JPH0572642B2 - - Google Patents

Info

Publication number
JPH0572642B2
JPH0572642B2 JP9040084A JP9040084A JPH0572642B2 JP H0572642 B2 JPH0572642 B2 JP H0572642B2 JP 9040084 A JP9040084 A JP 9040084A JP 9040084 A JP9040084 A JP 9040084A JP H0572642 B2 JPH0572642 B2 JP H0572642B2
Authority
JP
Japan
Prior art keywords
storage medium
thin film
magnetoresistive
magnetic storage
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP9040084A
Other languages
Japanese (ja)
Other versions
JPS60234213A (en
Inventor
Nobuyuki Hayama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP9040084A priority Critical patent/JPS60234213A/en
Publication of JPS60234213A publication Critical patent/JPS60234213A/en
Publication of JPH0572642B2 publication Critical patent/JPH0572642B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Magnetic Heads (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は磁気記憶媒体に書き込まれた磁気的情
報を、いわゆる磁気抵抗効果を利用して、読み出
しを行う強磁性磁気抵抗効果素子(以下、MR素
子と称す)を備えた磁気抵抗効果ヘツド(以下、
MRヘツドと称す)に関する。
Detailed Description of the Invention (Industrial Field of Application) The present invention relates to a ferromagnetic magnetoresistive element (hereinafter referred to as "magnetoresistive element") that reads magnetic information written on a magnetic storage medium by using the so-called magnetoresistive effect. A magnetoresistive head (hereinafter referred to as MR element) equipped with
(referred to as MR head).

(従来技術とその問題点) 近年、MRヘツドは、磁気記録における記録密
度の向上に大きく貢献するものとして注目されて
いる。
(Prior art and its problems) In recent years, MR heads have attracted attention as a device that greatly contributes to improving the recording density in magnetic recording.

周知の如く、MR素子を磁気記憶媒体からの信
号磁界に対して、線形応答を呈する高効率の再生
ヘツドとして用いる場合には、MR素子に流すセ
ンス電流IとMR素子の磁化Mの成す角度を所定
の値に設定するバイアス手段が必要である。又、
記録密度の増大に対して、その最成分解能を高め
る手段も必要とされ種々の検討がなされている。
特に、高記録密度における再生分解能の低下は次
の様に説明されている。今、第1図に示すMR素
子1(長さL、幅h、厚みtMのストライプ状に形
成され、長さL方向にセンス電流Iが供給され適
当なバイアス磁界によつて磁化MとΘbの角度を
成す)と磁気記憶媒体2の相対的位置関係におい
て、磁気記憶媒体2からの信号磁界HSは低記録
密度時においては、MR素子1の幅h方向に充分
に印加され、MR素子1全体が抵抗変化に寄与し
大きい再生出力が得られる。しかし高記録密度時
には、MR素子1に充分な信号磁界HSが到達しえ
ず、抵抗変化に寄与するのは、磁気記憶媒体2に
最近接する領域のみとなり、大きく再生出力が低
下するとされている。更に、MR素子1の磁化M
のバイアス状態は一般に、幅hの中央部で最適と
なるように設定され(即ちΘb45度となる様に
設定されている)ているが、高記録密度時に最も
抵抗変化に寄与する、磁気記憶媒体2に最近接す
る領域では、MR素子1の幅h方向の反磁界のた
め、理想的バイアス状態は実現されておらず(即
ちΘb≪45度)、再生感度を低下させていた。
As is well known, when an MR element is used as a highly efficient reproducing head that exhibits a linear response to a signal magnetic field from a magnetic storage medium, the angle formed by the sense current I flowing through the MR element and the magnetization M of the MR element is A biasing means is required to set it to a predetermined value. or,
In response to an increase in recording density, there is a need for means for increasing the maximum component resolution, and various studies are being conducted.
In particular, the decrease in reproduction resolution at high recording densities is explained as follows. Now, the MR element 1 shown in FIG. 1 (formed in a stripe shape with length L, width h, and thickness tM ) is supplied with a sense current I in the direction of length L, and magnetized M and Θ by an appropriate bias magnetic field. b ) and the magnetic storage medium 2, the signal magnetic field H S from the magnetic storage medium 2 is sufficiently applied in the width h direction of the MR element 1 at low recording density, and the MR The entire element 1 contributes to the resistance change and a large reproduction output can be obtained. However, at high recording densities, a sufficient signal magnetic field H S cannot reach the MR element 1, and only the region closest to the magnetic storage medium 2 contributes to resistance changes, resulting in a significant drop in reproduction output. . Furthermore, the magnetization M of the MR element 1
The bias condition of is generally set to be optimal at the center of the width h (that is, it is set so that Θ b is 45 degrees), but the magnetic In the region closest to the storage medium 2, due to the demagnetizing field in the direction of the width h of the MR element 1, an ideal bias state was not realized (ie, Θ b <<45 degrees), reducing the reproduction sensitivity.

