JPH026490Y2 - - Google Patents

Info

Publication number
JPH026490Y2
JPH026490Y2 JP4820184U JP4820184U JPH026490Y2 JP H026490 Y2 JPH026490 Y2 JP H026490Y2 JP 4820184 U JP4820184 U JP 4820184U JP 4820184 U JP4820184 U JP 4820184U JP H026490 Y2 JPH026490 Y2 JP H026490Y2
Authority
JP
Japan
Prior art keywords
magnetic
amorphous soft
bias
conductor layer
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4820184U
Other languages
Japanese (ja)
Other versions
JPS60159518U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP4820184U priority Critical patent/JPS60159518U/en
Publication of JPS60159518U publication Critical patent/JPS60159518U/en
Application granted granted Critical
Publication of JPH026490Y2 publication Critical patent/JPH026490Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Magnetic Heads (AREA)

Description

【考案の詳細な説明】 (産業上の利用分野) 本考案は磁気記憶媒体に書き込まれた磁気的情
報を、いわゆる磁気抵抗効果を利用して、読み出
しを行う強磁性磁気抵抗効果素子(以下、MR素
子と称す)を備えた磁気抵抗効果ヘツド(以下、
MRヘツドと称す)に関する。
[Detailed description of the invention] (Industrial application field) The present invention is a ferromagnetic magnetoresistive element (hereinafter referred to as "magnetoresistance effect element") that reads magnetic information written on a magnetic storage medium by using the so-called magnetoresistive effect. A magnetoresistive head (hereinafter referred to as MR element) equipped with
(referred to as MR head).

(従来技術とその問題点) 周知の如く、MR素子を磁気記憶媒体に書き込
まれた磁気的情報に対して、線形応答を呈する高
効率の再生用ヘツドとして用いる場合には、MR
素子に流すセンス電流IとMR素子の磁化Mの成
す角度θB(以下、バイアス角度と称す)を所定の
値(望ましくは45゜)に設定するバイアス手段を
具備しなければならない。
(Prior art and its problems) As is well known, when an MR element is used as a highly efficient reproduction head that exhibits a linear response to magnetic information written on a magnetic storage medium, the MR element
A bias means must be provided for setting the angle θ B (hereinafter referred to as bias angle) formed by the sense current I flowing through the element and the magnetization M of the MR element to a predetermined value (preferably 45 degrees).

従来、MR素子のバイアス方法として、第1図
に示す、いわゆるシヤントバイアス法が開示され
ている。第1図は、MR素子1に接触させて非磁
性導体層2(例えば、Ti,Mo等)を配置し、
MR素子1に供給するセンス電流Iの一部が導体
層2にも分流するとことによつて発生する磁界
HBを利用して、センス電流Iに対してMR素子
1の磁化Mを偏向させる構成となつている。
Conventionally, a so-called shunt bias method shown in FIG. 1 has been disclosed as a bias method for an MR element. In FIG. 1, a non-magnetic conductor layer 2 (for example, Ti, Mo, etc.) is placed in contact with an MR element 1,
A magnetic field generated when a part of the sense current I supplied to the MR element 1 is also shunted to the conductor layer 2.
The configuration is such that the magnetization M of the MR element 1 is deflected with respect to the sense current I using H B.

しかし、この手法では、所定のバイアス角θB
得るために、比較的大電流を非磁性導体層2に流
す必要があり、従つて、MR素子1の電気的抵抗
が熱的ドリフトを起し、かつ熱雑音の原因にもな
つていた。更に比較的大電流を導体層2に分流さ
せるには、MR素子1の電気抵抗と同程度もしく
は以下の電気抵抗を有する様に非磁性導体層2の
膜厚及び材料を選定する必要があり、これは結局
MRヘツドの外部信号磁界に対する正味の抵抗変
化を低下させ、従つてMRヘツドの再生出力をも
低下させていた。
However, this method requires a relatively large current to flow through the nonmagnetic conductor layer 2 in order to obtain a predetermined bias angle θ B , and therefore the electrical resistance of the MR element 1 may cause thermal drift. , and also caused thermal noise. Furthermore, in order to shunt a relatively large current to the conductor layer 2, it is necessary to select the film thickness and material of the non-magnetic conductor layer 2 so that it has an electrical resistance equal to or less than the electrical resistance of the MR element 1. This ends up being
This reduces the net resistance change of the MR head to an external signal magnetic field, and therefore also reduces the reproduction output of the MR head.

