JP2596010B2 - Magnetoresistive magnetic head - Google Patents

Magnetoresistive magnetic head

Info

Publication number
JP2596010B2
JP2596010B2 JP27404087A JP27404087A JP2596010B2 JP 2596010 B2 JP2596010 B2 JP 2596010B2 JP 27404087 A JP27404087 A JP 27404087A JP 27404087 A JP27404087 A JP 27404087A JP 2596010 B2 JP2596010 B2 JP 2596010B2
Authority
JP
Japan
Prior art keywords
magnetic
layer
shield
magnetic field
electrode conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27404087A
Other languages
Japanese (ja)
Other versions
JPH01116913A (en
Inventor
英夫 陶山
憲男 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP27404087A priority Critical patent/JP2596010B2/en
Publication of JPH01116913A publication Critical patent/JPH01116913A/en
Application granted granted Critical
Publication of JP2596010B2 publication Critical patent/JP2596010B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Magnetic Heads (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、磁気抵抗効果型磁気ヘッド特にシールド型
磁気抵抗効果型磁気ヘッドに関わる。
The present invention relates to a magneto-resistance effect type magnetic head, particularly to a shield type magneto-resistance effect type magnetic head.

〔発明の概要〕[Summary of the Invention]

本発明は、磁気抵抗効果を有する感磁部が基板上に設
けられ、この感磁部を覆ってシールド磁性体層が配置さ
れたシールド型の磁気抵抗効果型磁気ヘッドにおいて、
その感磁部の両端から導出される対の電極導電層を感磁
部への信号磁界の印加方向と直交する方向に両側に延在
させその各両延在端をループ状として連結して、このル
ープ部から端子導出を行うようにしたことによって、後
述するように、電気抵抗の低減化をはかることができ、
また磁気的特性の安定化、信頼性の向上を図ることがで
きる。
The present invention provides a shielded magnetoresistive magnetic head in which a magnetically sensitive portion having a magnetoresistive effect is provided on a substrate, and a shielded magnetic layer is arranged to cover the magnetically sensitive portion.
A pair of electrode conductive layers derived from both ends of the magneto-sensitive portion extend on both sides in a direction orthogonal to the direction in which the signal magnetic field is applied to the magneto-sensitive portion, and both extending ends are connected as a loop, By performing terminal derivation from this loop portion, it is possible to reduce the electric resistance as described later,
Further, the magnetic characteristics can be stabilized and the reliability can be improved.

〔従来の技術〕[Conventional technology]

磁気抵抗効果型磁気ヘッド(以下MR型磁気ヘッドとい
う)において、その感磁部すなわち磁気抵抗効果(以下
MR効果という)素子を絶縁層を介して積層された2枚の
MR効果を有する薄膜あるいは一方がMR効果を有し他方が
MR効果がないかほとんど有しない磁性薄膜の積層体によ
って構成し、両薄膜に同一方向のセンス電流を通ずるよ
うにしたMR型磁気ヘッドが例えば特開昭61−182620号公
報,特開昭62−52711号公報,特願昭60−247752号出願
の公開公報に開示されている。このような構成によるMR
型磁気ヘッドにおいては、その感磁部を構成する磁気抵
抗薄膜が単磁区構成となり、磁壁の発生が回避されるこ
とからバルクハウゼンノイズの発生を抑制することがで
きる。
In a magneto-resistance effect type magnetic head (hereinafter referred to as an MR type magnetic head), its magnetic sensing part, that is, a magneto-resistance effect (hereinafter, referred to as an MR type magnetic head).
The device is called an MR effect).
Thin film with MR effect or one with MR effect and the other
An MR type magnetic head constituted by a laminated body of magnetic thin films having no or little MR effect and having both thin films pass a sense current in the same direction is disclosed in, for example, JP-A-61-182620 and JP-A-62-182620. No. 52711 and Japanese Patent Application No. 60-247752. MR with this configuration
In the type magnetic head, the magnetoresistive thin film constituting the magnetic sensing portion has a single magnetic domain configuration, and the generation of domain walls is avoided, so that the generation of Barkhausen noise can be suppressed.