上述したMRヘツドの欠点を解決するため、特
開昭57−109121に、MR素子1の幅h中央部で磁
化Mを飽和させ(即ち、Θb90度に設定)磁気
記憶媒体2に最近接する領域のバイアス状態を最
高に設定(即ちΘb45度)する方法が開示され
ている。この手法によれば、低記録密度から高記
録密度にわたつて、抵抗変化に寄与するのは、磁
気記憶媒体2に最近接する領域のみであるので、
比較的良好な記録密度特性が得られる。
In order to solve the above-mentioned drawbacks of the MR head, in Japanese Patent Application Laid-Open No. 57-109121, the magnetization M is saturated at the center of the width h of the MR element 1 (that is, Θ b is set to 90 degrees), so that the head is closest to the magnetic storage medium 2. A method is disclosed to set the bias state of the region to the highest (ie, Θ b 45 degrees). According to this method, only the region closest to the magnetic storage medium 2 contributes to resistance change from low to high recording densities.
Relatively good recording density characteristics can be obtained.

しかし、この様なバイアス状態を実現するため
には、MR素子1に印加されるバイアス磁界は少
なくともMR素子1の幅h方向の反磁界以上に設
定しなかればならない。例えば、MR素子1とし
て飽和磁化M=800emu/c.c.のパーマロイを用い、
その寸法をtM=0.05μm、h=5μmに設定した場
合、反磁界(4πMtM/h)は100程度となり、バイ アス磁界は、100〜200が必要となる。この様な
大きなバイアス磁界は、結果として磁気記憶媒体
2の磁化情報Mrを消磁してしまい、磁気記憶シ
ステムとして、信頼性にとぼしいものとなつてい
た。
However, in order to realize such a bias state, the bias magnetic field applied to the MR element 1 must be set to be at least higher than the demagnetizing field in the width h direction of the MR element 1. For example, using permalloy with saturation magnetization M=800emu/cc as the MR element 1,
When the dimensions are set to t M =0.05 μm and h = 5 μm, the demagnetizing field (4πMt M /h) is about 100, and the bias magnetic field is required to be 100 to 200. As a result, such a large bias magnetic field demagnetizes the magnetization information Mr of the magnetic storage medium 2, resulting in a magnetic storage system with poor reliability.

(発明の目的) 本発明は、このような欠点を招来することなく
高記録密度側の特性を向上することのできる磁気
抵抗効果ヘツドを提供することにある。
(Object of the Invention) An object of the present invention is to provide a magnetoresistive head that can improve the characteristics at high recording density without causing such drawbacks.

(発明の構成) 本発明によれば、強磁性薄膜を含む磁気抵抗効
果素子と前記磁気抵抗効果素子にセンス電流を供
給するための二つの電極が接続された構造を有す
る磁気抵抗効果ヘツドにおいてこの二つの電極の
間隔は、磁気記憶媒体に最も近い部分が磁気記憶
媒体に最も遠い部分よりも小さいことを特徴とす
る磁気抵抗効果ヘツドが得られる。
(Structure of the Invention) According to the present invention, a magnetoresistive head having a structure in which a magnetoresistive element including a ferromagnetic thin film and two electrodes for supplying a sense current to the magnetoresistive element are connected. A magnetoresistive head is obtained in which the spacing between the two electrodes is smaller at the part closest to the magnetic storage medium than at the part furthest from the magnetic storage medium.

