JPH07201019A - Magneto-resistance effect type head - Google Patents

Magneto-resistance effect type head

Info

Publication number
JPH07201019A
JPH07201019A JP28078094A JP28078094A JPH07201019A JP H07201019 A JPH07201019 A JP H07201019A JP 28078094 A JP28078094 A JP 28078094A JP 28078094 A JP28078094 A JP 28078094A JP H07201019 A JPH07201019 A JP H07201019A
Authority
JP
Japan
Prior art keywords
film
magnetoresistive
magnetic domain
domain control
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28078094A
Other languages
Japanese (ja)
Inventor
Tatsufumi Oyama
達史 大山
Naoto Matono
直人 的野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP28078094A priority Critical patent/JPH07201019A/en
Publication of JPH07201019A publication Critical patent/JPH07201019A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Heads (AREA)

Abstract

PURPOSE:To suppress a Barkhausen noise without deteriorating reproducing sensitivity and reproducing resolution by providing a domain control layer consisting of a soft magnetic material at a position separated by a prescribed distance from the side plane of both terminals in the longitudinal direction of a magneto-resistance effect fill. CONSTITUTION:An insulating layer 32 consisting of Al2O3, a lower shield layer 29 consisting of Nide alloy, and an insulating layer 31 consisting of Al2O3 are formed on a substrate 33 consisting of Al2O3-TiC sequentially. A magneto- resistance element part 20 is formed on the insulating layer 31, and the element 20 consists of the magneto-resistance effect film 21 and an antimagnetic film 23 consisting of a switched connection control film and 7-Fern alloy. A shunt layer 24 consisting of Mo is formed on the element part 21, and the domain control layers 25, 26 consisting of the soft magnetic material with a high saturation magnetic flux density and with film thickness equal to or slightly thicker than the effect film 21 are formed on the insulating layer 31 separated by distance (1) from the side plane of the effect film 21. The magneto-resistance ratio of the control layers 25, 26 is smaller one to two digits than that of the effect film 21.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、磁気抵抗効果により磁
気的信号を電気的信号に変換する磁気抵抗効果型ヘッド
に関するものであり、特に、磁気ディスク装置等の小型
で大容量の磁気記録装置に使用される磁気抵抗効果型ヘ
ッドに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetoresistive head for converting a magnetic signal into an electric signal by the magnetoresistive effect, and more particularly to a compact and large capacity magnetic recording device such as a magnetic disk device. The present invention relates to a magnetoresistive head.

【0002】[0002]

【従来の技術】磁気抵抗効果型ヘッドは、磁気ディスク
装置等の再生用ヘッドとしての注目されているが、磁気
抵抗効果膜内の磁壁移動により、バルクハウゼンノイズ
が発生するという問題があった。この問題を解決するた
めの手段として、特公昭60−32330号公報には、
磁気抵抗効果膜上に反強磁性膜を形成することが開示さ
れている。この手段によれば、磁気抵抗効果膜と反強磁
性膜との交換結合によって磁気抵抗効果膜が単磁区化
し、バルクハウゼンノイズは低減するが、前記交換結合
が強すぎると、再生感度が低下するという問題が生じ
る。
2. Description of the Related Art A magnetoresistive head has attracted attention as a reproducing head for a magnetic disk device or the like, but it has a problem that Barkhausen noise is generated due to the domain wall movement in the magnetoresistive film. As a means for solving this problem, Japanese Patent Publication No. Sho 60-32330 discloses that
It is disclosed that an antiferromagnetic film is formed on the magnetoresistive film. According to this means, the magnetoresistive film becomes a single domain due to exchange coupling between the magnetoresistive film and the antiferromagnetic film, and Barkhausen noise is reduced. However, if the exchange coupling is too strong, the reproduction sensitivity is lowered. The problem arises.

【0003】一方、特開昭64−1112号公報には、
磁気抵抗効果膜の長手方向両端部に硬磁性材を配するこ
とが開示されている。この手段によれば、硬磁性材から
の漏れ磁界によって磁気抵抗効果膜が単磁区化し、バル
クハウゼンノイズは低減するが、前記漏れ磁界が強すぎ
ると、再生感度が低下するという問題が生じる。また、
この漏れ磁界が記録媒体上の信号に悪影響を及ぼすとい
う問題もある。
On the other hand, Japanese Patent Laid-Open No. 64-1112 discloses that
It is disclosed that hard magnetic materials are arranged at both ends in the longitudinal direction of the magnetoresistive film. According to this means, the leakage magnetic field from the hard magnetic material causes the magnetoresistive effect film to become a single magnetic domain, and Barkhausen noise is reduced. However, if the leakage magnetic field is too strong, there is a problem that the reproduction sensitivity is lowered. Also,
There is also a problem that this leakage magnetic field adversely affects the signal on the recording medium.

【0004】[0004]

【発明が解決しようとする課題】本発明は、再生感度を
低下させることなくバルクハウゼンノイズの発生を抑制
し、記録媒体上の信号にも悪影響を及ばさない磁気抵抗
効果型ヘッドの構成を明らかにするものである。
DISCLOSURE OF THE INVENTION The present invention reveals the structure of a magnetoresistive head which suppresses the generation of Barkhausen noise without lowering the reproduction sensitivity and does not adversely affect the signal on the recording medium. It is something to do.