このようなMR型磁気ヘッドは、例えば第4図にその拡
大平面図を示し第5図に第4図A−A線上の断面図を示
すように、基板(1)上に少なくとも一方がMR効果を有
する第1及び第2の強磁性薄膜(11)及び(12)が非磁
性中間層(13)を介して積層されてなる感磁部(2)
を、その前方端面が磁気記録媒体との対接ないしは対向
面(8)に臨み、かつこの面(8)と直交するように後
方に延在して配置されるとともに、この感磁部(2)上
または下に感磁部(2)の延在方向とほぼ直交して横切
るいわばトラック幅方向に延在してこの感磁部(2)に
対してトラック幅方向と直交する方向(感磁部(2)へ
の信号磁界の印加方向)にバイアス磁界を与えて感磁部
(2)における磁気抵抗特性が直線性を有する範囲で動
作させるためのバイアス磁界発生用導体(5)が表面絶
縁層(14)を介して積層形成されてなる。一方、感磁部
(2)の前方端部及び後方端部には、感磁部(2)に対
して磁気記録媒体との対接ないしは対向面(8)とほぼ
直交する方向すなわち磁気記録媒体から得られる信号磁
界方向に沿う方向にセンス電流iを印加するに供する前
方及び後方各電極導電層(3)及び(4)が被着形成さ
れ、また強磁性薄膜(11)及び(12)の磁化困難軸方向
が、信号磁界及びセンス電流iの通電方向に沿う方向と
なるように選定される。この構成において磁気記録媒体
からの記録情報に基く信号磁界による感磁部(2)の抵
抗変化を、そのセンス電流iによる両端の電圧変化とし
て検出して、磁気記録媒体上の記録の再生を行うように
なされる。
Such an MR type magnetic head has at least one MR effect on a substrate (1) as shown in an enlarged plan view of FIG. 4 and a sectional view taken along the line AA of FIG. 4 in FIG. Magnetically sensitive part (2) comprising first and second ferromagnetic thin films (11) and (12) having a layer laminated via a non-magnetic intermediate layer (13)
The front end face faces the surface (8) facing or facing the magnetic recording medium and extends rearward so as to be orthogonal to the surface (8). A) a direction perpendicular to the track width direction with respect to the magnetically sensitive portion (2), extending in a so-called track width direction that crosses the direction perpendicular to the extending direction of the magnetically sensitive portion (2) upward or downward; The bias magnetic field generating conductor (5) for applying a bias magnetic field to the magnetic field sensitive part (2) in a range where the magnetoresistive characteristic has a linearity by applying a bias magnetic field to the direction of application of the signal magnetic field to the part (2) is insulated. It is formed by lamination via the layer (14). On the other hand, the front end and the rear end of the magnetically sensitive portion (2) have a direction substantially perpendicular to the surface (8) in contact with or facing the magnetic recording medium with respect to the magnetically sensitive portion (2). The front and rear electrode conductive layers (3) and (4) for applying a sense current i in the direction along the signal magnetic field direction obtained from are formed on the ferromagnetic thin films (11) and (12). The direction of the hard axis is selected so as to be along the direction in which the signal magnetic field and the sense current i flow. In this configuration, a change in resistance of the magnetic sensing portion (2) due to a signal magnetic field based on recording information from the magnetic recording medium is detected as a voltage change at both ends due to the sense current i, and recording on the magnetic recording medium is reproduced. It is done as follows.

このような構成によるMR型磁気ヘッドにおいては、磁
気ヘッドとしての分解能を上げるために、MR効果素子す
なわち感磁部(2)の上下に磁性体を配置したシールド
型構造をとることが多い。この場合、基板(1)として
磁性体が用いられて下部磁性体とされ、一方この基板
(1)上の感磁部(2)上を覆って絶縁層(6)を介し
て磁性金属例えばパーマロイ(Ni−Fe合金)が数μmの
厚さをもって、スパッタあるいは及びメッキされたシー
ルド磁性体層(7)が配置される。
In the MR type magnetic head having such a configuration, in order to increase the resolution as a magnetic head, a shield type structure in which magnetic materials are arranged above and below an MR effect element, that is, a magnetic sensing part (2) is often adopted. In this case, a magnetic material is used as the substrate (1) to serve as a lower magnetic material, while a magnetic metal such as permalloy is provided on the substrate (1) via an insulating layer (6) so as to cover the magnetosensitive portion (2). A (sputtered or plated) shield magnetic material layer (7) having a thickness of several micrometers (Ni-Fe alloy) is arranged.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

本発明は、上述したシールド型のMR型磁気ヘッドにお
いて、より特性の向上と特性の安定化を図る。
The present invention aims to further improve the characteristics and stabilize the characteristics in the above-mentioned shield type MR magnetic head.

すなわち、本発明においては、第4図及び第5図で説
明したシールド型のMR型磁気ヘッドにおいては、電極導
電層の導出態様や、更にこれによる上部シールド磁性体
層(7)の磁区状態が特性に大きな影響を及ぼすことを
究明し、この究明に基いて特性の向上と安定化を図る。
That is, in the present invention, in the shield type MR magnetic head described with reference to FIGS. 4 and 5, the lead-out mode of the electrode conductive layer and the magnetic domain state of the upper shield magnetic layer (7) due to this are as follows. We investigate that it has a significant effect on the characteristics, and aim to improve and stabilize the characteristics based on this investigation.

すなわち、上述したシールド型のMR型磁気ヘッドにお
いては、第5図に示したように、そのシールド磁性体層
(7)の被着面がバイアス磁界発生用導体(5)及び電
極導電層(3)及び(4)の存在によって凹凸面となっ
ている。すなわち、上述の構成においてその感磁部
(2)は、その全体の厚さが例えば800Å程度という比
較的薄い厚さを有するためにその端縁がシールド磁性体
層(7)下に存在する場合においてもその段差はさほど
問題にならないが、バイアス磁界発生用導体(5)及び
電極導電層(3)及び(4)に関しては、その電気的信
頼性すなわち断線の発生を回避すること、また抵抗の低
減化を図るなどの理由からかなり大なる厚さ例えば3000
Å程度以上の厚さに選定するために、これらバイアス磁
界発生用導体(5)及び電極導電層(3)及び(4)の
端縁がシールド磁性体層(7)下に存在する場合、絶縁
層(6)を介してシールド磁性体層(7)が被着形成さ
れるにも拘らず、その端縁における段差が比較的激しく
なり、ここにおけるシールド磁性体層(7)の屈曲が顕
著となる。
That is, in the above-mentioned shield type MR type magnetic head, as shown in FIG. 5, the surface to which the shield magnetic layer (7) is attached has the bias magnetic field generating conductor (5) and the electrode conductive layer (3). ) And (4) make the surface uneven. That is, in the above-described configuration, the magneto-sensitive portion (2) has a relatively small thickness of, for example, about 800 mm, so that its edge exists under the shield magnetic layer (7). Although the step does not matter much in the above, the electrical reliability of the conductor (5) for generating the bias magnetic field and the electrode conductive layers (3) and (4), that is, avoiding the occurrence of disconnection, and the resistance Considerably large thickness for reasons such as reduction
In order to select a thickness of about Å or more, if the edges of the bias magnetic field generating conductor (5) and the electrode conductive layers (3) and (4) are under the shield magnetic layer (7), the insulation Despite the formation of the shield magnetic layer (7) through the layer (6), the step at the edge becomes relatively severe, and the bending of the shield magnetic layer (7) at this point becomes remarkable. Become.

