JP2861714B2 - Magnetoresistive head and magnetic disk drive - Google Patents

Magnetoresistive head and magnetic disk drive

Info

Publication number
JP2861714B2
JP2861714B2 JP5161393A JP5161393A JP2861714B2 JP 2861714 B2 JP2861714 B2 JP 2861714B2 JP 5161393 A JP5161393 A JP 5161393A JP 5161393 A JP5161393 A JP 5161393A JP 2861714 B2 JP2861714 B2 JP 2861714B2
Authority
JP
Japan
Prior art keywords
film
magnetoresistive
magnetic
domain control
magnetic domain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5161393A
Other languages
Japanese (ja)
Other versions
JPH06267028A (en
Inventor
克朗 渡辺
宏 福井
隆 川邊
盛明 府山
尊雄 今川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5161393A priority Critical patent/JP2861714B2/en
Publication of JPH06267028A publication Critical patent/JPH06267028A/en
Application granted granted Critical
Publication of JP2861714B2 publication Critical patent/JP2861714B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、磁気媒体に記録された
情報の再生に用いられる磁気抵抗効果型ヘッドおよび磁
気ディスク装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetoresistive head and a magnetic disk drive used for reproducing information recorded on a magnetic medium.

【0002】[0002]

【従来の技術】磁気抵抗効果型ヘッド(MRヘッド)は、
磁気抵抗効果(MR)膜内部の磁化方向の変化によって内
部抵抗が変化する磁気抵抗効果を利用したヘッドであ
る。一般に、MRヘッドは2つのバイアス磁界を印加し
て用いられる。1つは横方向バイアス磁界と呼ばれ、磁
気媒体からの磁束に対する応答を線形にする働きをす
る。もう1つは縦方向バイアス磁界と呼ばれ、MR膜と
反強磁性薄膜、あるいはMR膜と永久磁石膜との間の磁
気的な交換結合によってMR膜内のスピンの方向を揃え
て磁区の発生を防ぎ、バルクハウゼンノイズを抑止する
働きをする。この反強磁性薄膜あるいは永久磁石膜は、
磁区制御膜と呼ばれる。
2. Description of the Related Art A magnetoresistive head (MR head) is
This head uses the magnetoresistance effect in which the internal resistance changes according to the change in the magnetization direction inside the magnetoresistance effect (MR) film. Generally, an MR head is used by applying two bias magnetic fields. One is called a transverse bias magnetic field and serves to linearize the response to magnetic flux from the magnetic medium. The other is called a longitudinal bias magnetic field, and generates magnetic domains by aligning spin directions in the MR film by magnetic exchange coupling between the MR film and the antiferromagnetic thin film or between the MR film and the permanent magnet film. And works to suppress Barkhausen noise. This antiferromagnetic thin film or permanent magnet film
It is called a magnetic domain control film.

【0003】磁区制御膜としてはFeMnなどが知られ
ており、特開昭62−40610 号に記載のように、MR膜上
に磁区制御膜および電極膜を順次積層した構造が採られ
ている。
As a magnetic domain control film, FeMn and the like are known, and a structure in which a magnetic domain control film and an electrode film are sequentially laminated on an MR film is adopted as described in JP-A-62-40610.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、FeM
nは耐食性の悪い材料である。一方、高耐食性の反強磁
性材料であるNiOは電気抵抗が高いため、前記の公知
例の構造を採ることはできない。また、磁区制御膜の上
にMR膜を成膜し、さらに電極膜を積層した構造におい
ては、読取りトラック部分にも磁区制御膜が配置される
ため、MR膜内部のスピンが回転しにくくなり、大きな
出力が得られない。さらに、再生出力向上のため、読み
取りトラックの部分だけ磁区制御膜が無い構造にする
と、磁区制御膜の端でMR膜に段差が生じるため、磁区
構造が不安定になりバルクハウゼンノイズが発生する。
SUMMARY OF THE INVENTION However, FeM
n is a material having poor corrosion resistance. On the other hand, NiO, which is an antiferromagnetic material having high corrosion resistance, has a high electric resistance, so that the structure of the above-mentioned known example cannot be adopted. Further, in a structure in which an MR film is formed on the magnetic domain control film and an electrode film is further laminated, the magnetic domain control film is arranged also in the read track portion, so that spins inside the MR film hardly rotate, Large output cannot be obtained. Further, if the readout track has a structure in which no magnetic domain control film is provided only for the read track, a step occurs in the MR film at the end of the magnetic domain control film, so that the magnetic domain structure becomes unstable and Barkhausen noise occurs.

【0005】本発明の目的は、抵抗の高い磁区制御膜を
用いた場合でも、バルクハウゼンノイズが抑止され、大
きな再生出力が得られる、狭トラックに対応できる磁気
抵抗効果型磁気ヘッド及び磁気ディスク装置を提供する
ことに有る。
An object of the present invention, even when a high resistance magnetic domain control film, Barkhausen noise is suppressed, a large reproducing output can be obtained, magnetic to cope with a narrow track
An object of the present invention is to provide a resistance effect type magnetic head and a magnetic disk drive .