【0005】[0005]

【課題を解決するための手段】本発明による磁気抵抗効
果型ヘッドは、磁気抵抗効果により磁気的信号を電気的
信号に変換するための磁気抵抗効果膜と、該磁気抵抗効
果膜の長手方向に信号検出用の電流を流すための一対の
電極とを備える磁気抵抗効果型ヘッドにおいて、磁気抵
抗効果膜の長手方向両端の側面から所定の距離だけ離れ
た位置に、軟磁性材料からなる磁区制御層を設けたこと
を特徴とするものである。
A magnetoresistive head according to the present invention comprises a magnetoresistive film for converting a magnetic signal into an electric signal by the magnetoresistive effect, and a longitudinal direction of the magnetoresistive film. In a magnetoresistive head including a pair of electrodes for passing a current for signal detection, a magnetic domain control layer made of a soft magnetic material is provided at a position separated by a predetermined distance from the side surfaces at both longitudinal ends of the magnetoresistive film. Is provided.

【0006】[0006]

【作用】上記本発明の構成によれば、磁区制御層が磁気
抵抗効果膜と静磁的に結合し、磁区制御層内に還流磁区
が形成されやすくなるため、磁気抵抗効果膜の端部にお
ける還流磁区の発生が抑制される。また、磁気抵抗効果
膜と磁区制御層とは離れているため、信号を再生する
際、磁区制御層内の磁壁の移動が磁気抵抗効果膜に悪影
響を及ぼすこともない。従って、再生感度を低下させる
ことなくバルクハウゼンノイズを低減することができ
る。
According to the above-mentioned structure of the present invention, the magnetic domain control layer is magnetostatically coupled with the magnetoresistive effect film, and the return domain is easily formed in the magnetic domain control layer. Generation of reflux magnetic domains is suppressed. Further, since the magnetoresistive film and the magnetic domain control layer are separated from each other, the movement of the magnetic domain wall in the magnetic domain control layer does not adversely affect the magnetoresistive film when the signal is reproduced. Therefore, Barkhausen noise can be reduced without lowering the reproduction sensitivity.

【0007】さらに、軟磁性材からなる磁区制御層は、
記録媒体対向面に露出しても記録媒体上の信号に悪影響
を及ぼすことがない。
Further, the magnetic domain control layer made of a soft magnetic material is
The signal on the recording medium is not adversely affected even if it is exposed to the surface facing the recording medium.

【0008】[0008]

【実施例】以下、本発明の実施例について、図面を参照
しながら説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0009】図1は、本発明に従う一実施例の磁気抵抗
効果型ヘッドを示す断面図である。図1を参照して、A
23−TiCからなる基板33の上には、Al23
らなる膜厚10μmの絶縁層32、NiFe合金からな
る膜厚1μmの下部シ−ルド層29、及びAl23から
なる膜厚0.2μmの絶縁層31が順次形成されてい
る。絶縁層31の上には、磁気抵抗効果素子部20が形
成されている。磁気抵抗効果素子部20は、NiFe合
金からなる膜厚300Åの磁気抵抗効果膜21、NiC
u合金からなる膜厚10Åの交換結合制御膜22、及び
γ−FeMn合金からなる膜厚150Åの反強磁性膜2
3により構成されている。なお、磁気抵抗効果膜21は
長手方向を磁化容易軸とする一軸異方性を有し、その一
軸異方性磁界は6Oeである。
FIG. 1 is a sectional view showing a magnetoresistive head according to an embodiment of the present invention. Referring to FIG.
An insulating layer 32 made of Al 2 O 3 having a thickness of 10 μm, a lower shield layer 29 made of NiFe alloy having a thickness of 1 μm, and Al 2 O 3 are formed on the substrate 33 made of l 2 O 3 —TiC. The insulating layer 31 having a film thickness of 0.2 μm is sequentially formed. The magnetoresistive effect element portion 20 is formed on the insulating layer 31. The magnetoresistive effect element portion 20 is composed of a magnetoresistive effect film 21 made of NiFe alloy and having a film thickness of 300Å, NiC.
An exchange coupling control film 22 made of a u alloy and having a film thickness of 10Å, and an antiferromagnetic film 2 made of a γ-FeMn alloy and having a film thickness of 150Å.
It is composed of three. The magnetoresistive effect film 21 has uniaxial anisotropy with the longitudinal direction as the easy axis of magnetization, and the uniaxial anisotropy magnetic field is 6 Oe.