今、例えばシールド磁性体層(7)が平坦な面として
形成された場合の磁区状態をみると第6図にその磁区パ
ターンを示すように、その主たる磁区はほぼ磁化容易軸
に沿って延在して平行配列された180゜磁区構成とな
る。因みにこの場合のシールド磁性体層(7)は、その
厚さが数μmとされ、磁歪は10-7オーダーであってほと
んど零磁歪と考えられる。ところが、前述の第4図で示
されているように、シールド磁性体層(7)下に導体
(5)及び電極導電層(3)及び(4)が第7図破線図
示のように存在する場合、これら導体(5)及び電極導
電層(3)及び(4)の端縁によって生ずる段差に基づ
く屈曲によって第7図に鎖線図示のように180゜磁区に
歪みすなわち乱れによるランダム磁区を生ずる。この磁
区の乱れが特に感磁部(2)の近傍で生ずるとその不安
定な磁区動作は、感磁部(2)の磁気抵抗特性に大きな
影響を及ぼし、これが直ちにヘッドの出力の劣化を招来
し、磁気記録再生装置システムとしてはエラーレートの
悪化を来す。
Now, for example, looking at the magnetic domain state when the shield magnetic layer (7) is formed as a flat surface, as shown in FIG. 6, the main magnetic domain extends substantially along the easy axis. As a result, a 180 ° magnetic domain configuration is arranged in parallel. Incidentally, in this case, the shield magnetic layer (7) has a thickness of several μm, and has a magnetostriction of the order of 10 −7 , which is considered to be almost zero magnetostriction. However, as shown in FIG. 4, the conductor (5) and the electrode conductive layers (3) and (4) exist under the shield magnetic layer (7) as shown by the broken lines in FIG. In this case, the bending caused by the step formed by the edges of the conductor (5) and the electrode conductive layers (3) and (4) causes distortion in the 180 ° magnetic domain as shown by a chain line in FIG. If the disturbance of the magnetic domain occurs especially in the vicinity of the magnetically sensitive portion (2), the unstable magnetic domain operation has a great effect on the magnetoresistive characteristics of the magnetically sensitive portion (2), which immediately leads to the deterioration of the output of the head. However, the error rate of the magnetic recording / reproducing apparatus system deteriorates.

そして、このランダム磁区の発生は、180゜磁区の磁
壁方向に沿う段差によるシールド磁性体層(7)の屈曲
に関しては、ランダム磁区の発生に大きな影響が生じな
いがこれと直交する方向に関しては大きな影響を及ぼ
す。つまり、例えば前方の電極導電層(3)を第4図に
示されているように感磁部(2)の前方から一側方、図
において右方向にのみ延在させる場合、その左端(3a)
による段差、さらに後方電極導電層(4)を感磁部
(2)の延長方向に後方に沿って延在させる場合は、そ
の左右両側縁(4a)及び(4b)による段差によって第7
図に示すように、これら段差特に磁化容易軸方向を横切
る段差が存在する場合、これによる磁区の乱れが感磁部
(2)に大きく影響する。また例えば前方電極導電層
(3)及びバイアス導体(5)がシールド磁性体層
(7)下においてそのパターンに屈曲部を有する場合、
その屈曲形状に応じた段差が180゜磁区に歪みを生ずる
すなわちランダム磁区の発生に大きな影響を及ぼす。そ
して、特にこのランダム磁区は、感磁部(2)の磁気記
録媒体との対接ないしは対向面(8)の近傍においてす
なわち磁気記録媒体からの信号磁界の導入側すなわち感
磁部(2)の主たる動作部側において大きな影響を与え
る。
The generation of the random magnetic domain does not greatly affect the generation of the random magnetic domain with respect to the bending of the shield magnetic layer (7) due to the step along the domain wall direction of the 180 ° magnetic domain, but has a large effect in the direction orthogonal to the direction. affect. That is, for example, when the front electrode conductive layer (3) is extended only one side from the front of the magneto-sensitive portion (2) as shown in FIG. )
In the case where the rear electrode conductive layer (4) is further extended rearward in the direction of extension of the magnetic sensing portion (2), the seventh step is caused by the step formed by the left and right side edges (4a) and (4b).
As shown in the figure, when there are these steps, especially steps crossing the easy axis direction, the magnetic domain disturbance caused by these steps greatly affects the magnetic sensing part (2). For example, when the front electrode conductive layer (3) and the bias conductor (5) have a bent portion in the pattern under the shield magnetic layer (7),
The step corresponding to the bent shape causes distortion in the 180 ° magnetic domain, that is, greatly affects the generation of random magnetic domains. In particular, the random magnetic domain is located near the surface (8) of the magnetic sensing portion (2) in contact with or facing the magnetic recording medium, that is, on the side where the signal magnetic field from the magnetic recording medium is introduced, that is, in the magnetic sensing portion (2). This has a significant effect on the main operating section.