【0006】[0006]

【課題を解決するための手段】本発明の目的は、磁気抵
抗効果膜と、前記磁気抵抗効果膜と磁気的に連続である
面を有する磁区制御膜と、前記磁気抵抗効果膜に電流を
供給する一対の電極膜と、前記磁気抵抗効果膜にバイア
ス磁界を印加する手段とを有する磁気抵抗効果型ヘッド
において、前記磁気抵抗効果膜に接して前記磁区制御膜
と前記電極膜が読取りトラックを除く両側の部分に
互に配置され、前記磁気抵抗効果膜と前記磁区制御膜
接するが3つ以上、前記磁気抵抗効果膜と前記電極
接する面を3つ以上有することを特徴とする磁気
抵抗効果型ヘッドによって達成される。前記磁区制御膜
がNiOが最適の材料としてあげられる。
SUMMARY OF THE INVENTION An object of the present invention is to provide a magnetoresistive film, a magnetic domain control film having a surface magnetically continuous with the magnetoresistive film, and supplying a current to the magnetoresistive film. a pair of electrode films which, in a magnetoresistive head having a means for applying a bias magnetic field to the magnetoresistive film, the electrode film and the read track and the magnetic domain control layer in contact with the magnetoresistive film exchange on both sides of the portion excluding
Are mutually arranged, and characterized by having the magnetoresistive film and the domain control film and <br/> contacts the surface are three or more, the magnetoresistive effect film and the electrode film and the three or more contacts surfaces Is achieved by a magnetoresistive head. The magnetic domain control film is preferably made of NiO.

【0007】[0007]

【0008】[0008]

【0009】[0009]

【0010】前記磁気抵抗効果膜上に高い電気抵抗を有
する非磁性薄膜と前記磁区制御膜と前記電極膜が配置さ
れ、読取りトラック部分に前記磁気抵抗効果膜と前記非
磁性薄膜の界面が配置されててもよい。
A non-magnetic thin film having a high electric resistance, the magnetic domain control film and the electrode film are arranged on the magneto-resistive film, and an interface between the magneto-resistive film and the non-magnetic thin film is arranged in a read track portion. May be.

【0011】前記磁気抵抗効果膜の端部において、前記
磁気抵抗効果膜と前記磁区制御膜接する面の面積
が、前記磁気抵抗効果膜と前記電極膜接する面の面
積よりも大きくしてもよい。
[0011] In an end portion of the magnetoresistive film, the area of the magnetoresistive film and the domain control film are in contact with the surface is larger than the area of the surface and the magnetoresistive effect film and the electrode film is in contact You may.

【0012】前記磁気抵抗効果膜上に高い電気抵抗を有
する非磁性薄膜と前記磁区制御膜と前記電極膜が配置さ
れ、読取りトラック部分に前記磁気抵抗効果膜と前記非
磁性薄膜の界面が配置されていてもよい。
A non-magnetic thin film having a high electric resistance, the magnetic domain control film and the electrode film are disposed on the magneto-resistive film, and an interface between the magneto-resistive film and the non-magnetic thin film is disposed in a read track portion. May be.

【0013】[0013]

【0014】前記磁気抵抗効果膜と前記磁区制御膜
接する面と読取りトラックとの境界線と、前記磁気抵抗
効果膜と前記電極膜接する面と前記磁気抵抗効果膜
と前記磁区制御膜接する面との境界線が非平行で
あってもよい。
[0014] and the magnetoresistive film and the domain control film
The boundary line between the surface and the read track contact, the magnetoresistive film and the electrode film are in contact with the surface and the magnetoresistive film and the boundary between the domain control film are in contact with the surface is a non-parallel Is also good.

【0015】前記磁気抵抗効果膜上に高い電気抵抗を有
する非磁性薄膜と前記磁区制御膜と前記電極膜が配置さ
れ、読取りトラック部分に前記磁気抵抗効果膜と前記非
磁性薄膜の界面が配置されていてもよい。
A non-magnetic thin film having a high electric resistance, the magnetic domain control film and the electrode film are disposed on the magneto-resistive film, and an interface between the magneto-resistive film and the non-magnetic thin film is disposed in a read track portion. May be.

【0016】また、本発明は、磁気抵抗効果膜と電極を
有する磁気抵抗効果型ヘッド,磁気ディスクおよび前記
磁気ディスクを回転させる駆動部を有する磁気ディスク
装置において、前記磁気抵抗効果型磁気ヘッドは前述よ
りなることを特徴とするものである。
[0016] The present invention relates to a magnetoresistive head having a magnetoresistive film and the electrode, in a magnetic disk device having a drive unit for rotating the magnetic disk and the magnetic disk, the magnetoresistive head is above Yo
It is characterized by the following.

【0017】MR膜を段差のない平坦な面の上に成膜し
た後、磁区制御膜および電極膜を成膜する。そのとき、
少なくとも読取りトラック部分には磁区制御膜を配置し
ない。磁区制御膜と電極膜の配置に関しては、磁区制御
膜で読取りトラック幅を決める方式と電極膜で読取りト
ラック幅を決める方式の2つの配置があり、これらが本
発明の基本的な構造である。
After an MR film is formed on a flat surface having no steps, a magnetic domain control film and an electrode film are formed. then,
At least the magnetic domain control film is not disposed on the read track portion. Regarding the arrangement of the magnetic domain control film and the electrode film, there are two arrangements, a method of determining the read track width by the magnetic domain control film and a method of determining the read track width by the electrode film, which are the basic structures of the present invention.