【0010】磁気抵抗効果素子部21の上には、Moか
らなる膜厚80Åのシャトン層24が形成されており、
磁気抵抗効果膜21の側面から距離lだけ離れた絶縁層
31の上には、高飽和磁束密度の軟磁性材料からなり、
膜厚が磁気抵抗効果膜21と同等もしくは僅かに厚い磁
区制御層25、26が形成されている。この実施例で
は、磁区制御層25、26の材料としてCoZrSnア
モルファス合金を用い、その膜厚を300Åとしてい
る。この場合、磁区制御層25、26の一軸異方性磁界
は17Oeで、磁気抵抗効果膜21の一軸異方性磁界よ
りも大きく、磁区制御層25及び26の磁気抵抗比(以
下、MR比と略す)は0.1%以下で、磁気抵抗効果膜
21のMR比より1桁〜2桁小さい。
On the magnetoresistive effect element portion 21, a chaton layer 24 made of Mo and having a film thickness of 80 Å is formed.
On the insulating layer 31 separated from the side surface of the magnetoresistive film 21 by a distance l, a soft magnetic material having a high saturation magnetic flux density,
Magnetic domain control layers 25 and 26 having the same or slightly thicker film thickness as the magnetoresistive film 21 are formed. In this embodiment, CoZrSn amorphous alloy is used as the material of the magnetic domain control layers 25 and 26, and the film thickness thereof is 300Å. In this case, the uniaxial anisotropic magnetic field of the magnetic domain control layers 25 and 26 is 17 Oe, which is larger than the uniaxial anisotropic magnetic field of the magnetoresistive effect film 21, and the magnetic resistance ratio of the magnetic domain control layers 25 and 26 (hereinafter referred to as MR ratio). (Abbreviated) is 0.1% or less, which is one to two digits smaller than the MR ratio of the magnetoresistive effect film 21.

【0011】シャント層24上の両側には、Mo/Cu
/Moの3層からなり、膜厚がそれぞれ200Å/10
00Å/200Åの一対の電極27、28が形成されて
いる。電極27は磁区制御層25を覆うように、電極2
8は磁区制御層26を覆うように形成されている。電極
27と電極28の間が、トラック部となる。
Mo / Cu is formed on both sides of the shunt layer 24.
/ Mo is composed of 3 layers and the film thickness is 200Å / 10
A pair of electrodes of 00Å / 200Å are formed. The electrode 27 covers the magnetic domain control layer 25 so that the electrode 2
Reference numeral 8 is formed so as to cover the magnetic domain control layer 26. A track portion is formed between the electrodes 27 and 28.

【0012】図2は、図1に示す実施例の磁区抵抗効果
型ヘッドを示す斜視図である。図2に示すように、電極
27、28の上には、Al23からなる膜厚0.2μm
の絶縁層(図示せず)を介してNiFe合金からなる膜
厚1μmの上部シ−ルド層30が設けられている。な
お、図2においては、磁区制御層25、26や下部シ−
ルド層29上の絶縁層についても図示省略している。
FIG. 2 is a perspective view showing the magnetic domain resistance effect head of the embodiment shown in FIG. As shown in FIG. 2, a film thickness of 0.2 μm made of Al 2 O 3 is formed on the electrodes 27 and 28.
An upper shield layer 30 made of a NiFe alloy and having a film thickness of 1 μm is provided via an insulating layer (not shown). In FIG. 2, the magnetic domain control layers 25 and 26 and the lower shield layer are shown.
The insulating layer on the field layer 29 is also omitted in the drawing.

【0013】上記磁気抵抗効果型ヘッドを構成する各層
は、基板33の上に順次スパッタリング法等により成膜
され、エッチング法等により所定の平面形状に整形され
たものである。
Each layer constituting the magnetoresistive head is sequentially formed on the substrate 33 by a sputtering method or the like and shaped into a predetermined plane shape by an etching method or the like.

【0014】磁気抵抗効果素子部20に含まれる磁気抵
抗効果膜21は、磁気抵抗効果により記録媒体上の磁気
的信号を電気的信号に変換するものであり、その材料と
しては上記NiFe合金以外にもCoFe合金、NiC
o合金等が用いられ、これらの合金からなる膜を積層し
て用いてもよい。
The magnetoresistive effect film 21 included in the magnetoresistive effect element portion 20 converts a magnetic signal on the recording medium into an electric signal by the magnetoresistive effect, and the material thereof is other than the above NiFe alloy. Also CoFe alloy, NiC
Alloys such as o are used, and films made of these alloys may be laminated and used.

【0015】磁気抵抗効果素子部20に含まれる反強磁
性膜23は、磁気抵抗効果膜21に交換結合磁界を付与
するために設けられており、その材料としては上記γ−
FeMn合金以外にもFeMn合金にPd、Pt、I
r、Er等の第3成分の元素を添加した合金、NiMn
合金、CrAl合金、NiO等が用いられる。
The antiferromagnetic film 23 included in the magnetoresistive effect element section 20 is provided to give an exchange coupling magnetic field to the magnetoresistive effect film 21, and its material is γ-
In addition to FeMn alloys, FeMn alloys also contain Pd, Pt, I
NiMn, an alloy to which an element of a third component such as r or Er is added
Alloys, CrAl alloys, NiO, etc. are used.