(構成の詳細な説明) 本発明は、上述の構成をとることにより従来技
術の問題点を解決した。即ち、本発明では、MR
素子に接続された二つの電極の間隔を磁気記憶媒
体に最近接する領域で小さく設定しているため、
二つの電極を径由してMR素子に流れるセンス電
流は、MR素子の幅方向で不均一に流れ、特に磁
気記憶媒体に最近接する領域に集中することにな
る。従つて、磁気記憶媒体に最近接する領域にお
ける抵抗変化が最も再生出力に寄与することにな
る。即ち、MR素子の高記録密度時に最も抵抗変
化に寄与する領域を常に再生出力として得ている
ため、広範囲にわたる記録密度に対し、ほぼ均一
な再生出力を得ることが可能となる。
(Detailed Description of Configuration) The present invention solves the problems of the prior art by adopting the above-described configuration. That is, in the present invention, MR
Because the distance between the two electrodes connected to the element is set small in the area closest to the magnetic storage medium,
The sense current that flows into the MR element via the two electrodes flows non-uniformly in the width direction of the MR element, and is particularly concentrated in the region closest to the magnetic storage medium. Therefore, the resistance change in the region closest to the magnetic storage medium contributes most to the reproduction output. That is, since the region that contributes most to the resistance change is always obtained as the reproduction output when the MR element has a high recording density, it is possible to obtain a substantially uniform reproduction output over a wide range of recording densities.

更に、センス電流によつて発生する磁界を直
接、又は他の磁性体を径由して間接的に利用して
MR素子のバイアス状態を実現するMRヘツドに
おいては、センス電流に比例したバイアス磁界を
得ることができるため、MR素子の磁気記憶媒体
に最近接する領域を最大感度とするバイアス状態
が実現される。これは、高記録密度時の再生出力
の低下を補正し、良好な記録密度特性が得られ
る。
Furthermore, the magnetic field generated by the sense current can be used directly or indirectly through other magnetic materials.
In the MR head that realizes the bias state of the MR element, it is possible to obtain a bias magnetic field proportional to the sense current, thereby realizing a bias state in which the region of the MR element closest to the magnetic storage medium has maximum sensitivity. This corrects the decrease in reproduction output at high recording density, and provides good recording density characteristics.

以下、本発明の構成例について図面を参照して
さらに詳細に説明する。
Hereinafter, configuration examples of the present invention will be described in further detail with reference to the drawings.

第2図は、本発明の第1の例を示す概略斜視図
で、短柵状MR素子1の長さ方向の両側に、セン
ス電流Iを供給するための電極3及び4がMR素
子1の幅h方向に対し、傾斜をもつて接続されて
いる。電極3及び4の間隔は、MR素子1が磁気
記憶媒体2に近接する領域でW2、最も離れた領
域でW1の値を有し、W1>W2の関係を満す様に
設定されている。
FIG. 2 is a schematic perspective view showing the first example of the present invention, in which electrodes 3 and 4 for supplying the sense current I are provided on both sides of the short fence-like MR element 1 in the length direction. They are connected at an angle with respect to the width h direction. The spacing between the electrodes 3 and 4 is set to have a value of W 2 in the region where the MR element 1 is close to the magnetic storage medium 2 and a value of W 1 in the region farthest from the magnetic storage medium 2, and to satisfy the relationship W 1 > W 2 . has been done.

MR素子1は例えばNiCo系合金、NiFe系合金
(パーマロイ)等が選定され、その寸法は厚みを
数百Å乃至数千Å、幅hを数μm乃至数十μmに
選定される。又、電極3及び4はMR素子1より
も固有抵抗の小さい、例えばAn、Al、Cu等が選
定される。
The MR element 1 is made of, for example, a NiCo-based alloy, a NiFe-based alloy (permalloy), etc., and its dimensions are selected to have a thickness of several hundred angstroms to several thousand angstroms, and a width h of several μm to several tens of μm. Further, for the electrodes 3 and 4, a material having a lower specific resistance than that of the MR element 1, such as An, Al, or Cu, is selected.

MR素子1の磁化Mは、永久磁石等の適当な手
段(図示せず)により、センス電流Iに対して、
所定の角度Θbに設定されている。
The magnetization M of the MR element 1 is set relative to the sense current I by a suitable means (not shown) such as a permanent magnet.
It is set at a predetermined angle Θ b .

