいは金属に
よりAuを挟んだ構造の3層膜を用いることを特徴とす
る請求項1記載の磁気抵抗効果型磁気ヘッド。
3. A NiFe alloy is used as the magnetoresistive film, a FeMn-based alloy is used as the antiferromagnetic film, one kind of metal among Ta, Ti, Cr, and Nb is used as the lead layer, and Au is used as the main material. 2. The magnetoresistive head according to claim 1, wherein the used two-layer film or a three-layer film having a structure in which Au is sandwiched by a metal is used.
【請求項4】基板と、前記基板上に設けられた磁気抵抗
効果素子と、前記磁気抵抗効果素子に第1の所定間隔を
もって接続されしかも互いに接触しない一対の反強磁性
膜と、前記一対に反強磁性膜の上にそれぞれ設けられし
かも前記磁気抵抗効果素子に前記第1の所定間隔よりも
狭い第2の所定間隔をもって接続され更に互いに接触せ
ず加えて前記磁気抵抗効果素子にセンス電流を供給する
一対のリード層とを備え、少なくとも一方の反強磁性膜
の磁気抵抗効果素子との接触境界と前記一方の反強磁性
膜上に設けられたリード層の磁気抵抗効果素子との接触
境界間のセンス電流の流れる方向に沿った間隔を1.5
μmから4μmで構成したことを特徴とする磁気抵抗効
果型磁気ヘッド。
4. A substrate, a magnetoresistive effect element provided on the substrate, a pair of antiferromagnetic films connected to the magnetoresistive effect element at a first predetermined distance and not in contact with each other, and the pair of antiferromagnetic films. Each of the magnetoresistive elements is provided on the antiferromagnetic film and is connected to the magnetoresistive effect element at a second predetermined interval narrower than the first predetermined interval. And a contact boundary between at least one antiferromagnetic film and the magnetoresistive effect element, and a contact boundary between the magnetoresistive effect element and the lead layer provided on the one antiferromagnetic film. The interval is 1.5 along the sense current flowing direction.
A magnetoresistive effect magnetic head characterized in that the magnetic head has a thickness of from 4 μm to 4 μm.
【請求項5】磁気抵抗効果膜の反強磁性膜が接触する部
分の厚みを他の部分の厚みよりも薄くしたことを特徴と
する請求項4記載の磁気抵抗効果型磁気ヘッド。
5. The magnetoresistive effect type magnetic head according to claim 4, wherein the thickness of a portion of the magnetoresistive effect film in contact with the antiferromagnetic film is made smaller than the thickness of other portions.
【請求項6】磁気抵抗効果膜としてNiFe合金を用
い、反強磁性膜としてFeMn系合金を用い、リード層
としてTa,Ti,Cr,Nbのうち一種の金属を下地
膜とし主材料としてAuを用いた2層膜あるいは金属に
よりAuを挟んだ構造の3層膜を用いることを特徴とす
る請求項4記載の磁気抵抗効果型磁気ヘッド。
6. A NiFe alloy is used as a magnetoresistive film, an FeMn alloy is used as an antiferromagnetic film, and one of Ta, Ti, Cr, and Nb is used as a lead layer and a main material is Au. 5. The magnetoresistive head according to claim 4, wherein the used two-layer film or a three-layer film having a structure in which Au is sandwiched by a metal is used.
JP23119593A 1993-09-17 1993-09-17 Magnetoresistance effect magnetic head Pending JPH0785427A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23119593A JPH0785427A (en) 1993-09-17 1993-09-17 Magnetoresistance effect magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23119593A JPH0785427A (en) 1993-09-17 1993-09-17 Magnetoresistance effect magnetic head

Publications (1)

Publication Number Publication Date
JPH0785427A true JPH0785427A (en) 1995-03-31

Family

ID=16919834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23119593A Pending JPH0785427A (en) 1993-09-17 1993-09-17 Magnetoresistance effect magnetic head

Country Status (1)

Country Link
JP (1) JPH0785427A (en)

Similar Documents

Publication Publication Date Title
JP3520170B2 (en) Composite type thin film magnetic head
JPH06215334A (en) Magnetic head
JPH09326104A (en) Magnetic head
JP3263018B2 (en) Magnetoresistive element and method of manufacturing the same
JP3474455B2 (en) Thin film magnetic head and method of manufacturing the same
JPH1083524A (en) Thin film magnetic head
JPH0785427A (en) Magnetoresistance effect magnetic head
JP3475868B2 (en) Magnetoresistive thin-film magnetic head
US5800935A (en) Magnetoresistive head
JP3367161B2 (en) Method of manufacturing magnetoresistive head
JP2001256617A (en) Thin-film magnetic head and method of manufacture
JP2001250205A (en) Thin film magnetic head and of its manufacturing method
JP3565925B2 (en) Magnetoresistive head
JP3175176B2 (en) Magnetoresistive head
JP3184430B2 (en) Recording / playback device for magnetic media
JPH07320235A (en) Magneto-resistance effect type head and its production
JPH11296820A (en) Magnetic head of magnetoresistance type
JP3407995B2 (en) Magnetoresistive head
JP3180778B2 (en) Spin valve type magnetoresistive head
JPH07254114A (en) Magnetic head
JP3083090B2 (en) Magnetoresistive sensor
JP3052910B2 (en) Magnetoresistive magnetic head
JPH0572642B2 (en)
JPH09153652A (en) Magnetoresistive effect element
JP2000276717A (en) Magnetoresistive head and its production