【0018】より実用的な構造としては、以下に述べる
構造がある。一つは、(1)MR膜の読取りトラック部分
の上に高い電気抵抗を有する非磁性薄膜を配置し、その
両脇に磁区制御膜および電極膜を配置する構造である。
もう一つは、(2)電流の経路を確保するためにMR膜と
電極膜が電気的に連続である面の総面積を増加させた配
置や、あるいは(3)MR膜の磁区構造を広範囲にわたり
制御するためにMR膜と磁区制御膜が磁気的に連続であ
る面の総面積を増加させた配置である。さらに、(1)と
(2),(1)と(3)の構造を組み合わせることもできる。
As a more practical structure, there is a structure described below. One is (1) a structure in which a non-magnetic thin film having a high electric resistance is arranged on a read track portion of an MR film, and a magnetic domain control film and an electrode film are arranged on both sides thereof.
The other is (2) the arrangement in which the total area of the surface where the MR film and the electrode film are electrically continuous is increased to secure a current path, or (3) the magnetic domain structure of the MR film is widened. This is an arrangement in which the total area of the surface where the MR film and the magnetic domain control film are magnetically continuous is increased in order to control over the entire area. Furthermore, (1) and
The structures of (2), (1) and (3) can be combined.

【0019】また、磁区制御膜で読取りトラック幅を決
める方式では、MR膜と磁区制御膜接する面と読取
りトラックとの境界線と、MR膜と電極膜接する
とMR膜と磁区制御膜接する面との境界線を平行で
はない配置にすることにより、横方向バイアス磁界の印
加も可能である。
Further, in a manner that determines the read track width in the magnetic domain control film, the MR film and the boundary between the domain control film are in contact with the surface and read track, MR film and the electrode film and the surface in contact with the MR layer and the magnetic domain By arranging the boundary line with the surface in contact with the control film not parallel, it is also possible to apply a lateral bias magnetic field.

【0020】[0020]

【作用】バルクハウゼンノイズを抑止するためには、M
R膜を単磁区状態にすることが必要である。MR膜に段
差があると、段差の部分に磁極が生じて磁区が発生する
原因となるので、MR膜は平坦であることが望ましい。
MR膜の単磁区状態を安定にする方法として、反強磁性
材料あるいは永久磁石材料からなる磁区制御膜とMR膜
との交換結合を利用してMR膜内部のスピンの方向を揃
える方法が用いられる。この交換結合によってMR膜内
部のスピンは、外部磁界に対して回転しにくくなる。従
って、大きな再生出力を得るためには、少なくとも読取
りトラック部分においてこの交換結合が無いことが望ま
しい。さらに、磁区制御膜として高い抵抗を有する材料
を用いる場合には、MR膜と電極膜が直接電気的に接触
することが必要である。これらのことを考慮すると、図
1に示すように、段差がない面の上に作製されたMR膜
の膜面の読取りトラック以外の部分に、MR膜と磁区制
御膜が磁気的に連続である面と、MR膜と電極膜が電気
的に連続である面が配置された構造になる。
In order to suppress Barkhausen noise, M
It is necessary that the R film be in a single magnetic domain state. If there is a step in the MR film, a magnetic pole is formed at the step, which causes a magnetic domain. Therefore, it is desirable that the MR film be flat.
As a method for stabilizing the single magnetic domain state of the MR film, a method of aligning the spin directions inside the MR film using exchange coupling between the magnetic domain control film made of an antiferromagnetic material or a permanent magnet material and the MR film is used. . This exchange coupling makes it difficult for spins inside the MR film to rotate with respect to an external magnetic field. Therefore, in order to obtain a large reproduction output, it is desirable that there is no exchange coupling at least in the read track portion. Further, when a material having high resistance is used as the magnetic domain control film, the MR film and the electrode film need to be in direct electrical contact. In consideration of these facts, as shown in FIG. 1, the MR film and the magnetic domain control film are magnetically continuous in portions other than the read tracks on the surface of the MR film formed on the surface having no step. The structure has a surface and a surface on which the MR film and the electrode film are electrically continuous.

【0021】図2(a)はMR膜10上に磁区制御膜1
1を形成し、その上に一定距離を離して電極膜12を形
成したものである。この場合、電極膜12が読取りトラ
ック幅を規定する場合であり、電流は読取りトラック部
分にだけ流れるためオフトラック特性は良いが、磁区制
御膜11の間隔が広いためバルクハウゼンノイズが発生
し易いと考えられる。しかし、読取りトラックが狭くな
ると、磁区制御膜の間隔も必然的に狭くなりバルクハウ
ゼンノイズを抑止する効果が強くなるので、狭トラック
のMRヘッドに適した構造であると言える。図2(b)
磁区制御膜11が読取りトラック幅を規定する場合で
あり、磁区制御膜1の下のMR膜10にも電流が流れ
るためオフトラック特性は(a)に比べると良くないと
考えられるが、磁区制御膜が読取りトラックに隣接して
いるためバルクハウゼンノイズは発生しにくい。このこ
とから、図2(b)の構造は、トラック幅の広いMRヘ
ッドに用いることができる。
FIG. 2A shows the magnetic domain control film 1 on the MR film 10.
1 is formed, and an electrode film 12 is formed thereon at a predetermined distance. In this case, the electrode film 12 defines the read track width. Since the current flows only in the read track portion, the off-track characteristic is good. However, since the interval between the magnetic domain control films 11 is wide, Barkhausen noise is likely to occur. Conceivable. However, as the read track becomes narrower, the interval between the magnetic domain control films becomes inevitably narrower, and the effect of suppressing Barkhausen noise becomes stronger. Therefore, it can be said that the structure is suitable for a narrow track MR head. FIG. 2 (b)
Although a case for defining a track width reading magnetic domain control film 11, the off-track characteristic a current flows in the MR film 10 under the magnetic domain control layer 1 1 is considered poor compared (a), the Since the magnetic domain control film is adjacent to the read track, Barkhausen noise hardly occurs. From this, the structure of FIG. 2B can be used for an MR head having a wide track width.