一方、他のバイアス法が特公昭53−37205に開
示されている。このバイアス法は第2図に示す如
く、MR素子1、非磁性導体層2、絶縁層3及び
磁気バイアス層4が連続的に積層されることによ
つて達成されている。MR素子1と非磁性導体層
2とを流れる一定に調整されたセンス電流Iは、
磁気バイアス層4内に磁界を発生させる。この磁
界は、交互に静磁気結合によつてセンス電流Iに
対して所定のバイアス角θBをなすように、MR素
子1内の磁界Mを回転させる。
On the other hand, another bias method is disclosed in Japanese Patent Publication No. 53-37205. This biasing method is achieved by successively stacking an MR element 1, a nonmagnetic conductor layer 2, an insulating layer 3, and a magnetic bias layer 4, as shown in FIG. The sense current I, which is adjusted to a constant value and flows through the MR element 1 and the nonmagnetic conductor layer 2, is
A magnetic field is generated within the magnetic bias layer 4. This magnetic field alternately rotates the magnetic field M in the MR element 1 so as to form a predetermined bias angle θ B with respect to the sense current I by magnetostatic coupling.

しかし、この手法では、MR素子1及び磁気バ
イアス層4が充分な静磁気的結合をおこない得る
ためには、非磁性導体層2及び絶縁層3の厚みを
極力薄く設定する必要がある。充分な静磁気的結
合を得るため、絶縁層3を薄く設定すると、MR
素子1と磁気バイアス層4間に局所的な短絡が生
じ、MRヘツドとしての特性のバラツキが生じて
いた。
However, in this method, in order to obtain sufficient magnetostatic coupling between the MR element 1 and the magnetic bias layer 4, it is necessary to set the thickness of the nonmagnetic conductor layer 2 and the insulating layer 3 to be as thin as possible. In order to obtain sufficient magnetostatic coupling, if the insulating layer 3 is made thin, the MR
A local short circuit occurred between the element 1 and the magnetic bias layer 4, resulting in variations in the characteristics of the MR head.

(考案の目的) 本考案の目的は前記従来の欠点を解決した良好
なバイアス状態を実現した磁気抵抗効果ヘツドを
提供することである。
(Object of the invention) An object of the invention is to provide a magnetoresistive head that overcomes the above-mentioned conventional drawbacks and realizes a good bias state.

(考案の構成) 本考案によれば、強磁性磁気抵抗効果素子と非
磁性導体層と非晶質軟磁性体層とがこの順に積層
された構造を有することを特徴とする磁気抵抗効
果ヘツドが提供できる。
(Structure of the invention) According to the invention, there is provided a magnetoresistive head having a structure in which a ferromagnetic magnetoresistive element, a nonmagnetic conductor layer, and an amorphous soft magnetic material layer are laminated in this order. Can be provided.

(構成の詳細な説明) 以下、本考案について、実施例を示す図面を用
いて詳細に説明する。
(Detailed Description of Configuration) The present invention will be described in detail below with reference to drawings showing embodiments.

第3図は本考案のMRヘツドの主要構成要素で
あるMR素子部分を示す実施例である。
FIG. 3 is an embodiment showing the MR element portion which is the main component of the MR head of the present invention.