更にまた、電極導電層(3)が、図示のように片側の
一方向にのみ延在する態様をとる場合、この片側におい
てのみ電極導電層(3)に通ずるセンス電流iによって
磁界の発生が生じるので、この通電の向きが、バイアス
磁界発生用導体(5)への通電の向きと平行か反平行か
であることによって感磁部(2)への実質的バイアス印
加態様が大きく異り、また、左右非対称性が大きい。
Furthermore, when the electrode conductive layer (3) is configured to extend in one direction only on one side as shown in the figure, a magnetic field is generated by the sense current i passing through the electrode conductive layer (3) only on this one side. Therefore, depending on whether the direction of the energization is parallel or anti-parallel to the direction of the energization to the bias magnetic field generating conductor (5), the manner of applying the substantial bias to the magneto-sensitive portion (2) greatly differs. , Large left-right asymmetry.

本発明は、上述した諸問題の解決をはかる。 The present invention seeks to solve the above-mentioned problems.

〔問題点を解決するための手段〕[Means for solving the problem]

本発明においては、第1図に平面図を示し第2図に第
1図のA−A線上の断面図を示すように、基板(1)上
に少なくとも一方が磁気抵抗効果を有する対の強磁性薄
膜(11)及び(12)が非磁性中間層(13)を介して積層
されてなる感磁部(2)と、この感磁部(2)の両端か
ら信号磁界と同方向にセンス電流iを印加し、この感磁
部(2)におけるセンス電流i方向とほぼ直交する方向
に導出される電極導電層(3)及び(4)と、感磁部
(2)を絶縁層(14)を介して横切るように延在するバ
イアス磁界発生用導体(5)とを有し、この感磁部
(2)の配置部上を覆ってシールド磁性体層(7)が配
置されてなるMR型磁気ヘッドにおいて、その電極導電層
(3)及び(4)とバイアス磁界発生用導体(5)がシ
ールド磁性体層(7)の配置部下において、そのほぼ全
域特に磁気記録媒体との対接ないしは対向面(8)側の
感磁部(2)の前方側近傍の主たる動作部においては、
磁気記録媒体からの信号磁界の印加方向、つまり磁化困
難軸方向、したがってセンス電流の通電方向と直交する
方向、云い換えれば磁化容易軸方向についてはシールド
磁性体層(7)の配置部のほとんど全域にわたって端縁
や屈曲部がほとんど存在しないように延在させた構成と
する。つまり、バイアス磁界発生用導体(5),電極導
電層(3)及び(4)を少くともシールド磁性体層
(7)下では、感磁部(2)の延在方向(すなわち磁化
困難軸方向及び信号磁界の印加方向)とほぼ直交する方
向に平行に、云い換えれば、電極導電層(3)及び
(4)についても、感磁部(2)の前後両端から両側方
にすなわち左右に対称的に延長配置する。
In the present invention, as shown in FIG. 1 as a plan view and FIG. 2 as a cross-sectional view taken along the line AA in FIG. 1, at least one of the pair having a magnetoresistive effect is formed on the substrate (1). A magnetic sensing part (2) in which magnetic thin films (11) and (12) are laminated via a non-magnetic intermediate layer (13), and a sense current from both ends of the magnetic sensing part (2) in the same direction as the signal magnetic field. i, and the electrode conductive layers (3) and (4) derived in a direction substantially perpendicular to the direction of the sense current i in the magnetic sensing part (2) and the insulating layer (14). And a bias magnetic field generating conductor (5) extending so as to traverse therethrough, and an MR type having a shield magnetic layer (7) arranged so as to cover an arrangement portion of the magnetic sensing portion (2). In the magnetic head, the electrode conductive layers (3) and (4) and the bias magnetic field generating conductor (5) are arranged on the shield magnetic layer (7). In the lower part, substantially in the entire region, particularly in the main operating part near the front side of the magneto-sensitive part (2) on the side facing or facing the magnetic recording medium (8),
In the direction in which the signal magnetic field is applied from the magnetic recording medium, that is, in the direction of the hard axis, that is, in the direction orthogonal to the direction in which the sense current is applied, in other words, in the direction of the easy axis, almost the entire area where the shield magnetic layer (7) is disposed. To extend so that there is almost no edge or bent portion. In other words, at least the bias magnetic field generating conductor (5) and the electrode conductive layers (3) and (4) are provided at least under the shield magnetic layer (7) in the direction in which the magnetically sensitive portion (2) extends (that is, in the hard axis direction). In other words, the electrode conductive layers (3) and (4) are also symmetrical from the front and rear ends of the magnetic sensing portion (2) to both sides, that is, left and right. Extended extension.

そして、更に本発明においては、両電極導電層(3)
及び(4)の両側方に延在させた両端を、シールド磁性
体層(7)の配置外において、あるいはその一部はシー
ルド磁性体層(7)の配置部下に差し掛るように相互に
連結するループ部(33)及び(34)を後方に延在形成し
て、それぞれセンス電流通電端子tSF及びtSBを導出す
る。
Further, in the present invention, both electrode conductive layers (3)
And both ends extended to both sides of (4) are connected to each other so as to reach outside the arrangement of the shield magnetic layer (7) or a part thereof under the arrangement of the shield magnetic layer (7). Loop portions (33) and (34) are formed to extend rearward to derive sense current conducting terminals t SF and t SB , respectively.

また、バイアス磁界発生用導体(5)の両端からバイ
アス磁界発生用電流を通電する端子t1及びt2を導出す
る。
Further, terminals t 1 and t 2 through which a bias magnetic field generating current flows are derived from both ends of the bias magnetic field generating conductor (5).