かかる構成により、電極3及び4を経由して、
MR素子1に供給されるセンス電流Iは電極間隔
が最も小さな領域、即ち、磁気記憶媒体2に最近
接する領域に集中することになる。
With this configuration, via the electrodes 3 and 4,
The sense current I supplied to the MR element 1 is concentrated in the region where the electrode spacing is the smallest, that is, in the region closest to the magnetic storage medium 2.

第3図はこのMR素子1の幅方向における電流
分布を示す。第3図において、横軸の零目盛は、
MR素子1が磁気記憶媒体2に最近接する側、h
は最も遠い側を示し、縦軸の電流密度は、磁気記
憶媒体2に最近接する側の電流密度で規格化した
値で示している。又、パラメータとして
2h/W1−W2を取つている。
FIG. 3 shows the current distribution in the width direction of this MR element 1. In Figure 3, the zero scale on the horizontal axis is
The side where the MR element 1 is closest to the magnetic storage medium 2, h
indicates the farthest side, and the current density on the vertical axis is a value normalized by the current density on the side closest to the magnetic storage medium 2. Also, as a parameter
2h/W 1 −W 2 is taken.

第3図より、MR素子1の幅hを一定とした場
合、W1−W2の値が大きくなるほど、センス電流
Iは、磁気記憶媒体2に最近接する側に大きく集
中することが理解される。
From FIG. 3, it is understood that when the width h of the MR element 1 is constant, the larger the value of W 1 - W 2 is, the more the sense current I is concentrated on the side closest to the magnetic storage medium 2. .

この結果、MR素子1の磁気記憶媒体2に最近
接する領域における抵抗変化が最も再生出力に寄
与することになる。即ち、MR素子1の高記録密
度時に最も抵抗変化が大きい領域を常に再生出力
として得ているため、広範囲にわたる記録密度に
対し、良好な再生出力を得ることができる。
As a result, the resistance change in the region of the MR element 1 closest to the magnetic storage medium 2 contributes most to the reproduction output. That is, since the region with the largest resistance change is always obtained as the reproduction output when the MR element 1 has a high recording density, it is possible to obtain a good reproduction output over a wide range of recording densities.

第1の実施例では、MR素子のバイアス状態は
外部からの磁界によつて一意的に決定されていた
が、本発明では、センス電流を利用して、MR素
子のバイアス状態を決定する構成のMRヘツドに
対して最も効果的である。
In the first embodiment, the bias state of the MR element was uniquely determined by an external magnetic field, but in the present invention, the bias state of the MR element is determined using a sense current. Most effective against MR heads.

以下、この様な構成を有するMRヘツドの例に
ついて説明する。
An example of an MR head having such a configuration will be described below.

第4図は、本発明の第2の例を示す概略斜視図
である。
FIG. 4 is a schematic perspective view showing a second example of the present invention.

図においては、第2図及び第3図を用いて説明
した第1の例のMR素子に対して、非磁性導体導
膜(例えば、Ti、Mo、Ta、Cr等)から成るバ
イアス導体5が数百Å乃至数千Åの厚みをもつて
積層された構成を有する。
In the figure, a bias conductor 5 made of a non-magnetic conductive film (for example, Ti, Mo, Ta, Cr, etc.) is used for the MR element of the first example explained using FIGS. 2 and 3. It has a laminated structure with a thickness of several hundred Å to several thousand Å.