【0022】図2(a)の基本構造を応用した構造を以
下に述べる。この構造では、電極膜あるいは磁区制御膜
の加工をイオンミリングやドライエッチングで行う際に
は、読取りトラック部分のMR膜が損傷を受け、特性が
劣化する。これを防止するために、MR膜の磁気特性を
損なわず、かつセンス電流のロスが無視できる高抵抗非
磁性薄膜を読取りトラック部分に配置した構造が図3で
ある。図において引用番号は図2(a),(b)と同じも
のは同じものを示す。
A structure to which the basic structure of FIG. 2A is applied will be described below. In this structure, when the electrode film or the magnetic domain control film is processed by ion milling or dry etching, the MR film in the read track portion is damaged, and the characteristics are deteriorated. In order to prevent this, FIG. 3 shows a structure in which a high-resistance non-magnetic thin film which does not impair the magnetic characteristics of the MR film and in which the loss of the sense current is negligible is arranged in the read track portion. In the figure, the same reference numerals as those in FIGS. 2A and 2B denote the same parts.

【0023】図2(a)の構造を狭トラックのMRヘッ
ドに適用することを考えた場合、磁区制御膜の間隔を狭
くするためには、電極膜の幅を薄くすることが必要とな
る。その際に、MR膜と電極膜の電気的な接触を十分と
るために、MR膜10と電極膜12が電気的に連続であ
る面の面積を増加させた構造が図4である。交換結合を
利用して磁区制御を行っていることから、磁区制御膜の
間隔はスピンの方向が揃っている長さ以上は離すことが
できないので、断面構造は図4Aのようになるが、MR
膜面における磁区制御膜,電極膜は例えば図4B(a)
〜(c)のような配置を採ることができる。図6は、M
R膜において磁区が端部から発生し易いことを考慮し
て、端部においてMR膜と磁区制御膜が磁気的に連続で
ある面を相対的に増加させて、磁区制御の効果の向上を
図った構造の断面図である。
When the structure shown in FIG. 2A is applied to an MR head having a narrow track, it is necessary to reduce the width of the electrode film in order to reduce the distance between the magnetic domain control films. At this time, FIG. 4 shows a structure in which the area of the surface where the MR film 10 and the electrode film 12 are electrically continuous is increased in order to ensure sufficient electrical contact between the MR film and the electrode film. Since domain control is performed using exchange coupling, the magnetic domain control films cannot be separated from each other by more than the length in which the spin directions are aligned. Therefore, the cross-sectional structure is as shown in FIG. 4A.
The magnetic domain control film and the electrode film on the film surface are, for example, as shown in FIG.
The following arrangements can be adopted. FIG.
In consideration of the fact that the magnetic domain is likely to be generated from the end in the R film, the surface where the MR film and the magnetic domain control film are magnetically continuous at the end is relatively increased to improve the effect of the magnetic domain control. FIG. 3 is a cross-sectional view of a folded structure.

【0024】図5および図7は、それぞれ図3と図4の
構造および図3と図6の構造を組み合わせた構造の断面
図である。ここで、MR膜面における磁区制御膜,電極
膜の配置に関しては、図4AとBの関係のようにいくつ
かの配置を採ることができる。これらの構造は、MR膜
の読取りトラック部分の損傷がなく、磁区も発生しにく
いため、優れた再生特性を有する狭トラック用のMRヘ
ッドが期待できる。
FIGS. 5 and 7 are cross-sectional views of the structures shown in FIGS. 3 and 4 and the structure obtained by combining the structures shown in FIGS. Here, with respect to the arrangement of the magnetic domain control film and the electrode film on the MR film surface, several arrangements can be adopted as shown in the relationship between FIGS. 4A and 4B. These structures do not damage the read track portion of the MR film and hardly generate magnetic domains, so that an MR head for a narrow track having excellent reproduction characteristics can be expected.

【0025】次に、図2(b)の基本構造を応用した構
造を述べる。読取りトラックが磁区制御膜で規定される
ときの利点の一つに、図8に示すようにMR膜の磁化容
易方向に対して電極膜の端部をある角度を設けて配置す
ることにより、他に横方向バイアス磁界印加構造を設け
ずに横方向バイアス磁界を印加することができることが
ある。電極膜によって読取りトラックを規定し、電極膜
の端部をMR膜の磁化容易方向に対してある角度を設け
て配置する構造は公知であるが、ヘッドの先端加工の際
に読取りトラックの位置がずれてしまうという欠点が有
った。磁区制御膜によって読取りトラックを規定する本
発明の構造ではこの欠点が改善される。図9は、電極膜
あるいは磁区制御膜の加工の際のイオンミリングやドラ
イエッチングによるMR膜の損傷を防止するために、読
取りトラック部分に高抵抗非磁性薄膜を配置した構造で
ある。この構造ではMR膜面の読取りトラックの両脇が
磁区制御膜で覆われており読取りトラック周辺部の損傷
がないため、図1の構造に比べ加工による影響は少ない
と思われる。
Next, a structure to which the basic structure of FIG. 2B is applied will be described. One of the advantages when the read track is defined by the magnetic domain control film is that, by arranging the end portion of the electrode film at an angle with respect to the easy magnetization direction of the MR film as shown in FIG. In some cases, a lateral bias magnetic field can be applied without providing a lateral bias magnetic field application structure. A structure is known in which a read track is defined by an electrode film, and the end of the electrode film is arranged at an angle with respect to the direction of easy magnetization of the MR film. There was a disadvantage that it would shift. This disadvantage is improved in the structure of the present invention in which the read track is defined by the magnetic domain control film. FIG. 9 shows a structure in which a high-resistance non-magnetic thin film is arranged on a read track portion in order to prevent damage to an MR film due to ion milling or dry etching when processing an electrode film or a magnetic domain control film. In this structure, both sides of the read track on the MR film surface are covered with the magnetic domain control film, and there is no damage to the periphery of the read track.