尚、第1図及び第2図において、第4図及び第5図と
対応する部分には同一符号を付して重複説明を省略す
る。
In FIGS. 1 and 2, parts corresponding to those in FIGS. 4 and 5 are denoted by the same reference numerals, and redundant description is omitted.

〔作用〕[Action]

上述した本発明構成によれば、シールド磁性体層
(7)下において少くとも感磁部(2)の近傍、特に磁
気記録媒体との対接ないしは対向面(8)側すなわち磁
気記録媒体からの信号磁界が与えられる実効動作部近傍
においては、磁化困難軸方向(信号磁界及びセンス電流
iの方向)に沿う方向の端縁が存在しないようにしてこ
れによるシールド磁性体層(7)に段差が生じないよう
にしたことによってランダム磁区の発生が効果的に回避
され、これによって感磁部(2)の特性の安定化が図ら
れ、再生装置としてのエラーレートの改善が図られる。
According to the configuration of the present invention described above, at least the vicinity of the magnetic sensing portion (2) under the shield magnetic layer (7), particularly, the side facing or facing the magnetic recording medium (8), that is, from the magnetic recording medium. In the vicinity of the effective operating portion to which the signal magnetic field is applied, there is no edge in the direction along the hard axis direction (the direction of the signal magnetic field and the sense current i) so that a step is formed in the shield magnetic layer (7). By avoiding this, the generation of random magnetic domains is effectively avoided, thereby stabilizing the characteristics of the magnetic sensing portion (2) and improving the error rate of the reproducing apparatus.

そして、これに加えて、各電極導電層(3)及び
(4)がバイアス磁界発生用導体(5)と平行に延在
し、且つ感磁部からその両側に延びその外端にループ部
(33)及び(34)が設けられてセンス電流iの通電を行
うようにしていることから第1図をみて明らかなように
感磁部(2)の近傍における部分では、感磁部(2)を
中心にその両側にセンス電流が2分されたi/2づつの電
流が通電することになり、これによって発生する磁界が
緩和されること、更に前方電極導電層(3)と後方電極
導電層(4)の各i/2の通電方向が互いに逆向きとなる
ことによって磁界の非対称性が緩和されることになり、
感磁部(2)に対する特性への影響が減少し、特性の安
定化がはかられる。
In addition to this, the electrode conductive layers (3) and (4) extend in parallel with the bias magnetic field generating conductor (5), and extend from the magneto-sensitive part to both sides thereof, and form a loop part ( Since 33) and (34) are provided so as to supply the sense current i, the portion near the magneto-sensitive portion (2) is clearly seen in FIG. And the sense current is divided into two, i.e., a current of i / 2 is applied to both sides thereof, thereby reducing the magnetic field generated. Further, the front electrode conductive layer (3) and the rear electrode conductive layer (4) Asymmetry of the magnetic field is alleviated by making the energizing directions of each i / 2 opposite to each other,
The influence on the characteristics of the magnetic sensing portion (2) is reduced, and the characteristics are stabilized.

〔実施例〕 第1図及び第2図を参照してさらに本発明の一例を詳
細に説明する。基板(1)は例えばNi−Zn系フェライ
ト,Mn−Zn系フェライト等の磁性基板より構成し得、必
要に応じてこれの上に絶縁層(図示せず)を介して例え
ばそれぞれMR効果を有するパーマロイ(Ni−Fe系合
金)、あるいはNi−Fe−Co系合金,Ni−Co系合金等の金
属薄膜よりなる強磁性薄膜(11)及び(12)を非磁性絶
縁中間層(13)例えばAl2O3を介してそれぞれ全面蒸着
して後、これをパターン化して例えば帯状に延在する感
磁部(2)を構成する。
Embodiment An example of the present invention will be described in further detail with reference to FIGS. 1 and 2. The substrate (1) can be composed of a magnetic substrate of, for example, Ni-Zn ferrite or Mn-Zn ferrite, and has an MR effect, for example, via an insulating layer (not shown) on this as necessary. A ferromagnetic thin film (11) or (12) made of a metal thin film such as permalloy (Ni-Fe alloy) or Ni-Fe-Co alloy or Ni-Co alloy is used as a non-magnetic insulating intermediate layer (13) such as Al After the entire surface is vapor-deposited via 2 O 3 , these are patterned to form a magnetically sensitive portion (2) extending, for example, in a belt shape.

非磁性中間層(13)は、強磁性薄膜(11)及び(12)
間に、交換相互作用に比し静磁的相互作用が支配的に作
用するような数百Å以下の厚さに選定される。強磁性薄
膜(11)及び(12)は、それぞれ数百Åに選定されて感
磁部(2)の全体の厚さが例えば800Å程度に形成され
る。
The nonmagnetic intermediate layer (13) is composed of ferromagnetic thin films (11) and (12)
In the meantime, the thickness is selected to be several hundred mm or less so that the magnetostatic interaction acts dominantly compared to the exchange interaction. Each of the ferromagnetic thin films (11) and (12) is selected to have a thickness of several hundreds of mm, and the entire thickness of the magneto-sensitive portion (2) is formed to be, for example, about 800 mm.