【0016】磁気抵抗効果素子部20に含まれる交換結
合制御膜22は、前記交換結合磁界を制御する(弱めて
安定化する)ために設けられており、その材料としては
上記NiCu合金等、20℃以下のキュリー点を有する
常磁性材や、NiFeNb合金等、飽和磁束密度の小さ
い軟磁性材が用いられる。ただし、薄い膜厚で十分な交
換結合磁界制御の効果を得るためには、前記常磁性材を
用いることが好ましい。
The exchange coupling control film 22 included in the magnetoresistive effect element portion 20 is provided for controlling (weakening and stabilizing) the exchange coupling magnetic field, and the material thereof is the above NiCu alloy or the like. A paramagnetic material having a Curie point of ℃ or less, or a soft magnetic material having a small saturation magnetic flux density such as NiFeNb alloy is used. However, in order to obtain a sufficient effect of controlling the exchange coupling magnetic field with a thin film thickness, it is preferable to use the paramagnetic material.

【0017】なお、磁気抵抗効果素子部20は、エッチ
ング法により150×5μmの平面形状に整形されてい
る。
The magnetoresistive effect element portion 20 is shaped into a planar shape of 150 × 5 μm by an etching method.

【0018】下部シ−ルド層1及び上部シ−ルド層5
は、磁気抵抗効果素子部10に信号磁号磁界以外の外部
磁界が混入するのを防止し、再生分解能を高めるために
設けられており、その材料としては上記NiFe合金以
外にもCo系非晶質合金等の軟磁性材が用いられ、膜厚
は一般に1〜3μmである。
Lower shield layer 1 and upper shield layer 5
Is provided in order to prevent an external magnetic field other than the signal magnetic field from being mixed into the magnetoresistive effect element section 10 and to improve the reproduction resolution. As a material thereof, other than the above NiFe alloy, a Co-based amorphous material is used. A soft magnetic material such as a quality alloy is used, and the film thickness is generally 1 to 3 μm.

【0019】電極27、28は、磁気抵抗効果素子部2
0の磁気抵抗効果膜に信号検出用の電流を流すために設
けられており、その膜厚は一般に1000〜2000Å
である。
The electrodes 27 and 28 are the magnetoresistive effect element portion 2.
It is provided to pass a current for signal detection through the magnetoresistive film of 0, and the film thickness is generally 1000 to 2000 Å
Is.

【0020】シャトン膜24は、磁気抵抗効果膜素子部
20に対してバイアス磁界を印加するため設けられてお
り、その材料としては上記Mo以外にもTi、Nb、T
a、W等が用いられ、膜厚は一般に80〜1000Åで
ある。
The Chatton film 24 is provided for applying a bias magnetic field to the magnetoresistive effect film element portion 20, and the material thereof is Ti, Nb, T in addition to the above Mo.
a, W, etc. are used, and the film thickness is generally 80 to 1000Å.

【0021】図3は、図1に示す実施例の磁気抵抗効果
膜21及び磁区制御層25、26の磁区構造を、ビッタ
−法により観測した結果を示す平面図である。図3に示
すように、磁気抵抗効果膜21内には磁壁が存在せず、
磁気抵抗効果膜21は単磁区化している。一方、磁区制
御層25、26には磁壁45、46がそれぞれ発生して
いる。これは、磁区制御層25、26が磁壁エネルギ−
の大きな材料により構成されているためである。
FIG. 3 is a plan view showing the result of observing the magnetic domain structure of the magnetoresistive film 21 and the magnetic domain control layers 25 and 26 of the embodiment shown in FIG. 1 by the Bitter method. As shown in FIG. 3, there is no domain wall in the magnetoresistive film 21,
The magnetoresistive film 21 has a single magnetic domain. On the other hand, magnetic domain walls 45 and 46 are generated in the magnetic domain control layers 25 and 26, respectively. This is because the magnetic domain control layers 25 and 26 have domain wall energy
This is because it is composed of a large material.

【0022】磁気抵抗効果型ヘッドとして信号を再生す
る際、磁区制御層25、26内の磁壁45、46は信号
磁界の影響を受けて移動するが、磁気抵抗効果素子21
は磁区制御層25及び26から離れているために、磁壁
45、46の移動が磁気抵抗効果素子21内に新たな磁
壁の発生をもたらすようなことはなく、バルクハウゼン
ノイズも発生しない。
When reproducing a signal as a magnetoresistive head, the domain walls 45 and 46 in the magnetic domain control layers 25 and 26 move under the influence of the signal magnetic field, but the magnetoresistive element 21.
Is separated from the magnetic domain control layers 25 and 26, the movement of the domain walls 45 and 46 does not cause the generation of a new domain wall in the magnetoresistive effect element 21, and Barkhausen noise does not occur.

【0023】図4は、磁区制御層を設けていない場合の
磁気抵抗効果膜の磁区構造を示す平面図である。このよ
うな場合には磁気抵抗効果膜11内に磁壁41が発生し
やすくなり、該磁壁41は、磁気抵抗効果型ヘッドとし
て信号を再生する際に信号磁界の影響を受けて移動しや
すく、バルクハウゼンノイズが発生しやすくなる。
FIG. 4 is a plan view showing the magnetic domain structure of the magnetoresistive film when the magnetic domain control layer is not provided. In such a case, the magnetic domain wall 41 is likely to be generated in the magnetoresistive effect film 11, and the magnetic domain wall 41 is easily moved under the influence of the signal magnetic field when reproducing a signal as the magnetoresistive effect type head, and the bulk. Hausen noise is likely to occur.