【0026】図2(b)において、MR膜と磁区制御膜
が磁気的に連続である面の面積を増やし磁区制御の効果
を増強させた構造の断面図が図10である。このときの
磁区制御膜の間隔は交換結合によりスピンの方向が揃っ
ている長さよりも短く、また、MR膜面における磁区制
御膜,電極膜の配置は、図10Bのようにいくつかの配
置を採ることができる。図12は、磁区が発生しやすい
MR膜周辺部においてMR膜と磁区制御膜が磁気的に連
続である面を相対的に増加させた構造の断面図であり、
バルクハウゼンノイズの抑制効果の高い構造である。
FIG. 2B is a sectional view of a structure in which the area of the surface where the MR film and the magnetic domain control film are magnetically continuous is increased to enhance the magnetic domain control effect. At this time, the distance between the magnetic domain control films is shorter than the length in which the spin directions are aligned by exchange coupling, and the arrangement of the magnetic domain control films and the electrode films on the MR film surface has some arrangements as shown in FIG. 10B. Can be taken. FIG. 12 is a cross-sectional view of a structure in which the surface where the MR film and the magnetic domain control film are magnetically continuous is relatively increased in the periphery of the MR film where magnetic domains are likely to be generated.
This structure has a high Barkhausen noise suppressing effect.

【0027】図11および図13は、それぞれ図9と図
10の構造および図9と図12の構造を組み合わせた構
造の断面図である。ここで、MR膜面における磁区制御
膜,電極膜の配置に関しては、前述のようにいくつかの
配置を採ることができる。これらは、MR膜の読取りト
ラック部分およびその端部に損傷を与えず、磁区も発生
しにくい構造であるため、優れた再生特性が期待でき
る。
FIGS. 11 and 13 are cross-sectional views of the structures shown in FIGS. 9 and 10, and the structure obtained by combining the structures shown in FIGS. 9 and 12, respectively. Here, with respect to the arrangement of the magnetic domain control film and the electrode film on the MR film surface, several arrangements can be adopted as described above. These have a structure that does not damage the read track portion and the end portion of the MR film and hardly generate magnetic domains, so that excellent reproduction characteristics can be expected.

【0028】[0028]

【実施例】以下、実施例により本発明を詳述する。The present invention will be described below in detail with reference to examples.

【0029】実施例 図1に本発明の実施例によるMRヘッドの斜視図を示
す。アルミナなどの絶縁層(図示せず)を薄膜形成し精
密研磨を施した非磁性基板18の上に、下部シールド膜
17としてスパッタリング法によりパーマロイを形成
し、イオンミリングを用いて所定の形状にパターン化
し、その上にアルミナ絶縁膜16を成膜した。横方向バ
イアス磁界を印加するための軟磁性薄膜15であるNi
−Fe−Nb系合金および非磁性導電性薄膜14である
Taと、MR膜10であるパーマロイをスパッタリング
により成膜し、イオンミリングにより所定のパターンを
形成した。高抵抗非磁性薄膜13であるアルミナを成膜
し、読取りトラック部分を残しイオンミリングにより除
去した後、高抵抗磁区制御膜11であるNiOおよび電
極膜12であるAuをリフトオフ法により作製した。こ
のとき、読取りトラックは電極膜によって規定され、読
取りトラックに近い部分ではセンス電流の流れる経路を
確保する。MR膜と電極膜が電気的に連続である面の面
積が大きく、MR膜の端部では磁区の発生を防ぐため、
MR膜と磁区制御膜が磁気的に連続である面の面積が大
きい配置とした。その上に、アルミナ絶縁膜19を成
膜,パターン化した。保護膜20としてレジストを形成
した後、パーマロイからなる上部シールド膜21を成
膜,パターン化した。アルミナ絶縁膜19および上部シ
ールド膜21のパターン化には、フォトリソグフィー技
術を用いた。磁区制御膜11であるNiOを着磁するた
め、読取りトラック幅方向に3kOeの直流磁界を印加
しながら275℃で30分間熱処理を行った後、MRヘ
ッドに加工した。
FIG. 1 is a perspective view of an MR head according to an embodiment of the present invention. A permalloy is formed by sputtering as a lower shield film 17 on a nonmagnetic substrate 18 on which a thin insulating layer (not shown) of alumina or the like is formed and precision polished, and patterned into a predetermined shape by ion milling. And an alumina insulating film 16 was formed thereon. Ni, which is a soft magnetic thin film 15 for applying a lateral bias magnetic field,
-A Fe-Nb alloy and Ta as the nonmagnetic conductive thin film 14 and Permalloy as the MR film 10 were formed by sputtering, and a predetermined pattern was formed by ion milling. After forming alumina as the high-resistance nonmagnetic thin film 13 and removing it by ion milling while leaving a read track portion, NiO as the high-resistance magnetic domain control film 11 and Au as the electrode film 12 were produced by a lift-off method. At this time, the read track is defined by the electrode film, and a path through which the sense current flows is secured in a portion near the read track. The area of the surface where the MR film and the electrode film are electrically continuous is large.
The arrangement is such that the area of the surface where the MR film and the domain control film are magnetically continuous is large. An alumina insulating film 19 was formed thereon and patterned. After forming a resist as the protective film 20, an upper shield film 21 made of permalloy was formed and patterned. Photolithography technology was used for patterning the alumina insulating film 19 and the upper shield film 21. In order to magnetize NiO as the magnetic domain control film 11, heat treatment was performed at 275 ° C. for 30 minutes while applying a DC magnetic field of 3 kOe in the read track width direction, and then processed into an MR head.