尚、両強磁性薄膜(11)及び(12)の一方は、MR効果
を有しないかあるいはほとんど有しない強磁性薄膜例え
ばセンダスト,Co系アモルファス合金,Moパーマロイ等の
高透磁率強磁性軟磁性薄膜によって構成し得る。しかし
ながら、この場合、両薄膜(11)及び(12)はその飽和
磁束密度,厚さ等の選定によって両薄膜(11)及び(1
2)の磁束量が一致するようにしてその磁束が両薄膜(1
1)及び(12)に関して全体的に閉じ得るようになされ
て磁区の発生が生じないようになされる。
One of the two ferromagnetic thin films (11) and (12) is a ferromagnetic thin film having little or no MR effect, for example, a high-permeability ferromagnetic soft magnetic thin film such as Sendust, a Co-based amorphous alloy, or Mo permalloy. May be configured. However, in this case, both thin films (11) and (12) can be selected by selecting their saturation magnetic flux density and thickness.
The amount of magnetic flux in 2) is matched so that the magnetic flux
Regarding 1) and (12), it is made to be able to be totally closed so that the generation of magnetic domains does not occur.

感磁部(2)上には、Si3N4,SiO2等の絶縁層(14)が
被着形成され、感磁部(2)の前方及び後方の両端上に
電極コンタクト窓(14a)及び(14b)が穿設され、これ
らコンタクト窓(14a)及び(14b)を通じてそれぞれ前
方及び後方各電極導電層(3)及び(4)が被着され、
さらに絶縁層(14)を介して感磁部(2)上を横切って
バイアス磁界発生用導体(5)が被着される。これら電
極導電層(3)及び(4)とバイアス導体(5)はMo,
W,Ti等の金属層を全面的に被着し、フォトリソグラフィ
によってパターン化することによって同時に形成し得
る。そして、これら電極導電層(3)及び(4)とバイ
アス磁界発生用導体(5)はそれぞれ感磁部(2)の延
長方向と直交する方向(すなわちこれに対するセンス電
流iの通電方向,困難軸方向及び磁気記録媒体からの信
号磁界の印加方向と直交する方向)に感磁部(2)の両
側方に渡って延在させる。バイアス磁界発生用導体
(5)の両端は、バイアス磁界発生用電流を通電するた
めの端子t1及びt2の導出が通常のようになされる。
An insulating layer (14) such as Si 3 N 4 or SiO 2 is formed on the magnetic sensing part (2), and an electrode contact window (14a) is formed on both front and rear ends of the magnetic sensing part (2). And (14b) are drilled, and the front and rear electrode conductive layers (3) and (4) are applied through these contact windows (14a) and (14b), respectively.
Further, a conductor (5) for generating a bias magnetic field is applied across the magnetic sensing part (2) via the insulating layer (14). These electrode conductive layers (3) and (4) and the bias conductor (5) are made of Mo,
It can be formed simultaneously by depositing a metal layer of W, Ti, etc. over the entire surface and patterning by photolithography. The electrode conductive layers (3) and (4) and the bias magnetic field generating conductor (5) are respectively arranged in a direction orthogonal to the extension direction of the magneto-sensitive portion (2) (that is, the direction in which the sense current i flows, the hard axis). Direction and a direction perpendicular to the direction in which the signal magnetic field is applied from the magnetic recording medium) on both sides of the magnetic sensing portion (2). Both ends of the bias magnetic field generating conductor (5) is, derivation of terminals t 1 and t 2 for energizing the bias magnetic field generating current is performed as usual.

そして、前方及び後方の各電極導電層(3)及び
(4)のそれぞれの両端をシールド磁性体層(7)外あ
るいはその一部がシールド磁性体層(7)下に存在する
ように、互いに端部を連結するループ状となしてその各
ループ部(33)及び(34)から端子tSF及びtSBの導出を
行う。
Then, both ends of each of the front and rear electrode conductive layers (3) and (4) are separated from each other so that the outside or a part of the outside of the shield magnetic layer (7) exists below the shield magnetic layer (7). forms a loop connecting the end performs derivation of terminals t SF and t SB from the respective loop portion (33) and (34).

そして、感磁部(2)の配置部上に絶縁層(6)を介
して高透磁率を有する例えばパーマロイよりなるシール
ド磁性体層(7)がスパッタリングあるいはめっき等に
よって数μmの厚さに被着形成される。
Then, a shield magnetic layer (7) made of, for example, permalloy having a high magnetic permeability is coated to a thickness of several μm on the arrangement part of the magnetic sensing part (2) via an insulating layer (6) by sputtering or plating. Is formed.

この構成において、特にシールド磁性体層(7)下に
おいて各電極導電層(3)及び(4)とバイアス磁界発
生用導体(5)は互いに平行にすなわち感磁部(2)の
長手方向すなわちセンサ電流iの通電方向,困難軸方
向,信号磁界の印加方向に直交する方向に直線的に延在
させてこの延在方向の全域に渡って屈曲ないしは端縁が
存在することがないようにする。すなわち、電極導電層
(3)及び(4)の端子導出端側とは反対側の端縁はシ
ールド磁性体層(7)外に存在するようにする。そし
て、基板(1)からシールド磁性体層(7)に渡ってそ
の前方端を研磨して感磁部(2)の前方端面が臨む磁気
記録媒体との対接ないしは対向面(8)が形成される。
In this configuration, especially under the shield magnetic layer (7), the electrode conductive layers (3) and (4) and the bias magnetic field generating conductor (5) are parallel to each other, that is, in the longitudinal direction of the magnetic sensing part (2), that is, the sensor. It extends linearly in a direction perpendicular to the direction of current i, the direction of the hard axis, and the direction of application of the signal magnetic field so that no bend or edge exists in the entire extension direction. That is, the edges of the electrode conductive layers (3) and (4) on the side opposite to the terminal lead-out end side are located outside the shield magnetic layer (7). Then, the front end is polished from the substrate (1) to the shielded magnetic layer (7) to form a contact or facing surface (8) with the magnetic recording medium facing the front end face of the magnetosensitive portion (2). Is done.