ガラス、フエライト、セラミツクス等からなる
表面の滑らかな絶縁性基板材(図示せず)上に強
磁性体からなるMR素子1(例えば、Fe−Ni合
金、Ni−Co合金)が略200乃至500Åの範囲の膜
厚を有する様にスパツタ、蒸着等の手法により形
成され、前記MR素子1上には非磁性導体層2
(例えば、Ti,Mo,Cr,Ta)が同様な手法を用
いて形成され、更に、前記非磁性導体層2上には
非晶質軟磁性体層5が積層されている。非磁性導
体層2の膜厚はMR素子1と非晶質軟磁性体層5
とが充分な静磁気的結合を行い得る範囲(例え
ば、略100乃至2000Å)で選定される。非晶質軟
磁性体層5の材料としては、Co−Zr,Co−Ti、
等の非晶質合金が望ましい。これ等の材料におい
ては、MR素子1よりも大きい固有抵抗、同等以
上の飽和磁化を有し、更に重要なことは、外部磁
界による抵抗変化(磁気抵抗効果)が零、もしく
はMR素子1よりも1桁小さい値を有する組成を
選定しえる。例えば、Co−Ti系非晶質軟磁性体
ではCo83%組成において磁気抵抗効果は零とな
り固有抵抗は略140μΩ・cmである。又、Co−Zr
系非晶質軟磁性体では、ジヤーナル・オブ・マグ
ネテイズム・アンド・マグネテイツク・マテリア
ルズ(Journal of Magnetism and Magnetic
Materials)1983年、第31乃至34巻、1475乃至
1476ページに記載の山形等による論文において、
開示された如くZr13%で零の磁気抵抗効果及び
固有抵抗は略110μΩ・cmが得られている。
An MR element 1 made of a ferromagnetic material (for example, Fe-Ni alloy, Ni-Co alloy) is placed on an insulating substrate material (not shown) with a smooth surface made of glass, ferrite, ceramics, etc. with a thickness of approximately 200 to 500 Å. A non-magnetic conductor layer 2 is formed on the MR element 1 by a method such as sputtering or vapor deposition to have a film thickness within a range.
(For example, Ti, Mo, Cr, Ta) are formed using a similar method, and further, an amorphous soft magnetic layer 5 is laminated on the nonmagnetic conductor layer 2. The thickness of the nonmagnetic conductor layer 2 is the same as that of the MR element 1 and the amorphous soft magnetic layer 5.
is selected within a range (for example, about 100 to 2000 Å) that can provide sufficient magnetostatic coupling. Materials for the amorphous soft magnetic layer 5 include Co-Zr, Co-Ti,
Amorphous alloys such as These materials have a resistivity higher than that of MR element 1, a saturation magnetization equal to or higher than that of MR element 1, and more importantly, a change in resistance due to an external magnetic field (magnetoresistive effect) is either zero or higher than that of MR element 1. A composition having a value one order of magnitude smaller can be selected. For example, in a Co-Ti based amorphous soft magnetic material, the magnetoresistive effect becomes zero at a Co composition of 83%, and the specific resistance is approximately 140 μΩ·cm. Also, Co-Zr
Regarding amorphous soft magnetic materials, the Journal of Magnetism and Magnetic Materials
Materials) 1983, Volumes 31-34, 1475-
In the paper by Yamagata et al. on page 1476,
As disclosed, with 13% Zr, zero magnetoresistive effect and a specific resistance of approximately 110 μΩ·cm are obtained.