【0030】本実施例では、上部シールド膜21および
下部シールド膜17としてパーマロイを用いたが、Fe
−Al−Si系合金を用いることもできる。また、高分
解能を必要としない場合には、これらを設けなくとも良
い。
In this embodiment, the upper shield film 21 and the lower shield film 17 are made of permalloy.
-Al-Si alloys can also be used. If high resolution is not required, they need not be provided.

【0031】各膜の材料としては、上述の材料の他に、
軟磁性薄膜15としてはNi−Fe系合金にRh,Ru
を添加した合金やCo−Zr−Mo非晶質合金を、非磁
性導電性薄膜14としてはNb,TiあるいはMoを、
MR膜としてはNi−Co系合金,Fe−Co系合金あ
るいはFe−Ni−Co系合金を、高抵抗磁区制御膜1
1としてはBaフェライト,Srフェライトなどの酸化
物永久磁石あるいはNiO−CoO系反強磁性材料を、
高抵抗非磁性薄膜13としてはTa,NiCrなどを、電極
膜12としてはCu,Wなどを用いることができる。
As the material of each film, in addition to the above-mentioned materials,
The soft magnetic thin film 15 may be made of a Ni—Fe alloy such as Rh and Ru.
Alloy or Co-Zr-Mo amorphous alloy, Nb, Ti or Mo as the non-magnetic conductive thin film 14,
As the MR film, a Ni—Co alloy, a Fe—Co alloy, or an Fe—Ni—Co alloy is used.
1 is an oxide permanent magnet such as Ba ferrite or Sr ferrite or a NiO—CoO-based antiferromagnetic material;
Ta, NiCr, or the like can be used as the high-resistance nonmagnetic thin film 13, and Cu, W, or the like can be used as the electrode film 12.

【0032】以上のように作製したMRヘッドについ
て、保磁力1600Oe,磁性体膜厚tmag=20n
m、残留磁束密度Brと磁性体膜厚の積Br・tmag
180G・μmのCo−Ta−Cr系スパッタ媒体に誘
導型薄膜磁気ヘッドを用いて5kFCIで記録した記録パタ
−ンを、浮上量0.15μm ,センス電流12mAで再
生し、その再生出力を評価した。比較として、読取りト
ラック部のみイオンミリングにより除去した磁区制御膜
の上にMR膜,非磁性導電性薄膜,軟磁性薄膜,保護膜
を順次成膜し、パタ−ン化した後、電極膜をつけた構造
のMRヘッドについても、同様の評価を行った。その結
果、本実施例ではバルクハウゼンノイズが観測されず
に、再生出力が350μVであったのに対し、比較例で
はバルクハウゼンノイズが観測され、再生出力も230
μVと小さかった。
With respect to the MR head manufactured as described above, the coercive force is 1600 Oe and the thickness of the magnetic material is t mag = 20 n.
m, the product of residual magnetic flux density Br and magnetic film thickness Br · t mag =
A recording pattern recorded at 5 kFCI on a 180 G.mu.m Co-Ta-Cr sputter medium using an induction type thin film magnetic head was reproduced at a flying height of 0.15 .mu.m and a sense current of 12 mA, and the reproduced output was evaluated. . For comparison, an MR film, a non-magnetic conductive thin film, a soft magnetic thin film, and a protective film are sequentially formed on the magnetic domain control film which has been removed by ion milling only in the read track portion, and after patterning, an electrode film is formed. The same evaluation was performed for the MR head having the above structure. As a result, in the present embodiment, Barkhausen noise was not observed, and the reproduction output was 350 μV, whereas in the comparative example, Barkhausen noise was observed and the reproduction output was 230 V.
It was as small as μV.

【0033】[0033]

【発明の効果】本発明によれば、高い抵抗を有する磁区
制御膜を用いても、MR膜を段差がない平坦な下地上に
作製することができ、読取りトラック部分に磁区制御膜
がない配置にすることができるので、バルクハウゼンノ
イズがなく再生出力が大きいMRヘッドが得られる。
According to the present invention, even when a magnetic domain control film having a high resistance is used, an MR film can be formed on a flat base having no step, and an arrangement without a magnetic domain control film in a read track portion can be obtained. Therefore, an MR head having a large reproduction output without Barkhausen noise can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の磁気ヘッドの一実施例を示す斜視図。FIG. 1 is a perspective view showing one embodiment of a magnetic head according to the present invention.