かかる構成において、電極3及び4の間隔が、
MR素子1及びバイアス導体5の膜厚より充分大
きければ、電極3及び4から供給されるセンス電
流IはMR素子1とバイアス導体5とにその固有
抵抗及び膜厚に応じて、分流する。バイアス導体
5に分流したセンス電流はMR素子1の膜面内を
通り幅hの方向にバイアス磁界Hbを発生し、
MR素子1の磁化Mをセンス電流に対して、角度
Θbだけ回転させる。又、バイアス導体5に分流
したセンス電流は、MR素子1と同様、第3図に
示した如く、幅h方向に分布するため、磁気記憶
媒体2に最近接する領域に大きなバイアス磁界
Hbを発生し、それに応じて、Θbも大きくなる。
第5図に、ΘbのMR素子1の幅h方向の分布を示
す。又、参考のため、センス電流が幅h方向に均
一に分布する従来例におけるΘbの分布も破線で
示す。
In such a configuration, the distance between the electrodes 3 and 4 is
If the film thickness is sufficiently larger than that of the MR element 1 and the bias conductor 5, the sense current I supplied from the electrodes 3 and 4 is divided into the MR element 1 and the bias conductor 5 according to their specific resistances and film thicknesses. The sense current shunted to the bias conductor 5 passes through the film surface of the MR element 1 and generates a bias magnetic field H b in the direction of the width h.
The magnetization M of the MR element 1 is rotated by an angle Θ b with respect to the sense current. Furthermore, since the sense current shunted into the bias conductor 5 is distributed in the width h direction as shown in FIG.
H b is generated, and Θ b also increases accordingly.
FIG. 5 shows the distribution of Θ b in the width h direction of the MR element 1. For reference, the distribution of Θ b in a conventional example in which the sense current is uniformly distributed in the width h direction is also shown by a broken line.

第5図から明らかな如く、従来例では幅hの中
央部で最大のΘbが得られるのに対し、本実施例
では磁気記憶媒体2に近接する側にΘbの最大値
がシフトしている。即ち、この例では、高記録密
度時に最も再生出力として寄与する領域のバイア
ス状態を最適に設定(望ましくはΘb=45°)する
ことができる。
As is clear from FIG. 5, in the conventional example, the maximum value of Θ b is obtained at the center of the width h, whereas in this example, the maximum value of Θ b is shifted to the side closer to the magnetic storage medium 2. There is. That is, in this example, it is possible to optimally set the bias state (preferably Θ b =45°) in the region that contributes the most to reproduction output at high recording density.

従つて、この構成では、高記録密度時において
MR素子1の磁気記憶媒体2に最近接する領域に
おける抵抗変化が最も再生出力寄与するととも
に、その抵抗変化が信号磁界HSに対して最大感
度と成る様に制定でき、第1の実施例に比較して
更に、良好な記録密度特性が得られる。
Therefore, with this configuration, at high recording density
Compared to the first embodiment, the resistance change in the region of the MR element 1 closest to the magnetic storage medium 2 contributes the most to the reproduction output, and the resistance change has the maximum sensitivity to the signal magnetic field H S. Furthermore, good recording density characteristics can be obtained.

第4図ではバイアス導体5に分流するセンス電
流でMR素子1にバイアス磁界HBを印加してい
たが、第6図の断面図に示す如く、バイアス導体
5に更に導電性強磁性薄膜6を積層しても良い。
かかる構成では、センス電流IはMR素子1、バ
イアス導体5及び導電性強磁性薄膜6に、磁気記
憶媒体2に近接する側を最大電流密度となる分布
を有して分流することになる。バイアス導体5及
び導電性強磁性薄膜6に分流したセンス電流I2
びI3は、第4図で示したと同様なバイアス磁界を
与え、又、導電性強磁性薄膜はMR素子1の幅h
方向の反磁界を大きく軽減する効果がある。従つ
て、第4図に示した構成のMRヘツドよりも小さ
なセンス電流で第5図に示したバイアス状態を実
現できる。
In FIG. 4, a bias magnetic field H B is applied to the MR element 1 by a sense current that is shunted to the bias conductor 5, but as shown in the cross-sectional view of FIG. It may be laminated.
In this configuration, the sense current I is divided into the MR element 1, the bias conductor 5, and the conductive ferromagnetic thin film 6 with a distribution such that the maximum current density is on the side closer to the magnetic storage medium 2. The sense currents I 2 and I 3 shunted into the bias conductor 5 and the conductive ferromagnetic thin film 6 provide a bias magnetic field similar to that shown in FIG.
This has the effect of greatly reducing the demagnetizing field in the direction. Therefore, the bias state shown in FIG. 5 can be achieved with a smaller sense current than the MR head having the configuration shown in FIG.