上記、MR素子1、非磁性導体層2及び非晶質
軟磁性体5の積層体には、端子6が設けられてお
り、端子6から供給されるセンス電流IはMR素
子1のみならず非磁性導体層2及び非晶質軟磁性
体5にも分流する。かかる構成において、MR素
子1及び非磁性導体層2に分流したセンス電流I
は、非晶質軟磁性体5の面内を通りセンス電流に
垂直な磁界を発生し、非晶質軟磁性体5の磁化を
回転させる。そして、非晶質軟磁性体5における
磁化は前記非晶質軟磁性体5の周囲に前記磁化の
方向とは逆方向の磁界を生じ、その一部はMR素
子1に印加される。一方、非晶質軟磁性体5及び
非磁性導体層2に分流したセンス電流Iは、MR
素子1の面内を通り、センス電流Iに垂直な磁界
を発生する。この磁界の方向は、非晶質軟磁性体
5の磁化によつて発生する磁界の方向と一致す
る。即ち、非晶質軟磁性体5の磁化によつて発生
する磁界とセンス電流Iによつて生ずる磁界が
MR素子1にバイアス磁界HBとして印加される。
該バイアス磁界HBは、MR素子1の磁化Mをセ
ンス電流Iに対して回転させ、所定のバイアス角
θBを得る。
A terminal 6 is provided in the laminated body of the MR element 1, the non-magnetic conductor layer 2, and the amorphous soft magnetic material 5, and the sense current I supplied from the terminal 6 is applied not only to the MR element 1 but also to the non-magnetic The current is also divided into the magnetic conductor layer 2 and the amorphous soft magnetic material 5 . In such a configuration, the sense current I divided into the MR element 1 and the nonmagnetic conductor layer 2
generates a magnetic field that passes within the plane of the amorphous soft magnetic material 5 and is perpendicular to the sense current, thereby rotating the magnetization of the amorphous soft magnetic material 5. The magnetization in the amorphous soft magnetic material 5 generates a magnetic field around the amorphous soft magnetic material 5 in a direction opposite to the direction of the magnetization, a part of which is applied to the MR element 1. On the other hand, the sense current I divided into the amorphous soft magnetic material 5 and the nonmagnetic conductor layer 2 is MR
A magnetic field passing through the plane of the element 1 and perpendicular to the sense current I is generated. The direction of this magnetic field matches the direction of the magnetic field generated by magnetization of the amorphous soft magnetic material 5. That is, the magnetic field generated by the magnetization of the amorphous soft magnetic material 5 and the magnetic field generated by the sense current I are
A bias magnetic field H B is applied to the MR element 1 .
The bias magnetic field H B rotates the magnetization M of the MR element 1 with respect to the sense current I to obtain a predetermined bias angle θ B.

以上の説明から明らかな様にMR素子1に印加
されるバイアス磁界HB(即ちバイアス角θB)はセ
ンス電流Iによつて任意に設定できる。又、MR
素子1と非晶質軟磁性体5の距離、即ち非磁性導
体層2の厚み及び非晶質軟磁性体5の磁気特性に
よつてもバイアス磁界HBの大きさを変更できる。
例えば、非磁性導体層2の厚みを薄く設定すれ
ば、MR素子1と非晶質軟磁性体5の静磁気結合
は大きくなり、その分だけセンス電流Iが小さく
てもバイアス磁界HBを大きく設定できる。
As is clear from the above description, the bias magnetic field H B (that is, the bias angle θ B ) applied to the MR element 1 can be arbitrarily set by the sense current I. Also, MR
The magnitude of the bias magnetic field H B can also be changed depending on the distance between the element 1 and the amorphous soft magnetic material 5, that is, the thickness of the nonmagnetic conductor layer 2 and the magnetic properties of the amorphous soft magnetic material 5.
For example, if the thickness of the nonmagnetic conductor layer 2 is set thin, the magnetostatic coupling between the MR element 1 and the amorphous soft magnetic material 5 will increase, and the bias magnetic field H B will be increased accordingly even if the sense current I is small. Can be set.

以上、第3図を用いて、本考案の作用・原理に
ついて述べたが、MRヘツドでは、一般にMR素
子単独で用いることは少なくなく、第4図に示し
た如く、再生分解能を向上させるため、磁気シー
ルドが具備される。
The operation and principle of the present invention has been described above using FIG. 3. However, in an MR head, the MR element is often used alone, and as shown in FIG. 4, in order to improve the reproduction resolution, A magnetic shield is provided.