【0024】以上のことからわかるように、本発明によ
る磁気抵抗効果型ヘッドにおいては、磁区制御層を設け
ることにより、バルクハウゼンノイズの発生が抑制され
ている。
As can be seen from the above, the Barkhausen noise is suppressed in the magnetoresistive head according to the present invention by providing the magnetic domain control layer.

【0025】図5は、図1に示す磁気抵抗効果膜21と
磁区制御層25、26との間の距離lと、バルクハウゼ
ンノイズの発生状況との関係を示す図である。図5にお
いて、縦軸は磁区抵抗効果膜の端部に発生する磁区の大
きさ、すなわち図4に示すmを示している。
FIG. 5 is a diagram showing the relationship between the distance l between the magnetoresistive effect film 21 and the magnetic domain control layers 25 and 26 shown in FIG. 1 and the Barkhausen noise occurrence state. In FIG. 5, the vertical axis represents the size of the magnetic domain generated at the end of the magnetic domain resistance effect film, that is, m shown in FIG.

【0026】図5からわかるように、磁気抵抗効果膜と
磁区制御層との間の距離lが2μm以下であれば磁気抵
抗効果膜に磁壁が発生せず、磁気抵抗効果膜は単磁区構
造になる。また、距離lが4μm以下では磁区の大きさ
mが5μm以下となり、バルクハウゼンノイズが発生し
ない。
As can be seen from FIG. 5, when the distance l between the magnetoresistive effect film and the magnetic domain control layer is 2 μm or less, no domain wall is generated in the magnetoresistive effect film and the magnetoresistive effect film has a single domain structure. Become. Further, when the distance 1 is 4 μm or less, the magnetic domain size m is 5 μm or less, and Barkhausen noise does not occur.

【0027】図6は、各種磁気抵抗効果型ヘッドについ
ての抵抗−磁界曲線であり、図6の(a)は、図1に示
す実施例の磁気抵抗効果型ヘッド(以下、MRヘッド
[A]と略す)に関するものであり、(b)は、反強磁
性膜も交換結合制御膜も磁区制御層も有していない磁気
抵抗効果素子部から構成される磁気抵抗効果型ヘッド
(以下、MRヘッド[B]と略す)に関するものであ
り、(c)は、磁気抵抗効果膜に接して反強磁性膜が設
けられ交換結合制御膜及び磁区制御層を有していない磁
気抵抗効果素子部から構成される磁気抵抗効果型ヘッド
(以下、MRヘッド[C]と略す)に関するものであ
る。なお、MRヘッド[C]における交換結合磁界は2
0Oe以上となっている。
FIG. 6 is a resistance-magnetic field curve for various magnetoresistive heads, and FIG. 6A shows the magnetoresistive head of the embodiment shown in FIG. 1 (hereinafter referred to as MR head [A]). And (b) is a magnetoresistive head (hereinafter referred to as an MR head) composed of a magnetoresistive element portion having neither an antiferromagnetic film, an exchange coupling control film nor a magnetic domain control layer. (C) is composed of a magnetoresistive effect element portion provided with an antiferromagnetic film in contact with the magnetoresistive effect film and having neither an exchange coupling control film nor a magnetic domain control layer. And a magnetoresistive head (hereinafter abbreviated as MR head [C]). The exchange coupling magnetic field in the MR head [C] is 2
It is 0 Oe or more.

【0028】図6を見ればわかるように、MRヘッド
[B]においては最大抵抗変化率(以下、MR比と略
す)が大きく、再生感度の点では優れているが、バルク
ハウゼンノイズが発生する。MRヘッド[C]はバルク
ハウゼンノイズが発生しないという点では優れている
が、MR比が小さくて最適バイアス磁界も大きいため、
再生感度の点で不利である。これに対して、本発明実施
例のMRヘッド[A]においてはバルクハウゼンノイズ
が発生せず、MR比が大きくて最適バイアス磁界も小さ
いため、再生感度の点でも優れている。
As can be seen from FIG. 6, the MR head [B] has a large maximum resistance change rate (hereinafter, abbreviated as MR ratio) and is excellent in reproducing sensitivity, but Barkhausen noise is generated. . The MR head [C] is excellent in that Barkhausen noise is not generated, but since the MR ratio is small and the optimum bias magnetic field is large,
It is disadvantageous in terms of reproduction sensitivity. On the other hand, in the MR head [A] of the embodiment of the present invention, Barkhausen noise is not generated, the MR ratio is large, and the optimum bias magnetic field is small, so that the reproducing sensitivity is also excellent.