導電性強磁性薄膜6には、磁気抵抗効果が小さ
く、固有抵抗の大きい非晶質軟磁性体が望まし
い。又、導電性強磁性薄膜6として特開昭51−
26510号に開始された如く、MR素子1と全く特
性が同一なパーマロイ膜などを用いても良い。こ
の場合は導電性強磁性薄膜6も、信号磁界HS
対し抵抗変化を生じ信号再生に寄与する。
The conductive ferromagnetic thin film 6 is preferably an amorphous soft magnetic material that has a small magnetoresistive effect and a high specific resistance. Also, as a conductive ferromagnetic thin film 6
As disclosed in No. 26510, a permalloy film or the like having exactly the same characteristics as the MR element 1 may be used. In this case, the conductive ferromagnetic thin film 6 also causes a resistance change in response to the signal magnetic field H S and contributes to signal reproduction.

更に、第4図、第6図を用いて説明した例と同
様、MR素子の磁気記憶媒体に最近接する領域を
最大感度とするバイアス状態を実現するには、第
7図に示した構成を有するMRヘツドであつても
良い。
Furthermore, similar to the example explained using FIGS. 4 and 6, in order to realize a bias state in which the region of the MR element closest to the magnetic storage medium has maximum sensitivity, the configuration shown in FIG. 7 is used. It may be an MR head.

第7図は、特開昭50−59023号に開示された高
透磁率磁性体からなる磁気シールドを具備し、
MR素子部分に第2図で示した本発明を適用した
磁気シールド付MRヘツドの断面図である。
FIG. 7 shows a device equipped with a magnetic shield made of a high magnetic permeability magnetic material disclosed in Japanese Patent Application Laid-Open No. 50-59023,
FIG. 2 is a sectional view of a magnetically shielded MR head to which the present invention shown in FIG. 2 is applied to the MR element portion.

図において、MR素子1の両側にSiO2、Al2O3
等の絶縁層を介して、磁気シールド7及び8が
MR素子1とG1及びG2の間隔をもつて並設され
ている。かかる構成で、MR素子1の幅h方向に
第3図に示した如き分布をもつて流れるセンス電
流Iは、MR素子1の周囲に磁界を発生し、その
磁界は磁気シールド7及び8を着磁する。着磁さ
れた磁気シールド7及び8の内、最もMR素子1
に近接する磁気シールド(例えば、第7図では
G2>G1であるため、磁気シールド7)が、最も
強いバイアス磁界をMR素子1に与えMR素子1
の磁化Mをバイアスする。前記バイアス磁界の
MR素子1内での分布は、センス電流Iの分布に
対応するため、第5図に示したと同様なバイアス
状態が実現される。上述した様な作用を更に顕著
するためには、G2とG1の差が大きい方が望まし
い。極端な場合、G2又はG1の一方が無限大の大
きさ、即ち、MR素子1の一方の側のみに磁気シ
ールドが具備された構成であつても良い。
In the figure, SiO 2 and Al 2 O 3 are placed on both sides of MR element 1.
The magnetic shields 7 and 8 are connected via insulating layers such as
It is arranged in parallel with the MR element 1 with an interval of G 1 and G 2 . With this configuration, the sense current I flowing in the width h direction of the MR element 1 with a distribution as shown in FIG. Magnetize. Among the magnetized magnetic shields 7 and 8, the most MR element 1
magnetic shield in close proximity to (for example, in Figure 7
Since G 2 > G 1 , the magnetic shield 7) applies the strongest bias magnetic field to the MR element 1.
bias the magnetization M of . of the bias magnetic field
Since the distribution within the MR element 1 corresponds to the distribution of the sense current I, a bias state similar to that shown in FIG. 5 is realized. In order to make the above-described effects more pronounced, it is desirable that the difference between G 2 and G 1 be larger. In an extreme case, either G 2 or G 1 may have an infinite size, that is, the MR element 1 may have a magnetic shield on only one side.

以上、本発明の構成例について述べたが、本発
明で示した電極は第2図、及び第4図に示した如
く、MR素子の幅方向に直線的に広がつた構造に
限るものではなく、曲線状に広がつた構成であつ
ても良く、本発明の主旨を逸脱しない限り種々の
変形変更をなし得る。
Although the configuration examples of the present invention have been described above, the electrodes shown in the present invention are not limited to the structure that extends linearly in the width direction of the MR element, as shown in FIGS. 2 and 4. , it may have a configuration that spreads out in a curved shape, and various modifications and changes can be made without departing from the gist of the present invention.