第4図は磁気シールド付MRヘツドの概略断面
図である。第4図のMRヘツドはMR素子1、非
磁性導体層2及び非晶質軟磁性体層5を両側から
高透磁率磁性体から成る磁気シールド8及び7で
挟む構成となつている。かかる構成を取ることに
より、周知の如く磁気記憶媒体9内の磁化10か
らの信号磁界HSに対して、再生分解能を大きく
向上でき、高密度記録時の再生も可能とする。上
記再生分解能は二つの磁気シールド7及び8の間
隔Gで決定され、間隔Gが小さいほど高密度記録
時の再生能力が高まる。しかし、従来はMR素子
1と、MR素子1をバイアスするための手段(例
えば第2図の従来技術)が、比較的大きな領域を
占めているため、間隔Gが大きく制限されていた
が、本考案では、前述した如くバイアス手段を含
めたMR素子部分が極めてコンパクトに設計でき
るため、間隔Gを小さく設定できる。
FIG. 4 is a schematic cross-sectional view of the magnetically shielded MR head. The MR head shown in FIG. 4 has a structure in which an MR element 1, a nonmagnetic conductor layer 2, and an amorphous soft magnetic layer 5 are sandwiched from both sides by magnetic shields 8 and 7 made of a high magnetic permeability magnetic material. By adopting such a configuration, as is well known, the reproducing resolution can be greatly improved with respect to the signal magnetic field H S from the magnetization 10 in the magnetic storage medium 9, and reproduction during high-density recording is also possible. The reproducing resolution is determined by the interval G between the two magnetic shields 7 and 8, and the smaller the interval G, the higher the reproducing ability during high-density recording. However, in the past, the MR element 1 and the means for biasing the MR element 1 (for example, the prior art shown in FIG. 2) occupied a relatively large area, so the spacing G was greatly limited. In this invention, as described above, the MR element including the bias means can be designed extremely compactly, so the interval G can be set small.

尚、第4図ではMR素子1の両側に磁気シール
ドを配置しているが、磁気シールドは片側のみ施
しても良い。例えば、磁気シールド7のみ配置す
ることもできる。この場合、非晶質軟磁性体層5
が磁気シールドとしての働きもかねそなえ、MR
ヘツドの再生分解能を決定する二つの磁気シール
ドの間隔はG′に変更され、更に高記録密度の再
生も可能となる。
Although magnetic shields are arranged on both sides of the MR element 1 in FIG. 4, the magnetic shields may be provided only on one side. For example, only the magnetic shield 7 can be arranged. In this case, the amorphous soft magnetic layer 5
MR also functions as a magnetic shield.
The interval between the two magnetic shields, which determines the reproduction resolution of the head, is changed to G', making it possible to reproduce even higher recording densities.

(実施例) 第3図において、表面の滑らかなガラス基板上
にNi82%−Fe18%(いずれも重量%)の組成か
ら成るパーマロイがMR素子1として厚み400Å
で成膜され、Tiを非磁性導体層2として厚み500
Åで成膜し、更に非晶質軟磁性体層5として、
Co−Zr(Co87%−Zr13%)非晶質合金を400Åの
厚みで成膜し、これ等の積層体は長さ50μm、幅
5μmの短冊状に加工され、その長さ方向にセン
ス電流Iを供給する様に端子6を設けた。上記構
成において、センス電流Iを1乃至10mA範囲で
供給するとMR素子1のバイアス角θBは30乃至65
度の範囲で設定できることが確認された。又、こ
の範囲で良好な線形応答を呈するMRヘツドが実
現できた。
(Example) In Fig. 3, a permalloy with a composition of 82% Ni-18% Fe (both by weight) is placed on a glass substrate with a smooth surface to a thickness of 400 Å as an MR element 1.
The film was formed with a thickness of 500 mm with Ti as the nonmagnetic conductor layer 2.
Å, and further as an amorphous soft magnetic layer 5,
Co-Zr (Co87%-Zr13%) amorphous alloy was deposited to a thickness of 400 Å, and these laminates were 50 μm long and wide.
It was processed into a strip shape of 5 μm, and terminals 6 were provided so as to supply a sense current I in the length direction. In the above configuration, when the sense current I is supplied in the range of 1 to 10 mA, the bias angle θ B of the MR element 1 is 30 to 65
It was confirmed that it can be set within the range of Furthermore, an MR head exhibiting good linear response in this range was realized.