【図2】本発明の磁気ヘッドの基本構造を示す断面図。FIG. 2 is a sectional view showing the basic structure of the magnetic head of the present invention.

【図3】読取りトラックを電極膜で規定する基本構造の
第1の応用例。
FIG. 3 shows a first application example of a basic structure in which a read track is defined by an electrode film.

【図4】読取りトラックを電極膜で規定する基本構造の
第2の応用例。
FIG. 4 shows a second applied example of the basic structure in which a read track is defined by an electrode film.

【図5】読取りトラックを電極膜で規定する基本構造の
第3の応用例。
FIG. 5 is a third application example of a basic structure in which a read track is defined by an electrode film.

【図6】読取りトラックを電極膜で規定する基本構造の
第4の応用例。
FIG. 6 is a fourth applied example of the basic structure in which a read track is defined by an electrode film.

【図7】読取りトラックを電極膜で規定する基本構造の
第5の応用例。
FIG. 7 shows a fifth application example of the basic structure in which a read track is defined by an electrode film.

【図8】読取りトラックを磁区制御膜で規定する基本構
造の第1の応用例。
FIG. 8 shows a first application example of a basic structure in which a read track is defined by a magnetic domain control film.

【図9】読取りトラックを磁区制御膜で規定する基本構
造の第2の応用例。
FIG. 9 shows a second application example of the basic structure in which a read track is defined by a magnetic domain control film.

【図10】読取りトラックを磁区制御膜で規定する基本
構造の第3の応用例。
FIG. 10 shows a third application example of the basic structure in which a read track is defined by a magnetic domain control film.

【図11】読取りトラックを磁区制御膜で規定する基本
構造の第4の応用例。
FIG. 11 shows a fourth application example of the basic structure in which a read track is defined by a magnetic domain control film.

【図12】読取りトラックを磁区制御膜で規定する基本
構造の第5の応用例。
FIG. 12 shows a fifth application example of the basic structure in which a read track is defined by a magnetic domain control film.

【図13】読取りトラックを磁区制御膜で規定する基本
構造の第6の応用例。
FIG. 13 shows a sixth application example of the basic structure in which a read track is defined by a magnetic domain control film.

【符号の説明】[Explanation of symbols]

10…MR膜、11…高抵抗磁区制御膜、12…電極
膜、13…高抵抗非磁性薄膜、14…非磁性導電性薄
膜、15…軟磁性薄膜、16,19…アルミナ絶縁膜、
17…下部シールド膜、18…非磁性基板、20…レジ
スト保護膜、21…上部シ−ルド膜、22…保護膜。
10 ... MR film, 11 ... High resistance magnetic domain control film, 12 ... Electrode film, 13 ... High resistance non-magnetic thin film, 14 ... Non-magnetic conductive thin film, 15 ... Soft magnetic thin film, 16, 19 ... Alumina insulating film,
17: lower shield film, 18: non-magnetic substrate, 20: resist protective film, 21: upper shield film, 22: protective film.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 府山 盛明 茨城県日立市大みか町七丁目1番1号 株式会社 日立製作所 日立研究所内 (72)発明者 今川 尊雄 茨城県日立市大みか町七丁目1番1号 株式会社 日立製作所 日立研究所内 (56)参考文献 特開 平4−149812(JP,A) (58)調査した分野(Int.Cl.6,DB名) G11B 5/39──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Moriaki Fuyama 7-1-1, Omika-cho, Hitachi City, Ibaraki Prefecture Within Hitachi Research Laboratory, Hitachi, Ltd. (72) Inventor Takao Imagawa 7-1-1, Omika-cho, Hitachi City, Ibaraki Prefecture No. 1 Hitachi, Ltd. Hitachi Research Laboratory (56) References JP-A-4-149812 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) G11B 5/39