尚、本発明では、磁気記憶媒体上のトラツク幅
(MR素子の長さ方向に対して、磁気的情報が書
き込まれている領域幅)はMR素子の磁気記憶媒
体に最近接する側の電極間隔より小さいことが望
ましい。これは、低記録密度時に磁気記憶媒体か
ら最も離れたMR素子上の領域の抵抗変化を最小
にするのに有効である。
In the present invention, the track width on the magnetic storage medium (width of the area where magnetic information is written in the longitudinal direction of the MR element) is smaller than the electrode spacing on the side of the MR element closest to the magnetic storage medium. Preferably small. This is effective in minimizing the resistance change in the region on the MR element farthest from the magnetic storage medium at low recording densities.

(発明の効果) 以上説明した様に、本発明はMR素子に接続さ
れる電極の間隔を磁気記憶媒体に近接する側で小
さく設定しているため、MR素子の高記録密度時
に最も抵抗変化として寄与する領域を再生出力と
して得ることができ、更にこの領域が最大感度と
なる様なバイアス状態も実現でき、極めて簡単に
かつ、磁気記憶媒体を消磁させることなく、広範
囲にわたる記録密度に対し、ほぼ均一な再生出力
を得ることができる。
(Effects of the Invention) As explained above, in the present invention, since the spacing between the electrodes connected to the MR element is set smaller on the side closer to the magnetic storage medium, the resistance change is the largest when the MR element has a high recording density. It is possible to obtain the contributing region as the reproduction output, and also to realize a bias state in which this region has the maximum sensitivity.It is extremely easy to achieve this, without demagnetizing the magnetic storage medium, and for a wide range of recording densities. Uniform playback output can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の磁気抵抗効果ヘツドの概略斜視
図、第2図は本発明の第1の構成例を示す概略斜
視図、第3図は磁気抵抗効果ヘツドに流れるセン
ス電流の分布を示すグラフ、第4図は本発明の第
2の構成例を示す概略斜視図、第5図は磁気抵抗
効果ヘツドのバイアス状態を示すグラフ、第6図
は本発明の第3の構成例を示す断面図、第7図は
本発明の第4の構成例を示す断面図である。 図において、1……磁気抵抗効果素子(MR素
子)、2……磁気記憶媒体、3,4……電極、5
……バイアス導体、6……導電性強磁性薄膜、
7,8……磁気シールドをそれぞれ示す。
FIG. 1 is a schematic perspective view of a conventional magnetoresistive head, FIG. 2 is a schematic perspective view showing a first configuration example of the present invention, and FIG. 3 is a graph showing the distribution of sense current flowing through the magnetoresistive head. , FIG. 4 is a schematic perspective view showing a second configuration example of the present invention, FIG. 5 is a graph showing the bias state of the magnetoresistive head, and FIG. 6 is a sectional view showing a third configuration example of the present invention. , FIG. 7 is a sectional view showing a fourth configuration example of the present invention. In the figure, 1... Magnetoresistive element (MR element), 2... Magnetic storage medium, 3, 4... Electrode, 5
...bias conductor, 6...conductive ferromagnetic thin film,
7, 8...indicate magnetic shields, respectively.

Claims (1)