(考案の効果) 以上の述べた様に、本考案では極めて小さなセ
ンス電流Iにより、所定のバイアス状態を実現で
きるため、発熱に併うMR素子の電気抵抗の熱的
ドリフト及び熱雑音を極めて小さくできる。又、
大きな電流を非磁性導体層及び非晶質軟磁性体5
に分流させる必要がないため、非磁性導体層及び
非晶質軟磁性体は相対的に薄くもしくは、その固
有抵抗の大きな材料を設定し得る。これは結果的
にMRヘツドの外部信号磁界に対する抵抗変化の
低下を最小限に押さえることができる。
(Effects of the invention) As described above, in the present invention, a predetermined bias state can be achieved with an extremely small sense current I, so the thermal drift of the electrical resistance of the MR element due to heat generation and the thermal noise are extremely minimized. can. or,
A large current is passed through the non-magnetic conductor layer and the amorphous soft magnetic material 5.
Since there is no need to divide the current into two, the nonmagnetic conductor layer and the amorphous soft magnetic material can be made relatively thin or made of a material with a high specific resistance. As a result, the decrease in resistance change of the MR head against the external signal magnetic field can be suppressed to a minimum.

又、本考案ではセンス電流Iが非晶質軟磁性体
にも、非磁性導体層を通じて定常的に分流してい
るため、第2図に示した如き従来技術、即ち、磁
気バイアス層とMR素子間に絶縁層を介在させた
場合に生ずる、局所的なセンス電流Iのリークに
よる特性のバラツキがなくなる。又、第2図に示
した従来技術ではセンス電流Iが磁気バイアス層
に分流した場合において、磁気バイアス層が磁気
抵抗効果素子として動作しないように、磁気的に
常に飽和させる如き、設計上の考慮(例えば、磁
気バイアス層の膜厚、MR素子との距離及びセン
ス電流Iの大きさ、更には磁気記憶媒体の特性等
の最適化)が必要であつたが、本考案では磁気抵
抗効果が零もしくは、MR素子より充分小さい非
晶質軟磁性体を用いているため、この様な考慮が
不要となり、設計上のマージンが大きく拡大され
る。
In addition, in the present invention, since the sense current I is constantly shunted to the amorphous soft magnetic material through the nonmagnetic conductor layer, the conventional technology as shown in FIG. 2, that is, the magnetic bias layer and the MR element Variations in characteristics due to local leakage of the sense current I, which occur when an insulating layer is interposed between the two, are eliminated. In addition, in the conventional technology shown in FIG. 2, when the sense current I is shunted to the magnetic bias layer, design considerations are taken such that the magnetic bias layer is always magnetically saturated so that it does not operate as a magnetoresistive element. (For example, optimization of the thickness of the magnetic bias layer, the distance to the MR element, the magnitude of the sense current I, and the characteristics of the magnetic storage medium, etc.) However, in the present invention, the magnetoresistive effect is zero. Alternatively, since an amorphous soft magnetic material that is sufficiently smaller than the MR element is used, such consideration becomes unnecessary, and the design margin is greatly expanded.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は従来の磁気抵抗効果ヘツド
の磁気抵抗効果素子部分の概略斜視図、第3図は
本考案の磁気抵抗効果ヘツドの磁気抵抗効果素子
部分の概略斜視図、第4図は本考案の実施例を示
す磁気シールド付磁気抵抗効果ヘツドの概略断面
図である。 図において、1……MR素子、2……非磁性導
体層、3……絶縁層、4……磁気バイアス層、5
……非晶質軟磁性体層、6……端子、7,8……
磁気シールド、9……磁気記憶媒体、10……磁
化の向きをそれぞれ示す。
1 and 2 are schematic perspective views of the magnetoresistive element portion of a conventional magnetoresistive head, FIG. 3 is a schematic perspective view of the magnetoresistive element portion of the magnetoresistive head of the present invention, and FIG. 1 is a schematic cross-sectional view of a magnetically shielded magnetoresistive head showing an embodiment of the present invention. In the figure, 1...MR element, 2...Nonmagnetic conductor layer, 3...Insulating layer, 4...Magnetic bias layer, 5
...Amorphous soft magnetic layer, 6...Terminal, 7,8...
Magnetic shield, 9...magnetic storage medium, 10...indicates the direction of magnetization, respectively.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 強磁性磁気抵抗効果素子と非磁性導体層と非晶
質軟磁性体層とがこの順に積層された構造を有す
ることを特徴とする磁気抵抗効果ヘツド。
A magnetoresistive head having a structure in which a ferromagnetic magnetoresistive element, a nonmagnetic conductor layer, and an amorphous soft magnetic layer are laminated in this order.
JP4820184U 1984-04-02 1984-04-02 magnetoresistive head Granted JPS60159518U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4820184U JPS60159518U (en) 1984-04-02 1984-04-02 magnetoresistive head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4820184U JPS60159518U (en) 1984-04-02 1984-04-02 magnetoresistive head