【0029】図7〜図9は、本発明における磁気抵抗効
果膜と磁区制御層との相対配置や磁区制御層の平面形状
の例を示す平面図であり、各図に示された磁気抵抗効果
膜21及び磁区制御層25、26の上側の端辺が磁気記
録媒体に対向することになる。
7 to 9 are plan views showing examples of the relative arrangement of the magnetoresistive effect film and the magnetic domain control layer and the planar shape of the magnetic domain control layer in the present invention, and the magnetoresistive effect shown in each figure. The upper edges of the film 21 and the magnetic domain control layers 25 and 26 face the magnetic recording medium.

【0030】図7に示す例では、磁気抵抗効果膜21と
磁区制御層25、26の幅が互いにほぼ等しい。すなわ
ち、磁気抵抗効果膜21の長手方向両端の側面21aの
全幅に対して、磁区制御層25、26の側面が対向して
いる。
In the example shown in FIG. 7, the magnetoresistive effect film 21 and the magnetic domain control layers 25 and 26 have substantially the same width. That is, the side surfaces of the magnetic domain control layers 25 and 26 are opposed to the entire width of the side surfaces 21 a at both ends in the longitudinal direction of the magnetoresistive effect film 21.

【0031】図8に示す例では、磁区制御層25、26
の幅が磁気抵抗効果膜21よりも広く、磁区制御層2
5、26が磁気抵抗効果膜よりも下方に突出している。
この構造においても、磁気抵抗効果膜21の長手方向両
端の側面21aの全幅に対して、磁区制御層25、26
の側面が対向している。
In the example shown in FIG. 8, the magnetic domain control layers 25 and 26.
Is wider than the magnetoresistive film 21, and the magnetic domain control layer 2
Nos. 5 and 26 project below the magnetoresistive film.
Also in this structure, the magnetic domain control layers 25 and 26 are formed with respect to the entire width of the side surfaces 21a at both ends in the longitudinal direction of the magnetoresistive effect film 21.
The sides are facing each other.

【0032】図9に示す例では、磁区制御層25、26
の幅が磁気抵抗効果膜21よりも広く、磁気抵抗効果膜
21の下方において、磁区制御層25及び26が互いに
近づく方向に突出している。この構造においても、磁気
抵抗効果膜21の長手方向両端の側面21aの全幅に対
して、磁区制御層25、26の側面が対向している。
In the example shown in FIG. 9, the magnetic domain control layers 25 and 26.
Is wider than the magnetoresistive effect film 21, and the magnetic domain control layers 25 and 26 project below the magnetoresistive effect film 21 in a direction approaching each other. Also in this structure, the side surfaces of the magnetic domain control layers 25 and 26 face the entire width of the side surfaces 21a at both ends in the longitudinal direction of the magnetoresistive effect film 21.

【0033】図10及び図11は、磁気抵抗効果膜と磁
区制御層との相対配置や磁区制御層の平面形状の好まし
くない例を示す平面図であり、各図に示された磁気抵抗
効果膜21及び磁区制御層25、26の上側の端辺が磁
気記録媒体に対向することになる。
FIG. 10 and FIG. 11 are plan views showing an unfavorable example of the relative arrangement of the magnetoresistive film and the magnetic domain control layer and the planar shape of the magnetic domain control layer, and the magnetoresistive film shown in each drawing. 21 and the upper side edges of the magnetic domain control layers 25 and 26 face the magnetic recording medium.

【0034】図10に示す例では、磁区制御層25、2
6の幅が磁気抵抗効果層21の幅よりも狭くなってい
る。この場合ように、磁気抵抗効果膜21の長手方向両
端の側面21aに対して磁区制御層25、26の側面が
対向しない部分があると、本発明における磁区制御層に
よる効果が低減する。
In the example shown in FIG. 10, the magnetic domain control layers 25, 2
The width of 6 is narrower than the width of the magnetoresistive effect layer 21. In this case, if there is a portion where the side faces of the magnetic domain control layers 25 and 26 do not face the side faces 21a at both longitudinal ends of the magnetoresistive effect film 21, the effect of the magnetic domain control layer in the present invention is reduced.

【0035】図11に示す例では、磁区制御層25、2
6の側面が尖った形状になっており、この場合も、本発
明における磁区制御層による効果が低減する。
In the example shown in FIG. 11, the magnetic domain control layers 25, 2
6 has a sharp side surface, and in this case also, the effect of the magnetic domain control layer in the present invention is reduced.

【0036】以上のことからわかるように、本発明にお
ける磁区制御層による効果を得るためには、磁気抵抗効
果膜21の長手方向両端の側面21aの全幅に対して、
磁区制御層25、26の側面が対向していることが好ま
しい。
As can be seen from the above, in order to obtain the effect of the magnetic domain control layer in the present invention, the total width of the side surfaces 21a at both longitudinal ends of the magnetoresistive effect film 21 is
The side surfaces of the magnetic domain control layers 25 and 26 are preferably opposed to each other.

【0037】なお、以上の説明ではシャトンバイアス方
式でシールド型の磁気抵抗効果型ヘッドを例に挙げた
が、本発明はこれに限定されるものではなく、ソフトバ
イアス方式やヨーク型等、他の方式、型式の磁気抵抗効
果型ヘッドにも適用され得るものである。
In the above description, the shield type magnetoresistive head of the Chatton bias system is taken as an example, but the present invention is not limited to this, and other types such as the soft bias system and the yoke type are used. The present invention can also be applied to magnetoresistive heads of the type and type.