【特許請求の範囲】 1 強磁性薄膜を含む磁気抵抗効果素子と前記磁
気抵抗効果素子にセンス電流を供給する二つの電
極が接続された構造を有する磁気抵抗効果ヘツド
において、該二つの電極の間隔は磁気記憶媒体に
最も近い部分が磁気記憶媒体に最も遠い部分より
も小さいことを特徴とする磁気抵抗効果ヘツド。 2 磁気抵抗効果素子は非磁性導体薄膜と強磁性
薄膜が積層されている構造である特許請求の範囲
第1項記載の磁気抵抗効果ヘツド。 3 磁気抵抗効果素子は強磁性薄膜と非磁性導体
薄膜と導電性強磁性薄膜とがこの順で積層されて
いる構造である特許請求の範囲第1項記載の磁気
抵抗効果ヘツド。 4 非磁性導体薄膜をはさむ強磁性薄膜は同一材
料である特許請求の範囲第3項記載の磁気抵抗効
果ヘツド。 5 導電性強磁性薄膜が非晶質軟磁性体である特
許請求の範囲第3項記載の磁気抵抗効果ヘツド。 6 磁気抵抗効果素子には絶縁層を介して、高透
磁率磁性体からなる磁気シールドが形成されてい
る特許請求の範囲第1項又は第2項又は第3項に
記載の磁気抵抗効果ヘツド。
[Scope of Claims] 1. In a magnetoresistive head having a structure in which a magnetoresistive element including a ferromagnetic thin film and two electrodes for supplying a sense current to the magnetoresistive element are connected, an interval between the two electrodes is provided. A magnetoresistive head characterized in that the portion closest to the magnetic storage medium is smaller than the portion furthest from the magnetic storage medium. 2. The magnetoresistive head according to claim 1, wherein the magnetoresistive element has a structure in which a nonmagnetic conductive thin film and a ferromagnetic thin film are laminated. 3. The magnetoresistive head according to claim 1, wherein the magnetoresistive element has a structure in which a ferromagnetic thin film, a nonmagnetic conductor thin film, and a conductive ferromagnetic thin film are laminated in this order. 4. The magnetoresistive head according to claim 3, wherein the ferromagnetic thin films sandwiching the nonmagnetic conductive thin films are made of the same material. 5. The magnetoresistive head according to claim 3, wherein the conductive ferromagnetic thin film is an amorphous soft magnetic material. 6. The magnetoresistive head according to claim 1, wherein the magnetoresistive element is provided with a magnetic shield made of a high permeability magnetic material via an insulating layer.
JP9040084A 1984-05-07 1984-05-07 Magneto-resistance effect head Granted JPS60234213A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9040084A JPS60234213A (en) 1984-05-07 1984-05-07 Magneto-resistance effect head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9040084A JPS60234213A (en) 1984-05-07 1984-05-07 Magneto-resistance effect head

Publications (2)

Publication Number Publication Date
JPS60234213A JPS60234213A (en) 1985-11-20
JPH0572642B2 true JPH0572642B2 (en) 1993-10-12

Family

ID=13997534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9040084A Granted JPS60234213A (en) 1984-05-07 1984-05-07 Magneto-resistance effect head

Country Status (1)

Country Link
JP (1) JPS60234213A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63177069U (en) * 1987-05-08 1988-11-16
JP3388944B2 (en) * 1995-06-06 2003-03-24 富士通株式会社 Magnetic disk drive and reproducing method thereof

Also Published As

Publication number Publication date
JPS60234213A (en) 1985-11-20

Similar Documents

Publication Publication Date Title
US6903906B2 (en) Magnetic head with a lamination stack to control the magnetic domain
US5808843A (en) Magnetoresistance effect reproduction head
US5535077A (en) Magnetoresistive head having magnetically balanced magnetoresistive elements laminated on opposite sides of an electrically conductive film
JPH05135332A (en) Magneto-resistance effect playback head and magnetic recording device using this head
JP2662334B2 (en) Thin film magnetic head
JPH0572642B2 (en)
US6697235B2 (en) Magnetoresistive head and magnetic recoding/reproducing apparatus using the same
JPH07201021A (en) Composite magnetic head
JPH0375929B2 (en)
JPH026490Y2 (en)
JPH11175928A (en) Magnetic reluctance effect head and magnetic recording and reproducing device
US5774309A (en) Magnetic transducer and thin film magnetic head
JP3096589B2 (en) Magnetoresistive head
JPH08147631A (en) Magnetic recording and reproducing apparatus
JPH07153036A (en) Magnetoresistance effect type magnetic head
JP3565925B2 (en) Magnetoresistive head
JPH05266437A (en) Magnetoresistance effect type head
JP3040892B2 (en) Magnetoresistive thin film magnetic head
US20020018324A1 (en) Ferromagnetic tunneling magneto-resistive head
JP3606988B2 (en) Magnetoresistive head
JP2003208706A (en) Magnetic head
JPH07201019A (en) Magneto-resistance effect type head
JPH08124122A (en) Magnetoresistive reproducing head and magnetic recording/reproducing device
JP2002232038A (en) Vertical energization type magnetoresistance effect element, magnetic head and magnetic recorder/ reproducer
JPH07254114A (en) Magnetic head