Publications (2)

Publication Number Publication Date
JPS60159518U JPS60159518U (en) 1985-10-23
JPH026490Y2 true JPH026490Y2 (en) 1990-02-16

Family

ID=30564236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4820184U Granted JPS60159518U (en) 1984-04-02 1984-04-02 magnetoresistive head

Country Status (1)

Country Link
JP (1) JPS60159518U (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0642566B2 (en) * 1987-12-09 1994-06-01 日本電気株式会社 Method of manufacturing magnetic low resistance element

Also Published As

Publication number Publication date
JPS60159518U (en) 1985-10-23

Similar Documents

Publication Publication Date Title
US4896235A (en) Magnetic transducer head utilizing magnetoresistance effect
US5768066A (en) Magnetoresistive head having an antiferromagnetic layer interposed between first and second magnetoresistive elements
JPH0684145A (en) Magnetoresistance reading transducer
US5808843A (en) Magnetoresistance effect reproduction head
JPH0969211A (en) Magnetoresistance effect film, magnetic head and magnetic recorder/reproducer
US5581427A (en) Peak enhanced magnetoresistive read transducer
US5852533A (en) Magnetoresistance effect transducer element with continuous central active area
JPH07192227A (en) Magneto-resistance effect type magnetic head
JPH064832A (en) Combine thin film magnetic head
JPH026490Y2 (en)
JPH0845030A (en) Magneto-resistive magnetic head
JPH087229A (en) Magnetoresistance effect type magnetic head
JPH0473210B2 (en)
JPS61134913A (en) Magnetoresistance type thin film head
JP2508475B2 (en) Magnetoresistive magnetic head
JPH0572642B2 (en)
JP3096589B2 (en) Magnetoresistive head
JPH07153036A (en) Magnetoresistance effect type magnetic head
JP2596010B2 (en) Magnetoresistive magnetic head
JPH11175928A (en) Magnetic reluctance effect head and magnetic recording and reproducing device
JPS6154012A (en) Magneto-resistance effect head
JPS63138515A (en) Thin film magnetic head and its reproduction system
JPS622363B2 (en)
JPH06251336A (en) Magnetoresistive effect type magnetic head
JPH06119620A (en) Magneto-resistance effect head