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】磁気抵抗効果膜と、前記磁気抵抗効果膜
区を制御する磁区制御膜と、前記磁気抵抗効果膜に電
流を供給する一対の電極膜と、前記磁気抵抗効果膜にバ
イアス磁界を印加する手段とを有する磁気抵抗効果型ヘ
ッドにおいて、前記磁区制御膜と前記電極膜前記磁
気抵抗効果膜の読取りトラックを除く両側部分で、かつ
前記磁気抵抗効果膜に接して交互に配置され、前記磁気
抵抗効果膜と前記電極膜接している面が3つ以上及
前記磁気抵抗効果膜と前記磁区制御膜接してい
が3つ以上存在することを特徴とする磁気抵抗効果型
ヘッド。
And 1. A magnetoresistive film, and the magnetic domain control film for controlling the <br/> magnetic District of the magnetoresistive film, and a pair of electrode films for supplying current to the magnetoresistive film, said magnetoresistive the magnetoresistance effect type head and a means for applying a bias magnetic field to effect film, said electrode film and said magnetic and said magnetic domain control film
On both sides except the reading track of the air resistance effect film, and
Wherein they are arranged alternately in contact with the magnetoresistive film, the magnetoresistive effect film and the electrode film and have that surface contact is more than two及
Fine the magnetoresistive film and the magnetoresistive head, characterized in that the magnetic domain control layer and optionally that surface contact is there more than two.
【請求項2】前記磁気抵抗効果膜と前記磁区制御膜とが
接している面の面積が、前記磁気抵抗効果膜と前記電極
膜とが接している面の面積よりも大きいことを特徴とす
る請求項1に記載の磁気抵抗効果型ヘッド。
2. The method according to claim 1, wherein the magnetoresistive effect film and the magnetic domain control film are
The area of the surface in contact with the magnetoresistive film and the electrode
Characterized by being larger than the area of the surface in contact with the membrane
The magnetoresistive head according to claim 1.
【請求項3】磁気抵抗効果膜上に磁区制御膜と電極とを
有する磁気抵抗効果型磁気ヘッドを搭載した磁気ディス
ク装置において、前記磁気抵抗効果型磁気ヘッドは磁気
抵抗効果膜と、前記磁気抵抗効果膜の磁区を制御する磁
区制御膜と、前記磁気抵抗効果膜に電流を供給する一対
の電極膜と、前記磁気抵抗効果膜にバイアス磁界を印加
する手段とを有する磁気抵抗効果型ヘッドにおいて、前
記磁区制御膜と前記電極膜とが前記磁気抵抗効果膜の読
取りトラックを除く両側部分で、かつ前記磁気抵抗効果
膜に接して交互に配置され、前記磁気抵抗効果膜と前記
電極膜とが接している面が3つ以上及び前記磁気抵抗効
果膜と前記磁区制御膜とが接している面が3つ以上存在
することを特徴とする磁気ディスク装置。
3. A magnetic domain control film and an electrode on a magnetoresistive film.
Disk with a magnetoresistive magnetic head
In the magnetic head device, the magnetoresistive head is a magnetic head.
A resistance effect film, and a magnetic field controlling a magnetic domain of the magnetoresistive effect film.
A domain control film and a pair for supplying a current to the magnetoresistive film.
A bias magnetic field to the electrode film and the magnetoresistive film.
A magnetoresistive head having means for performing
The magnetic domain control film and the electrode film read the magnetoresistive effect film.
On both sides except the take-up track, and the magnetoresistance effect
The magnetoresistance effect film and the film are alternately arranged in contact with the film.
Three or more surfaces in contact with the electrode film and the magnetoresistance effect
Three or more surfaces where the fruit film and the magnetic domain control film are in contact
A magnetic disk drive.
JP5161393A 1993-03-12 1993-03-12 Magnetoresistive head and magnetic disk drive Expired - Lifetime JP2861714B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5161393A JP2861714B2 (en) 1993-03-12 1993-03-12 Magnetoresistive head and magnetic disk drive

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5161393A JP2861714B2 (en) 1993-03-12 1993-03-12 Magnetoresistive head and magnetic disk drive

Publications (2)

Publication Number Publication Date
JPH06267028A JPH06267028A (en) 1994-09-22
JP2861714B2 true JP2861714B2 (en) 1999-02-24

Family

ID=12891753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5161393A Expired - Lifetime JP2861714B2 (en) 1993-03-12 1993-03-12 Magnetoresistive head and magnetic disk drive

Country Status (1)

Country Link
JP (1) JP2861714B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0850710A (en) * 1994-04-07 1996-02-20 Read Rite Corp Magnetoresistance effect-type converter with insulating oxide replacement layer

Also Published As

Publication number Publication date
JPH06267028A (en) 1994-09-22

Similar Documents

Publication Publication Date Title
JP3022023B2 (en) Magnetic recording / reproducing device
US6018443A (en) Thin film magnetic head having hard films for magnetizing a shield layer in a single domain state
JPH11134616A (en) Magnetic reluctance type reading sensor, magnetic storage device and manufacture of magnetic reluctance type sensor
JPH07105006B2 (en) Magnetoresistive magnetic head
KR100278873B1 (en) Magnetoresistive effect element and manufacturing method
JP3817399B2 (en) Magnetoresistive sensor
US6120920A (en) Magneto-resistive effect magnetic head
JPH09282618A (en) Magneto-resistive head and magnetic recording and reproducing device
JPH1091920A (en) Magneto-resistance effect type head
JPH0944819A (en) Magnetic conversion element and thin-film magnetic head
US6731478B2 (en) Magnetoresistive effect head
JP2861714B2 (en) Magnetoresistive head and magnetic disk drive
JPH10241125A (en) Thin film magnetic head and recording/reproducing separation type magnetic head and magnetic recording/ reproducing apparatus using the same
JP5132706B2 (en) Magnetic head, magnetic head assembly, and magnetic recording / reproducing apparatus
JP3475868B2 (en) Magnetoresistive thin-film magnetic head
JP2004128026A (en) Magnetoresistive effect element, magnetic head, magnetic recording device
JPH11175928A (en) Magnetic reluctance effect head and magnetic recording and reproducing device
JP3377522B1 (en) Thin film magnetic head, thin film magnetic head assembly, storage device, and method of manufacturing thin film magnetic head
JP3828428B2 (en) Thin film magnetic head, thin film magnetic head assembly, and storage device
JP3233115B2 (en) Magnetoresistive head and method of manufacturing the same
JPH08153313A (en) Magneto-resistance effect type head and magnetic disk device
JP2001338410A (en) Magnetic disk device
JP3083090B2 (en) Magnetoresistive sensor
JP3040892B2 (en) Magnetoresistive thin film magnetic head
JP2781103B2 (en) Magnetoresistive head and method of manufacturing the same