尚、第1図に示した例においては、シールド磁性体層
(7)がその磁気記録媒体との対接ないしは対向面
(8)に臨む側の前方端における幅と後方端における幅
とが同一幅の方形状とされている場合であるが、ある場
合は第3図に示すように磁気記録媒体との対接ないしは
対向面(8)に臨む部分においては、そのトラック幅よ
りも大ではあるものの幅狭とし、後方に向かって幅広と
なるすなわち後方に末広がりの形状とすることもでき
る。
In the example shown in FIG. 1, the width at the front end and the width at the rear end of the shield magnetic material layer (7) facing the magnetic recording medium or facing the facing surface (8) are the same. In this case, the width is rectangular, but in some cases, as shown in FIG. 3, the portion facing the magnetic recording medium or the portion facing the facing surface (8) is larger than the track width. However, the shape may be narrower and wider toward the rear, that is, the shape may widen rearward.

尚、シールド磁性体層(7)を後方に末広がり形状と
した場合においても、これが第8図に示すように例えば
後方電極導電層(4)の端縁(4a)及び(4b)が、シー
ルド磁性体層(7)下に存在する場合は第8図に鎖線で
その磁区構造を示すように180゜磁区に乱れが生じ、こ
れが磁気ヘッドの特性劣化を招来するものであるが、本
発明によるときはこの端縁(4a)及び(4b)等による段
差がシールド磁性体層(7)に発生しないようにしたこ
とによって180゜磁区が比較的整然と生じ、これによっ
てシールド磁性体層におけるランダム磁区の発生が抑制
される。
Even when the shield magnetic layer (7) is formed to have a divergent shape at the rear, as shown in FIG. 8, for example, the edges (4a) and (4b) of the rear electrode conductive layer (4) are shielded magnetically. When the magnetic head exists below the body layer (7), the 180 ° magnetic domain is disturbed as shown by the chain line in FIG. 8 and the magnetic domain characteristic is deteriorated. As a result, 180 ° magnetic domains are generated relatively orderly by preventing the steps caused by the edges (4a) and (4b) from being generated in the shield magnetic layer (7), thereby generating random magnetic domains in the shield magnetic layer. Is suppressed.

〔発明の効果〕〔The invention's effect〕

上述したように本発明によれば、シールド型のMR磁気
ヘッド構成をとるにも拘らず、この上層のシールド磁性
体層(7)が少くとも感磁部(2)のセンス電流i,磁化
困難軸方向,信号磁界の印加方向に沿う方向に延在する
段差が感磁部(2)の実効動作部近傍において発生する
ことを回避するようにしたので180゜磁区が乱れたり、
このランダム磁区の発生による不安定な動作が回避さ
れ、また感磁部(2)に対するセンス電流iの通電を感
磁部(2)から両側に2分して供給する構成をとったこ
とによってこのセンス電流の通電によって電極導電層
(3)及び(4)から発生する磁界による不均衡を緩和
できることによって、特性の、より安定化がはかられ
る。
As described above, according to the present invention, despite the fact that a shield type MR magnetic head is employed, at least the upper shield magnetic layer (7) has at least a sense current i of the magnetically sensitive portion (2) and a magnetization difficulty. The step extending in the axial direction and in the direction along the direction in which the signal magnetic field is applied is prevented from being generated in the vicinity of the effective operating portion of the magnetic sensing portion (2).
The unstable operation due to the occurrence of the random magnetic domain is avoided, and the supply of the sense current i to the magnetic sensing part (2) is divided into two parts from the magnetic sensing part (2) and supplied to both sides. Since the imbalance due to the magnetic field generated from the electrode conductive layers (3) and (4) by the supply of the sense current can be reduced, the characteristics can be further stabilized.