【0038】[0038]

【発明の効果】本発明によれば、再生感度や再生分解能
を低下させることなくバルクハウゼンノイズの発生を抑
制した磁気抵抗効果型ヘッドが提供される。
According to the present invention, there is provided a magnetoresistive head which suppresses the generation of Barkhausen noise without lowering the reproduction sensitivity or reproduction resolution.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に従う実施例における磁気抵抗効果型ヘ
ッドを示す断面図。
FIG. 1 is a sectional view showing a magnetoresistive head in an embodiment according to the present invention.

【図2】図1に示す実施例の磁気抵抗効果型ヘッドを示
す斜視図。
FIG. 2 is a perspective view showing a magnetoresistive head of the embodiment shown in FIG.

【図3】図1に示す実施例における磁気抵抗効果膜の磁
区構造を示す平面図。
FIG. 3 is a plan view showing a magnetic domain structure of a magnetoresistive effect film in the example shown in FIG.

【図4】比較例における磁気抵抗効果膜の磁区構造を示
す平面図。
FIG. 4 is a plan view showing a magnetic domain structure of a magnetoresistive effect film in a comparative example.

【図5】磁気抵抗効果膜と磁区制御層の間の距離と、磁
区の大きさとの関係を示す図。
FIG. 5 is a diagram showing the relationship between the distance between the magnetoresistive film and the magnetic domain control layer and the size of the magnetic domain.

【図6】各種磁気抵抗効果型ヘッドについての抵抗−磁
界曲線図。
FIG. 6 is a resistance-magnetic field curve diagram for various magnetoresistive heads.

【図7】本発明における磁気抵抗効果膜と磁区制御層の
形状及び配置の一例を示す平面図。
FIG. 7 is a plan view showing an example of shapes and arrangements of a magnetoresistive film and a magnetic domain control layer according to the present invention.

【図8】本発明における磁気抵抗効果膜と磁区制御層の
形状及び配置の他の例を示す平面図。
FIG. 8 is a plan view showing another example of the shapes and arrangements of the magnetoresistive film and the magnetic domain control layer in the present invention.

【図9】本発明における磁気抵抗効果膜と磁区制御層の
形状及び配置のさらに他の例を示す平面図。
FIG. 9 is a plan view showing still another example of the shapes and arrangements of the magnetoresistive film and the magnetic domain control layer in the present invention.

【図10】比較例における磁気抵抗効果膜と磁区制御層
の形状及び配置を示す平面図。
FIG. 10 is a plan view showing shapes and arrangements of a magnetoresistive film and a magnetic domain control layer in a comparative example.

【図11】他の比較例における磁気抵抗効果膜と磁区制
御層の形状及び配置を示す平面図。
FIG. 11 is a plan view showing shapes and arrangements of a magnetoresistive effect film and a magnetic domain control layer in another comparative example.

【符号の説明】[Explanation of symbols]

27、28 電極 24 シャント層 20 磁気抵抗効果素子部 21 磁気抵抗効果膜 22 交換結合制御膜 23 反強磁性膜 25、26 磁区制御層 27, 28 Electrode 24 Shunt Layer 20 Magnetoresistive Element 21 Magnetoresistive Film 22 Exchange Coupling Control Film 23 Antiferromagnetic Film 25, 26 Domain Control Layer

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 磁気抵抗効果により磁気的信号を電気的
信号に変換するための磁気抵抗効果膜と、該磁気抵抗効
果膜の長手方向に信号検出用の電流を流すための一対の
電極とを備える磁気抵抗効果型ヘッドにおいて、 前記磁気抵抗効果膜の長手方向両端の側面から所定の距
離だけ離れた位置に、軟磁性材料からなる磁区制御層が
設けられていることを特徴とする磁気抵抗効果型ヘッ
ド。
1. A magnetoresistive effect film for converting a magnetic signal into an electric signal by the magnetoresistive effect, and a pair of electrodes for passing a current for signal detection in the longitudinal direction of the magnetoresistive effect film. In the magnetoresistive head, the magnetoresistive effect is characterized in that a magnetic domain control layer made of a soft magnetic material is provided at a position separated from the side surfaces at both ends in the longitudinal direction of the magnetoresistive film by a predetermined distance. Mold head.
【請求項2】 前記磁区制御層が、前記磁気抵抗効果膜
に比べて一軸異方性磁界の大きい軟磁性材料からなるこ
とを特徴とする請求項1に記載の磁気抵抗効果型ヘッ
ド。
2. The magnetoresistive head according to claim 1, wherein the magnetic domain control layer is made of a soft magnetic material having a larger uniaxial anisotropic magnetic field than the magnetoresistive film.
【請求項3】 前記磁気抵抗効果膜と前記磁区制御層と
の間の距離が、4μm以下であることを特徴とする請求
項1に記載の磁気抵抗効果型ヘッド。
3. The magnetoresistive head according to claim 1, wherein the distance between the magnetoresistive film and the magnetic domain control layer is 4 μm or less.
【請求項4】 前記磁区制御層が、前記磁気抵抗効果膜
の両端の側面の全域に対向する側面を有することを特徴
とする請求項1に記載の磁気抵抗効果型ヘッド。
4. The magnetoresistive head according to claim 1, wherein the magnetic domain control layer has side surfaces facing the entire side surfaces at both ends of the magnetoresistive film.
【請求項5】 前記磁気抵抗効果膜、前記磁区制御層、
及び前記一対の電極が、一対のシ−ルド層の間に設けら
れていることを特徴とする請求項1に記載の磁気抵抗効
果型ヘッド。
5. The magnetoresistive film, the magnetic domain control layer,
2. The magnetoresistive head according to claim 1, wherein the pair of electrodes are provided between the pair of shield layers.
【請求項6】 前記磁気抵抗効果膜に接して設けられる
交換結合制御膜と、該交換結合制御膜に接して設けられ
る反強磁性膜とを備えることを特徴とする請求項1に記
載の磁気抵抗効果型ヘッド。
6. The magnetic material according to claim 1, further comprising an exchange coupling control film provided in contact with the magnetoresistive film and an antiferromagnetic film provided in contact with the exchange coupling control film. Resistance effect type head.
【請求項7】 前記交換結合制御膜が、常磁性材料から
なることを特徴とする請求項6に記載の磁気抵抗効果型
ヘッド。
7. The magnetoresistive head according to claim 6, wherein the exchange coupling control film is made of a paramagnetic material.
【請求項8】 前記交換結合制御膜が、軟磁性材料から
なることを特徴とする請求項6に記載の磁気抵抗効果型
ヘッド。
8. The magnetoresistive head according to claim 6, wherein the exchange coupling control film is made of a soft magnetic material.
JP28078094A 1993-11-16 1994-11-15 Magneto-resistance effect type head Pending JPH07201019A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28078094A JPH07201019A (en) 1993-11-16 1994-11-15 Magneto-resistance effect type head

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP28665193 1993-11-16
JP5-298327 1993-11-29
JP29832793 1993-11-29
JP5-286651 1993-11-29
JP28078094A JPH07201019A (en) 1993-11-16 1994-11-15 Magneto-resistance effect type head

Publications (1)

Publication Number Publication Date
JPH07201019A true JPH07201019A (en) 1995-08-04

Family

ID=27336774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28078094A Pending JPH07201019A (en) 1993-11-16 1994-11-15 Magneto-resistance effect type head

Country Status (1)

Country Link
JP (1) JPH07201019A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09138915A (en) * 1995-11-17 1997-05-27 Nec Corp Electrode film and magnetoresistance effect head using that
KR100723901B1 (en) * 2005-03-23 2007-06-04 후지쯔 가부시끼가이샤 Soft magnetic thin film and magnetic recording head

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09138915A (en) * 1995-11-17 1997-05-27 Nec Corp Electrode film and magnetoresistance effect head using that
KR100723901B1 (en) * 2005-03-23 2007-06-04 후지쯔 가부시끼가이샤 Soft magnetic thin film and magnetic recording head

Similar Documents

Publication Publication Date Title
US6064552A (en) Magnetoresistive head having magnetic yoke and giant magnetoresistive element such that a first electrode is formed on the giant magnetoresistive element which in turn is formed on the magnetic yoke which acts as a second electrode
US5492720A (en) Method of manufacturing a magnetoresistive sensor
US7800867B2 (en) CPP GMR head with antiferromagnetic layer disposed at rear of ferrimagnetic pinned layer
US6903906B2 (en) Magnetic head with a lamination stack to control the magnetic domain
JP2004335071A (en) Cpp giant magnetoresistive head
JPH0950613A (en) Magnetoresistive effect element and magnetic field detecting device
JPH11177160A (en) Magnetoresistance effect element and its manufacture
JP3817399B2 (en) Magnetoresistive sensor
JPH05135332A (en) Magneto-resistance effect playback head and magnetic recording device using this head
JPH07169023A (en) Magneto-resistance effect type head
JPH07201019A (en) Magneto-resistance effect type head
JP3096589B2 (en) Magnetoresistive head
JP2001250205A (en) Thin film magnetic head and of its manufacturing method
JP3407995B2 (en) Magnetoresistive head
JP2861714B2 (en) Magnetoresistive head and magnetic disk drive
JPH11112055A (en) Magnetic sensor
JP2001084531A (en) Magnetoresistance effect type thin film magnetic head
JP3180778B2 (en) Spin valve type magnetoresistive head
JPH0836715A (en) Magnetoresistance effect-type magnetic head
JPH0572642B2 (en)
JP2001297412A (en) Thin film magnetic head and method of manufacture
JP2003208706A (en) Magnetic head
WO1997011458A1 (en) Magnetoresistive head
JPH0981910A (en) Magnetoresistive effect type reproducing head and magnetic recording and reproducing device
JPH1049832A (en) Magnetoresistance read converter