また、本発明構成においては、感磁部へのセンス電流
の供給を行う各電極導電層を左右に振り分けてループ状
としたことによって、通電路が2つの並列路より構成さ
れることになり、これによって、各電極導電層の幅およ
び厚さを例えば従来と同程度に選定するときは、その感
磁部への給電路全体の抵抗は従来に比し、ほぼ半減する
ことになり、またこの給電路全体の抵抗を、従来と同程
度に選定するときは、その例えば厚さを半減させること
ができることから、これの上に形成するシールド磁性体
の形成面の段差を低くすることができ、信頼性の向上を
はかることができる。
Further, in the configuration of the present invention, each of the electrode conductive layers for supplying the sense current to the magnetic sensing portion is divided into a left and a right to form a loop, so that the conduction path is formed of two parallel paths, As a result, when the width and thickness of each electrode conductive layer are selected, for example, to the same level as in the conventional case, the resistance of the entire power supply path to the magneto-sensitive portion is reduced by almost half compared to the conventional case. When the resistance of the entire power supply path is selected to be approximately the same as the conventional one, for example, the thickness can be reduced by half, so that the step on the surface of the shield magnetic body formed thereon can be reduced, Reliability can be improved.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明による磁気ヘッドの一例の略線的拡大平
面図、第2図はその第1図A−A線上の断面図、第3図
は本発明の磁気ヘッドの他の例の拡大平面図、第4図及
び第5図は従来の磁気ヘッドの略線的拡大平面図及び第
4図のA−A線上の略線的拡大断面図、第6図〜第8図
はシールド磁性体層の磁区の説明図である。 (1)は基板、(2)は感磁部、(3)及び(4)は電
極導電層、(5)はバイアス磁界発生用導体、(7)は
シールド磁性体層である。
FIG. 1 is a schematic enlarged plan view of an example of a magnetic head according to the present invention, FIG. 2 is a sectional view taken along the line AA of FIG. 1, and FIG. 3 is an enlarged view of another example of the magnetic head of the present invention. FIGS. 4 and 5 are a schematic enlarged plan view of a conventional magnetic head and a schematic enlarged sectional view taken along line AA of FIG. 4, and FIGS. 6 to 8 are shield magnetic bodies. It is explanatory drawing of the magnetic domain of a layer. (1) is a substrate, (2) is a magnetic sensing part, (3) and (4) are electrode conductive layers, (5) is a bias magnetic field generating conductor, and (7) is a shield magnetic layer.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】基板と、 該基板上に、 磁気抵抗効果を有する強磁性薄膜を有してなる感磁部
と、 該感磁部の両端からそれぞれ導出され、該感磁部に、該
感磁部への信号磁界の印加方向と同方向にセンス電流を
通電する対の電極導電層と、 上記感磁部に絶縁層を介して横切るように延在するバイ
アス磁界発生用導体と、 上記感磁部の配置部上を覆って配置されたシールド磁性
体層とが形成され、 上記対の電極導電層と、上記バイアス磁界発生用導体と
は、少なくとも上記シールド磁性体層の配置部下におい
ては、上記感磁部への信号磁界の印加方向とほぼ直交
し、かつ上記感磁部を中心にその両外側方に向かって対
称的に延在して形成され、 上記対の各電極導電層は、それぞれその両端が、上記シ
ールド磁性体層の配置部外において、あるいはその一部
が上記シールド磁性体層の配置部下において相互に連結
してそれぞれループ状とされ、該各ループ部からそれぞ
れ端子導出がなされた ことを特徴とする磁気抵抗効果型磁気ヘッド。
1. A substrate, a magnetically sensitive portion having a ferromagnetic thin film having a magnetoresistive effect on the substrate, and a magnetic sensitive portion derived from both ends of the magnetic sensitive portion. A pair of electrode conductive layers for applying a sense current in the same direction as the direction in which the signal magnetic field is applied to the magnetic part; a bias magnetic field generating conductor extending across the magnetic sensitive part via an insulating layer; A shield magnetic layer disposed over the arrangement portion of the magnetic portion is formed, and the pair of electrode conductive layers and the bias magnetic field generating conductor are at least under the arrangement portion of the shield magnetic layer, The direction in which the signal magnetic field is applied to the magneto-sensitive portion is substantially orthogonal to the magneto-sensitive portion, and the symmetrical portion is formed so as to extend symmetrically toward both outer sides of the magneto-sensitive portion. Both ends thereof are located outside the portion where the shield magnetic layer is arranged, or A magnetoresistive head according to claim 1, wherein a part thereof is connected to each other below the portion where the shield magnetic material layer is arranged to form a loop, and terminals are led out from each of the loop portions.
JP27404087A 1987-10-29 1987-10-29 Magnetoresistive magnetic head Expired - Fee Related JP2596010B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27404087A JP2596010B2 (en) 1987-10-29 1987-10-29 Magnetoresistive magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27404087A JP2596010B2 (en) 1987-10-29 1987-10-29 Magnetoresistive magnetic head

Publications (2)

Publication Number Publication Date
JPH01116913A JPH01116913A (en) 1989-05-09
JP2596010B2 true JP2596010B2 (en) 1997-04-02

Family

ID=17536127

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27404087A Expired - Fee Related JP2596010B2 (en) 1987-10-29 1987-10-29 Magnetoresistive magnetic head

Country Status (1)

Country Link
JP (1) JP2596010B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0434713A (en) * 1990-05-30 1992-02-05 Sony Corp Magneto-resistance effect type thin film head

Also Published As

Publication number Publication date
JPH01116913A (en) 1989-05-09

Similar Documents

Publication Publication Date Title
US4896235A (en) Magnetic transducer head utilizing magnetoresistance effect
US5739990A (en) Spin-valve GMR sensor with inbound exchange stabilization
US5402292A (en) Magnetoresistance effect type thin film magnetic head using high coercion films
JPH0845037A (en) Thin-film magnetoresistance transducer
JPH07272225A (en) Magnetic resistive head
KR100278873B1 (en) Magnetoresistive effect element and manufacturing method
US6120920A (en) Magneto-resistive effect magnetic head
JPH07192227A (en) Magneto-resistance effect type magnetic head
JPH07176019A (en) Flat magnetoresistance head
JPH064832A (en) Combine thin film magnetic head
JPH087229A (en) Magnetoresistance effect type magnetic head
JP2596010B2 (en) Magnetoresistive magnetic head
JP2668925B2 (en) Magnetoresistive magnetic head
JP2508475B2 (en) Magnetoresistive magnetic head
JPH0473210B2 (en)
JPH01116912A (en) Magneto-resistance effect type magnetic head
JP2668897B2 (en) Magnetoresistive magnetic head
JPH0441415B2 (en)
JPH09260742A (en) Magnetoresistance effect device
JPH026490Y2 (en)
JPS63138515A (en) Thin film magnetic head and its reproduction system
JPS63181108A (en) Magneto-resistance effect type magnetic head
JPH04167214A (en) Magnetoresistance effect type magnetic head
JPH0572642B2 (en)
JPH06251336A (en) Magnetoresistive effect type magnetic head

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees