JPH01116913A - Magneto-resistance type magnetic head - Google Patents

Magneto-resistance type magnetic head

Info

Publication number
JPH01116913A
JPH01116913A JP27404087A JP27404087A JPH01116913A JP H01116913 A JPH01116913 A JP H01116913A JP 27404087 A JP27404087 A JP 27404087A JP 27404087 A JP27404087 A JP 27404087A JP H01116913 A JPH01116913 A JP H01116913A
Authority
JP
Japan
Prior art keywords
magnetic
magnetic field
magnetically sensitive
layer
electrode conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27404087A
Other languages
Japanese (ja)
Other versions
JP2596010B2 (en
Inventor
Hideo Suyama
英夫 陶山
Norio Saito
憲男 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP27404087A priority Critical patent/JP2596010B2/en
Publication of JPH01116913A publication Critical patent/JPH01116913A/en
Application granted granted Critical
Publication of JP2596010B2 publication Critical patent/JP2596010B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Magnetic Heads (AREA)

Abstract

PURPOSE:To stabilize magnetic characteristics by extending a couple of electrode conductive layers which are led out of both ends of a magnetism sensing part to both sides in a direction intersecting orthogonally with the application direction of a signal magnetic field to the magnetism sensing part, looping and coupling both extended ends, and thus leading out terminals. CONSTITUTION:A conductor 5 for bias magnetic field production and electrode conductive layers 3 and 4 are extended from the front and rear ends of the magnetism sensing part 2, i.e. in right-left symmetrical relation at least under a shielding magnetic material layer 7. Further, both ends of both electrode conductive layers 3 and 4 which are extended sideward are arranged outside the shielding magnetic material layer 7, or a part of them are coupled mutually by loop parts 33 and 34 while inserted under the arrangement part of the shielding magnetic material layer 7; and 33 and 34 are extended backward and sense current feeding terminals are led out. Consequently, the asymmetry of a magnetic field is released, the influence of the characteristics upon the magnetism sensing part 2 is reduced, and the characteristics are stabilized.

Description

【発明の詳細な説明】 (産業上の利用分野〕 本発明は、磁気抵抗効果型磁気ヘット特にシールド型磁
気砥抗効果型磁気ヘッドに関わる。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a magnetoresistive magnetic head, particularly a shield type magnetic abrasive magnetic head.

〔発明のm要〕[Essentials of invention]

本発明は、磁気抵抗効果を有する感磁部が基板上に設け
られ、この感磁部を覆ってシールド磁性体層が配置され
たシールド型の磁気抵抗効果型磁気ヘッドにおいて、そ
の感磁部の両端から導出される対の電極導電層を感磁部
への信号磁界の印加方向と直交する方向に両側に延在さ
せその各両延在端をループ状として連結して、このルー
プ部がら端子導出を行うようにしたことによって電気批
杭の低減化したがって信頼性の向上さらには磁気的特性
の安定化を図る。
The present invention provides a shield type magnetoresistive magnetic head in which a magnetic sensing part having a magnetoresistive effect is provided on a substrate, and a shielding magnetic layer is arranged to cover the magnetic sensing part. A pair of electrode conductive layers led out from both ends are extended on both sides in a direction perpendicular to the direction in which a signal magnetic field is applied to the magnetically sensitive part, and both extending ends are connected in a loop shape, and a terminal is formed from this loop part. By performing the derivation, it is possible to reduce electrical damage, thereby improving reliability and further stabilizing the magnetic properties.

(従来の技術) 磁気抵抗効果型磁気ヘッド(以下MR型磁気ヘッドとい
う)において、その感磁部すなわち磁気抵抗効果(以下
MR効果という)素子を絶縁層を介して積層された2枚
のMR効果を有する薄膜あるいは一方がMR効果を有・
し他方がMR効果がないかほとんど有しない磁性薄膜の
積層体によって構成し、肉薄膜に同一方向のセンス電流
を通ずるようにしたMR型磁気ヘッドが例えば特開昭6
1−182620号公報、特開昭62−52711号公
報、特願昭60−247752号出願の公開公報に開示
されている。このような構成によるMR型磁気ヘッドに
おいては、その感磁部を構成する磁気抵抗特性が単磁区
構成となり、磁壁の発生が回避されることからバルクハ
ウゼンノイズの発生を抑制することができる。
(Prior art) In a magnetoresistive magnetic head (hereinafter referred to as MR type magnetic head), the magnetic sensing part, that is, the magnetoresistive effect (hereinafter referred to as MR effect) element is formed by two MR effect elements laminated with an insulating layer interposed therebetween. or one of the thin films has an MR effect.
However, an MR type magnetic head in which the other side is composed of a laminated body of magnetic thin films having no or almost no MR effect, and in which a sense current is passed in the same direction through the thin films, is disclosed in Japanese Patent Laid-Open No. 6, for example.
This method is disclosed in Japanese Patent Application Laid-Open No. 1-182620, Japanese Patent Application Laid-Open No. 62-52711, and Japanese Patent Application No. 60-247752. In the MR type magnetic head having such a configuration, the magnetoresistance characteristic of the magnetic sensing portion has a single magnetic domain configuration, and the generation of domain walls is avoided, so that the generation of Barkhausen noise can be suppressed.

このようなMR型磁気ヘッドは、例えば第4図にその拡
大平面図を示し第5図に第4図A−A線上の断面図を示
すように、基i (1)上に少なくとも一方がMR効果
を有する第1及び第2の強磁性薄膜(11)及び(12
)が非磁性中間層(13)を介して積層されてなる感磁
部(2)を、その前方端面が磁気記録媒体との対接ない
しは対向面(8)に臨み、かつこの面(8)と直交する
ように後方に延在して配置されるとともに、この感磁部
(2)上または下に感磁部(2)の延在方向とほぼ直交
して横切るいわばトラック幅方向に延在してこの感磁a
旧2)に対してトラック幅方向と直交する方向(感磁部
(21−・、の信号磁界の印加方向)にバイアス磁界を
与えて感磁部(2)における磁気抵抗特性が直線性を有
する範囲で動作させるためのバイアス磁界発生用導体(
5)が表面絶縁JM(14)を介して積層形成されてな
る。一方、感磁部(2)の前方端部及び後方端部には、
感磁部(2)に対して磁気記録媒体との対接ないしは対
向面(8)とほぼ直交する方向すなわち磁気記録媒体か
ら得られる信号磁界方向に沿う方向にセンス′6i流i
を印加するに供する前方及び後方各電極導電Jtj (
31及び(4)が被着形成され、また強磁性薄膜(11
)及び(12)の磁化困難軸方向が、信号磁界及びセン
ス電流lの通電方向に沿う方向となるように選定される
。この構成において磁気記録媒体からの記録情報に基く
信号磁界による感磁部(2)の抵抗変化を、そのセンス
電流lによる両端の電圧変化として検出して、磁気記録
媒体上の記録の再生を行うようになされる。
Such an MR type magnetic head has at least one MR magnetic head on the base i (1), as shown in FIG. 4 as an enlarged plan view and as shown in FIG. The first and second ferromagnetic thin films (11) and (12)
) are laminated via a non-magnetic intermediate layer (13), the front end surface of which faces the surface (8) that faces or faces the magnetic recording medium, and this surface (8). The magnetic sensing part (2) is arranged so as to extend rearward so as to be orthogonal to the magnetic sensing part (2), and the magnetic sensing part (2) is arranged to extend in the track width direction almost orthogonally to the extending direction of the magnetic sensing part (2) above or below the magnetic sensing part (2). This magnetic sensation a
For the old 2), a bias magnetic field is applied in the direction perpendicular to the track width direction (the direction in which the signal magnetic field is applied to the magnetically sensitive part (21-)), so that the magnetoresistive characteristics in the magnetically sensitive part (2) have linearity. Bias magnetic field generating conductor (
5) are laminated with a surface insulating JM (14) interposed therebetween. On the other hand, at the front end and rear end of the magnetically sensitive part (2),
A sense '6i current i is applied to the magnetic sensing part (2) in a direction substantially perpendicular to the magnetic recording medium or the opposing surface (8), that is, along the direction of the signal magnetic field obtained from the magnetic recording medium.
The front and rear electrodes each serve to apply conductivity Jtj (
31 and (4) are deposited, and a ferromagnetic thin film (11
) and (12) are selected so that the directions of the hard magnetization axes are along the direction of conduction of the signal magnetic field and the sense current l. In this configuration, a change in the resistance of the magnetic sensing part (2) due to a signal magnetic field based on recorded information from the magnetic recording medium is detected as a voltage change at both ends due to the sense current l, and the recording on the magnetic recording medium is reproduced. It is done like this.

このような構成によるMR型磁気ヘッドにおいては、磁
気ヘッドとしての分解能を上げるために、MR効果素子
すなわち感磁部(2)の上下に磁性体を配置したシール
ド型構造をとることが多い。この場合、基板(1)とし
て磁性体が用いら゛れて下部磁性体とされ、一方この基
板(1)上の感磁部(2)上を覆って絶縁#(6)を介
して磁性金属例えばパーマロイ(Ni−Fe合金)が数
μmの厚さをもって、スパッタあるいは及びメツキされ
たシールド磁性体層(7)が配置される。
In order to improve the resolution of the magnetic head, an MR type magnetic head having such a configuration often has a shield type structure in which magnetic materials are placed above and below the MR effect element, that is, the magnetic sensing part (2). In this case, a magnetic material is used as the substrate (1) to serve as the lower magnetic material, and a magnetic material is used to cover the magnetically sensitive part (2) on this substrate (1) and pass it through the insulation #(6). A shield magnetic layer (7) made of, for example, permalloy (Ni-Fe alloy) and sputtered or plated with a thickness of several micrometers is disposed.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は、上述したシールド型のMR型磁気ヘッドにお
いて、より特性の向上と特性の安定化を図る。
The present invention aims to further improve and stabilize the characteristics of the shielded MR magnetic head described above.

すなわち、本発明においては、第4図及び第5図で説明
したシールド型のMR型磁気ヘッドにおいては、電極溝
′ai層の導出態様や、史にこれによる上部シールド磁
性体層(7)の磁区状態が特性に大きな影響を及ぼすこ
とを究明し、この究明に基いて特性の向上と安定化を図
る。
That is, in the present invention, in the shield type MR magnetic head explained in FIG. 4 and FIG. We will investigate that the magnetic domain state has a large effect on the characteristics, and based on this investigation, we will aim to improve and stabilize the characteristics.

すなわち、上述したシールド型のMR型磁気ヘッドにお
いては、第5図に示したように、そのシールド磁性体層
(7)の被着面がバイアス磁界発生用導体(5)及び電
極導電層(3)及び(4)の存在によって凹凸面となっ
ている。すなわち、上述の構成においてその感磁部(2
)は、その全体の厚さが例えば800人程変色いう比較
的薄い厚さをイイするためにその端縁がシールド磁性体
jm (7)下に存在する場合においてもその段差はさ
ほど問題にならないが、バイアス磁界発生用導体(5)
及び電極導電r@ (31及び(4)に関しては、その
電気的信頼性すなわち断線の発生を回避すること、また
抵抗の低減化を図るなどの理由からかなり大なる厚さ例
えば3000人程度以上の厚さに選定するために、これ
らバイアス磁界発生用導体(5)及び電極部′dX層(
3)及び(4)の端縁がシールド磁性体層(7)下に存
在する場合、絶縁層(6)を介シテシールド磁性体1→
(7)が被着形成されるにも拘らず、その端縁における
段差が比較的激しくなり、ここにおけるシールド磁性体
層(7)の屈曲が頭著となる。
That is, in the above-mentioned shield type MR magnetic head, as shown in FIG. ) and (4) make the surface uneven. That is, in the above configuration, the magnetic sensing part (2
) has a relatively thin overall thickness of, for example, 800 mm discoloration, so even if its edge is under the shielding magnetic material (7), the difference in level will not be much of a problem. However, the bias magnetic field generating conductor (5)
and electrode conductivity r@ (Regarding 31 and (4), the thickness is quite large, for example, about 3,000 people or more, in order to ensure electrical reliability, that is, to avoid disconnection, and to reduce resistance. In order to select the thickness, these bias magnetic field generating conductor (5) and the electrode part'dX layer (
When the edges of 3) and (4) exist under the shield magnetic layer (7), the shield magnetic layer 1→
(7) is deposited, the difference in level at the edge becomes relatively large, and the bending of the shield magnetic layer (7) becomes noticeable at this point.

今、例えばシールド磁性体i! (71が平坦な面とし
て形成された場合の磁区状態をみると第6図にその磁区
パターンを示すように、その主たる磁区はほぼ磁化容易
軸に沿って延在して平行配列された180°磁区構成と
なる。因みにこの場合のシールド磁性体層(7)は、そ
の厚さが数μmとされ、磁歪は10−’オーダーであっ
てほとんど零磁歪と考えられる。ところが、前述の第4
図で示されているように、シールド磁性体層(7)下に
導体(5)及び電極導電層(3)及び(4)が第7図破
線図示のように存在する場合、これら導体(5)及び電
極導電層(3)及び(4)の端縁によって生ずる段差に
基づく屈曲によって第7図に一線図示のように18o°
磁区に歪みすなわち乱れによるランダム磁区を生ずる。
Now, for example, shield magnetic material i! (Looking at the magnetic domain state when 71 is formed as a flat surface, as shown in Figure 6, the main magnetic domain extends approximately along the axis of easy magnetization and is arranged in parallel at 180°. Incidentally, the thickness of the shielding magnetic layer (7) in this case is several μm, and the magnetostriction is on the order of 10-', which is considered to be almost zero magnetostriction.However, the above-mentioned fourth
As shown in the figure, when the conductor (5) and the electrode conductive layers (3) and (4) are present under the shield magnetic layer (7) as shown by the broken lines in Figure 7, these conductors (5) ) and the bending based on the step caused by the edges of the electrode conductive layers (3) and (4), the bending angle is 18o as shown by the line in FIG.
Random magnetic domains are generated due to distortion or disturbance in the magnetic domains.

この磁区の乱れが特に感磁部(2)の近傍で生ずるとそ
の不安定な磁区動作は、感磁部(2)の磁気抵抗特性に
大きな影響を及ぼし、これが直ちにヘッドの出方の劣化
を招来し、磁気記録再生装置システムとしてはエラーレ
ートの悪化を来す。
When this magnetic domain disturbance occurs especially in the vicinity of the magnetically sensitive part (2), the unstable magnetic domain operation has a large effect on the magnetoresistive characteristics of the magnetically sensitive part (2), which immediately causes a deterioration in the head's protrusion. This results in a worsening of the error rate in the magnetic recording/reproducing system.

そして、このランダム磁区の発生は、 180゛磁区の
磁壁方向に沿う段差によるシールド磁性体層(7)の屈
曲に関しては、ランダム磁区の発生に大きな影響が生じ
ないがこれと直交する方向に関しては大きなitを及ぼ
す。つまり、例えば前方の電極導電層(3)を第4図に
示されているように感磁部(2)の前方から一側方、図
において右方向にのみ延在させる場合、その左端(3a
)による段差、さらに後方電極導電層(4)を感磁部(
2)の延長方向に後方に沿って延在させる場合は、その
左右両側縁(4a)及び(4b)による段差によって第
7図に示すように、これら段差特に磁化容易軸方向を横
切る段差が存在する場合、これによる磁区の乱れが感磁
部(2)に太き(影響する。また例えば前方電極導電層
(3)及びバイアス導体(5)がシールド磁性体層(7
)下においてそのパターンに屈曲部を有する場合、その
屈曲形状に応じた段差が180’磁区に企みを生ずるす
なわちランダム磁区の発生に大きな影響を及ぼす、そし
て、特にこのランダム磁区は、感磁部り2)の磁気記録
媒体との対接ないしは対向面(8)の近傍においてすな
わち磁気記録媒体からの信号磁界の導入側すなわち感磁
部(2)の主たる動作部側において大きな影響を与える
The generation of random magnetic domains is caused by the bending of the shield magnetic layer (7) due to the step along the domain wall direction of the 180° magnetic domain, which does not have a large effect on the generation of random magnetic domains, but in the direction orthogonal to this, it has a large effect. It affects it. That is, for example, when the front electrode conductive layer (3) extends only to one side from the front of the magnetically sensitive part (2), as shown in FIG.
), and furthermore, the rear electrode conductive layer (4) is connected to the magnetically sensitive part (
2), when extending rearward in the extension direction of 2), there are steps due to the left and right edges (4a) and (4b) as shown in FIG. 7, especially steps across the axis of easy magnetization. When the front electrode conductive layer (3) and the bias conductor (5) are connected to the shield magnetic layer (7
), if the pattern has a bent part, the step according to the bent shape will create a pattern in the 180' magnetic domain, that is, it will have a great effect on the generation of random magnetic domains, and in particular, this random magnetic domain will be 2), it has a large influence in the vicinity of the surface (8) facing or facing the magnetic recording medium, that is, on the side where the signal magnetic field from the magnetic recording medium is introduced, that is, on the side of the main operating part of the magnetic sensing part (2).

史にまた、電極4J4電1m (3)が、図示のように
片側の一方間にのみ延在する態様をとる場合、この片側
においてのみ電極導電層(3)に通ずるセンス電流iに
よって磁界の発生が生じるので、この通電の向きが、バ
イアス磁界発生用導体(5)への通電の向きと平行か反
平行かであることによって感磁部(2)への実質的バイ
アス印加態様が大きく異り、また、左右非対称性が大き
い。
Historically, when the electrodes 4J4 and 1m (3) extend only between one side as shown in the figure, a magnetic field is generated by the sense current i flowing through the electrode conductive layer (3) only on this one side. occurs, so depending on whether the current direction is parallel or antiparallel to the direction of current flow to the bias magnetic field generating conductor (5), the manner in which the actual bias is applied to the magnetically sensitive part (2) varies greatly. , and the left-right asymmetry is large.

本発明は、上述した諸問題の解決をはかる。The present invention seeks to solve the problems mentioned above.

〔問題点を解決するための手段」 本発明においては、第1図に平面図を示し第2図に第1
図のA−A線上の断面図を示すように、IJ板(1)上
に少なくとも一方が磁気抵抗特性を有する対の強磁性薄
膜(11)及び(12)が非磁性中間In(13)を介
して積層されてなる感磁部(2)と、この感磁部(2)
の両端から信号磁界と同方向にセンス電流iを印加し、
この感磁部(2)におけるセンス電流i方向とほぼ直交
する方向に導出される電極導電層(3)及び(4)と、
感磁部(2)を絶縁層(14)を介して横切るように延
在するバイアス磁界発生用導体(5)とを有し、この感
磁部(2)の配置部上を覆ってシールド磁性体層(7)
が配置されてなるM R型磁気ヘッドにおいて、その電
極導電層(3)及び(4)とバイアス磁界発生用導体(
5)がシールド磁性体層(7)の配置部下において、そ
のほぼ全域特に磁気記録媒体との対接ないしは対向面(
8)側の感磁部(2)の前方側近傍の主たる動作部にお
いては、磁気記録媒体からの信号磁界の印加方向、つま
り磁化困難軸方向、したがってセンス電流の通電方向と
直交する方向、πい換えれば磁化容易軸方向については
シールド磁性体層(7)の配置部のほとんど全域にわた
って端縁や屈曲部がほとんど存在しないように延在させ
た構成とする。つまり、バイアス磁界発生用導体+5)
、 li電極導電層3)及び(4)を少くともシールド
磁性体N(7)下では、感磁部(2)の延在方向(すな
わち磁化困ylt軸方向及び信号磁界の印加方向)とほ
ぼ直交する方向に平行に、云い換えれば、電極導電層(
3)及び(4)についても、感磁部(2)の前後両端か
ら両側方にすなわち左右に対称的に延長配置する。
[Means for solving the problem] In the present invention, FIG. 1 shows a plan view, and FIG.
As shown in the cross-sectional view taken along line A-A in the figure, a pair of ferromagnetic thin films (11) and (12), at least one of which has magnetoresistive properties, is formed on the IJ plate (1) with a non-magnetic intermediate In (13). A magnetically sensitive part (2) laminated with a magnetically sensitive part (2) interposed therebetween;
Apply a sense current i in the same direction as the signal magnetic field from both ends of
Electrode conductive layers (3) and (4) led out in a direction substantially perpendicular to the sense current i direction in this magnetically sensitive part (2);
It has a bias magnetic field generating conductor (5) extending across the magnetically sensitive part (2) via an insulating layer (14), and a shielding magnetic conductor (5) that covers the arrangement part of the magnetically sensitive part (2). Body layer (7)
In the MR type magnetic head, the electrode conductive layers (3) and (4) and the bias magnetic field generating conductor (
5) under the arrangement of the shield magnetic layer (7), almost the entire area thereof, especially the surface facing or facing the magnetic recording medium (
In the main operating part near the front side of the magnetically sensitive part (2) on the side 8), the direction in which the signal magnetic field is applied from the magnetic recording medium, that is, the direction of the difficult magnetization axis, and therefore the direction perpendicular to the sense current direction, π In other words, in the easy magnetization axis direction, the shield magnetic layer (7) is configured to extend over almost the entire area where the shield magnetic layer (7) is arranged so that there are almost no edges or bent portions. In other words, conductor for bias magnetic field generation +5)
, Li electrode conductive layers 3) and (4) are arranged at least under the shielding magnetic material N (7), approximately in the direction of extension of the magnetically sensitive part (2) (i.e., the direction of the magnetization axis and the direction of application of the signal magnetic field). In other words, the electrode conductive layer (
3) and (4) are also extended from both front and rear ends of the magnetic sensing part (2) to both sides, that is, symmetrically to the left and right.

そして、更に本発明においては、画電極導電層(3)及
び(4)の両側方に延在させた両端を、シールド磁性体
層(7)の配置外において、あるいはその一部はシール
ド磁性体層(7)の配置部上に差し掛るように相互に連
結するループ部・(33)及び(34)を後方に延在形
成して、それぞれセンス電流通電端子LSF及びtsB
を導出する。
Furthermore, in the present invention, both ends of the picture electrode conductive layers (3) and (4) extending on both sides are arranged outside the shield magnetic layer (7), or a part thereof is covered with the shield magnetic layer. Loop portions (33) and (34) are formed to extend backward and connect to each other so as to extend over the arrangement portion of the layer (7), and are connected to the sense current conducting terminals LSF and tsB, respectively.
Derive.

また、バイアス磁界発生用導体(5)の両端からバイア
ス磁界発生用電流を通電する端子t1及びt2を導出す
る。
Further, terminals t1 and t2 through which bias magnetic field generating current is passed are led out from both ends of the bias magnetic field generating conductor (5).

面、第1図及び第2図において、第4図及び第5図と対
応する部分には同一符号を付して重複説明を省略する。
In FIGS. 1 and 2, parts corresponding to those in FIGS. 4 and 5 are designated by the same reference numerals, and redundant explanation will be omitted.

〔作用〕[Effect]

上述した本発明構成によれば、シールド磁性体層(7)
下において少くとも感磁部(2)の近傍、特に磁気記録
媒体との対接ないしは対向面(8)側すなわち磁気記録
媒体からの信号磁界が与えられる実効動作部近傍におい
ては、磁化困難軸方向(信号磁界及びセンス電流iの方
向)に沿う方向の端縁が存在しないようにしてこれによ
るシールド磁性体層(7)に段差が生じないようにした
ことによってランダム磁区の発生が効果的に回避され、
これによって感磁部(2)の特性の安定化が図られ、再
生装置としてのエラーレートの改善が図られる。
According to the above-described configuration of the present invention, the shield magnetic layer (7)
In the lower part, at least near the magnetically sensitive part (2), especially on the side facing the magnetic recording medium or on the opposing surface (8), that is, in the vicinity of the effective operating part to which the signal magnetic field from the magnetic recording medium is applied, the direction of the hard magnetization axis (The direction of the signal magnetic field and the sense current i) Since there is no edge in the direction along the direction of the signal magnetic field and sense current i, the generation of random magnetic domains is effectively avoided by preventing the formation of a step in the shield magnetic layer (7). is,
This stabilizes the characteristics of the magnetically sensitive section (2) and improves the error rate of the playback device.

そして、これに加えて、各電極導電31 (31及び(
4)がバイアス磁界発生用導体(5)と平行に延在し、
且つ感磁部からその両側に延びその外端にループ部(3
3)及び(34)が設けられエセンス電流五の通電を行
うようにしていることから第1図をみて明らかなように
感磁部(2)の近傍における部分では、感磁部(2)を
中心にその両側にセンス電流が2分されたi/2づつの
電流が通電することになり、これによって発生する磁界
が緩和されること、更に前方電極4?ti層(3)と後
方電極導電j@ (4)の各i/2の通電方向が互いに
逆向きとなることによって磁界の非対称性が緩和される
ことになり、感磁部(2)に対する特性への影響が減少
し、特性の安定化がはかられる。
In addition to this, each electrode conductor 31 (31 and (
4) extends parallel to the bias magnetic field generating conductor (5),
It extends from the magnetic sensing part to both sides and has a loop part (3
3) and (34) are provided to conduct the energization of essence current 5, as is clear from FIG. A current of i/2, which is the sense current divided into two, is applied to both sides of the center, which reduces the generated magnetic field, and furthermore, the front electrode 4? The asymmetry of the magnetic field is alleviated by energizing directions of each i/2 of the ti layer (3) and the rear electrode conductivity j@ (4) being opposite to each other, and the characteristics for the magnetically sensitive part (2) are This reduces the impact on the product and stabilizes the characteristics.

〔実施例〕〔Example〕

第1図及び第2図を参照してさらに本発明の一例を詳細
に説明する。基板(1)は例えばN i−Z n系フェ
ライト+Mn−Zn系フェライト等の磁性基板より構成
し得、必要に応じてこれの上に絶縁層(図示せず)を介
して例えばそれぞれMR効果を有するパーマロイ(N 
i−F e系合金)、あるいはN i−F e−G o
系合金+Niにo糸金合金の金w1薄膜よりなる強磁性
薄膜(11)及び(12)を非磁性絶縁中間1iilf
(13)例えばA120vを介してそれぞれ全面蒸着し
て後、これをパターン化して例えば帯状に延在する感磁
部(2)を構成する。
An example of the present invention will be further described in detail with reference to FIGS. 1 and 2. The substrate (1) may be composed of a magnetic substrate such as Ni-Zn ferrite + Mn-Zn ferrite, and if necessary, an insulating layer (not shown) may be provided thereon to provide an MR effect, for example. Permalloy (N
i-F e-based alloy) or N i-F e-G o
Ferromagnetic thin films (11) and (12) consisting of gold w1 thin film of O-thread metal alloy on Ni system alloy
(13) For example, after depositing on the entire surface using A120v, this is patterned to form a magnetically sensitive portion (2) extending, for example, in a band shape.

非磁性中間層(13)は、強磁性薄II(11)及び(
12)間に、交換相互作用に比し静磁的相互作用が支配
的に作用するような数百Å以下の厚さに選定される0強
磁性WtI5i1 (11)及び(12)は、それぞれ
数百人に選定されて感磁部(2)の全体の厚さが例えば
800人程以上形成される。
The non-magnetic intermediate layer (13) consists of ferromagnetic thin II (11) and (
12) The ferromagnetic WtI5i1 (11) and (12), which are selected to have a thickness of several hundred Å or less so that the magnetostatic interaction acts more dominantly than the exchange interaction, are each If 100 people are selected, the total thickness of the magnetic sensing part (2) is formed to be, for example, about 800 people or more.

尚、両強磁性薄F(11)及び(12)の一方は、MR
効果を有しないかあるいはほとんど有しない強磁性薄膜
例えばセンダスト、Go系アモルファス合金+Moパー
マロイ等の高透磁率@磁性軟磁性V¥1膜によって構成
し得る。しかしながら、この場合、両薄膜(11)及び
(12)はその飽和磁束密度、厚さ等の選定によって肉
薄膜(11)及び(12)の磁束量が一致するようにし
てその磁束が両%膜(11)及び(12)に関して全体
的に閉じ得るようになされて磁区の発生が生じないよう
になされる。
Incidentally, one of the two ferromagnetic thin F(11) and (12) is MR
It can be constructed by a ferromagnetic thin film having no or almost no effect, such as a high magnetic permeability@magnetic soft magnetic V\1 film such as Sendust, Go-based amorphous alloy + Mo permalloy. However, in this case, by selecting the saturation magnetic flux density, thickness, etc. of both thin films (11) and (12), the amount of magnetic flux of the thin films (11) and (12) is made to match, so that the magnetic flux is equal to that of the thin films (11) and (12). (11) and (12) can be closed as a whole to prevent generation of magnetic domains.

−感磁部(2)上には、5hN4.5i02等の絶縁層
(14)が被着形成され、感磁部(2)の前方及び後方
の両端上に電極コンタクト窓(14a)及び(14b)
が穿設され、これらコンタクト窓(14a)及び(14
b)を通じてそれぞれ前方及び後方各電極導電層(3)
及び(4)が被着され、さらに絶縁層(14)を介して
感磁部(2)上を横切ってバイアス磁界発生用導体(5
)が被着される。これら電極導電層(3)及び(4)と
バイアス導体(5)はMo 、 W、 ′I″五等の金
属層を全面的に?A4し、フォトリソクラフィによって
パターン化することによって同時に形成し得る。そして
、これら電極導電FJ (3)及び14)とバイアス磁
界発生用導体(5)はそれぞれ感磁部(2)の延長方向
と直交する方向(すなわちこれに対するセンスifi流
iの111N電方向、困難軸方向及び磁気記録媒体から
の信号磁界の印加方向と直交する方向)に感磁部(2)
の両側方に渡って延在させる。バイアス磁界発生用導体
(5)の両端は、バイアス磁界発生用電流を通電するた
めの端子t1及び【2の導出が通常のようになされる。
- An insulating layer (14) of 5hN4.5i02 or the like is deposited on the magnetically sensitive part (2), and electrode contact windows (14a) and (14b) are formed on both the front and rear ends of the magnetically sensitive part (2). )
are drilled, and these contact windows (14a) and (14
b) Through each front and rear electrode conductive layer (3)
and (4) are deposited, and further a bias magnetic field generating conductor (5) is applied across the magnetically sensitive part (2) via the insulating layer (14).
) is deposited. These electrode conductive layers (3) and (4) and the bias conductor (5) can be formed simultaneously by coating a metal layer such as Mo, W, 'I''5 etc. on the entire surface and patterning it by photolithography. These electrode conductors FJ (3) and 14) and the bias magnetic field generating conductor (5) are directed in a direction perpendicular to the extension direction of the magnetically sensitive part (2) (i.e., in the 111N direction of the sense current i with respect to this, Magnetically sensitive part (2) in the hard axis direction and in the direction perpendicular to the direction of application of the signal magnetic field from the magnetic recording medium.
extend on both sides of the At both ends of the bias magnetic field generating conductor (5), terminals t1 and 2 for passing a bias magnetic field generating current are drawn out as usual.

そして、前方及び後方の各電極導電層(3)及び(4)
のそれぞれの両端をシールド磁性体層(7) %あるい
はその一部がシールド磁性体、f@ (7)下に存在す
るように、互いに端部を連結するループ状となしてその
各ループ部(33)及び(34)から端子LSF及びt
sBの導出を行う。
And each front and rear electrode conductive layer (3) and (4)
Both ends of each of the shielding magnetic material layers (7) are connected to each other in a loop shape so that % or a portion thereof is under the shielding magnetic material, f@ (7). 33) and (34) to terminals LSF and t
Derive sB.

そして、感磁部(2)の配置部上に絶′#i層(6)を
介して高透磁率を有する例えばパーマロイよりなるシー
ルド磁性体層 (7)がスパッタリングあるいはめつき
等によって数μmの厚さに被着形成される。
Then, a shielding magnetic layer (7) made of permalloy, for example, having high magnetic permeability is placed on the arrangement part of the magnetically sensitive part (2) via an absolute #i layer (6) to a thickness of several μm by sputtering or plating. It is deposited to a certain thickness.

この構成において、特にシールド磁性体層(7)下にお
いて各゛電極導電+= (31及び(4)とバイアス磁
界発生用導体(5)は互いに平行にすなわち感磁部(2
)の長手方向ずなわちセンス電流iの通電方向、困難軸
方向、信号磁界の印加方向に直交する方向に直線的に延
在させてこの延在方向の全域に渡って屈曲ないしは端縁
が存在することがないようにする。
In this configuration, especially under the shield magnetic layer (7), each electrode conductor (31 and (4) and the bias magnetic field generating conductor (5) are parallel to each other, that is, the magnetic sensitive part (2
) extends linearly in the longitudinal direction, that is, in the direction perpendicular to the direction of conduction of the sense current i, the hard axis direction, and the direction of application of the signal magnetic field, and there are bends or edges throughout the extending direction. Make sure you have nothing to do.

すなわち、電極導電J@ (31及び(4)の端子導出
端側とは反対側の端縁はシールド磁性体層(7)外に存
在するようにする。そして、)Ji、 4fi (1)
からシールド磁性体層(7)に渡ってその前方端を研磨
して感磁部(2)の前方端面が臨む磁気記録媒体との対
接ないしは対向面(8)が形成される。
That is, the edges of the electrode conductivity J@(31 and (4) on the opposite side from the terminal lead-out end side are made to exist outside the shield magnetic layer (7).And) Ji, 4fi (1)
The front end of the shield magnetic material layer (7) is polished to form a surface (8) that faces the magnetic recording medium and faces the front end surface of the magnetically sensitive portion (2).

面、第1図に示した例においては、シールド磁性体層(
7)がその磁気記録媒体との対接ないしは対向面(8)
に臨む側の前方端における幅と後方端における幅とが同
一幅の方形状とされている場合であるが、ある場合は第
3図に示すように磁気記録媒体との対接ないしは対向面
(8)に臨む部分においては、そのトラック幅よりも大
ではあるものの幅狭とし、後方に向かって幅広となるす
なわち後方に末広がりの形状とすることもできる。
In the example shown in FIG.
7) is the surface facing or facing the magnetic recording medium (8)
In some cases, the width at the front end facing the magnetic recording medium and the width at the rear end facing the magnetic recording medium are the same width, but in some cases, as shown in FIG. The width of the portion facing 8) may be narrower, although larger than the track width, and the width may be widened toward the rear, that is, the portion may have a shape that widens toward the rear.

尚、シールド磁性体層(7)を後方に末広がり形状とし
た場合においても、これが第8図に示すように例えば後
方電極導電層(4)の端縁(4a)及び(4b)が、シ
ールド磁性体層(7)下に存在する場合は第8図に11
線でその磁区構造を示すように180”磁区に乱れが生
じ、これが磁気ヘッドの特性劣化を招来するものである
が、本発明によるときはこの端縁(4a)及び(4b)
等による段差がシールド磁性体層(刀に発生しないよう
にしたことによって180゜磁区が比較的整然と生じ、
これによってシールド磁性体層におけるランダム磁区の
発生が抑制される。
Note that even when the shield magnetic layer (7) has a shape that widens toward the rear, as shown in FIG. 8, for example, the edges (4a) and (4b) of the rear electrode conductive layer (4) If it exists under body layer (7), it is shown in Figure 8 as 11.
As the magnetic domain structure is shown by lines, disturbance occurs in the 180" magnetic domain, which causes deterioration of the characteristics of the magnetic head. According to the present invention, these edges (4a) and (4b)
By preventing steps from occurring on the shield magnetic material layer (sword), 180° magnetic domains are generated in a relatively orderly manner,
This suppresses the generation of random magnetic domains in the shield magnetic layer.

〔発明の効果〕〔Effect of the invention〕

上述したように本発明によれば、シールド型のMR磁気
ヘッド構成をとるにも拘らず、その上層のシールド磁性
体層(7)が少くとも感磁部(2)のセンス電流i、磁
化困難軸方向、信号磁界の印加方向に沿う方向に延在す
る段差が感磁部(2)の実効動作部近傍において発生す
ることを回避するようにしたので180°磁区が乱れた
り、このランダム磁区の発生による不安定な動作がII
!I′I&され、また感磁部(2)に対するセンス電流
iの通電を感磁部(2)から両側に2分して供給する構
成をとったことによってこのセンス電流の通電によって
電極導電層(3)及び(4)から発生する磁界による不
均衡を緩和できることによって、特性の、より安定化が
はかられる。
As described above, according to the present invention, although the shield type MR magnetic head is configured, the upper shield magnetic layer (7) has at least the sense current i of the magnetically sensitive part (2), which is difficult to magnetize. Since the step extending in the axial direction and the direction along the direction of application of the signal magnetic field is avoided from occurring near the effective operating part of the magnetically sensitive part (2), the 180° magnetic domain is disturbed and this random magnetic domain is II: Unstable operation due to occurrence
! I'I&, and by adopting a configuration in which the sense current i is supplied to the magnetically sensitive part (2) in two parts from the magnetically sensitive part (2) to both sides, the electrode conductive layer ( By being able to alleviate the imbalance caused by the magnetic fields generated from 3) and (4), the characteristics can be further stabilized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による磁気ヘッドの一例の路線的拡大平
面図、第2図はその第1図A−A線上の断面図、第3図
は本発明の磁気ヘッドの他の例の拡大平面図、第4図及
び第5図は従来の磁気ヘッドの路線的拡大平面図及び第
4図のA−A線上の路線的拡大断面図、第6図〜第8図
はシールド磁性体層の磁区の説明図である。 (1)は基板、(2)は感磁部、(3)及び(4)は電
極4″#j1層、(5)はバイアス磁界発生用導体、(
7)はシールド磁性体層である。
FIG. 1 is an enlarged plan view of an example of the magnetic head according to the present invention, FIG. 2 is a sectional view taken along line A-A in FIG. 1, and FIG. 3 is an enlarged plan view of another example of the magnetic head of the present invention. 4 and 5 are an enlarged plan view of a conventional magnetic head and an enlarged sectional view taken along line A-A in FIG. 4, and FIGS. FIG. (1) is the substrate, (2) is the magnetic sensing part, (3) and (4) are the electrode 4''#j1 layer, (5) is the bias magnetic field generating conductor, (
7) is a shield magnetic layer.

Claims (1)

【特許請求の範囲】[Claims] 基板上に磁気抵抗効果を有する強磁性薄膜を有する感磁
部と、該感磁部の両端に該感磁部に信号磁界と同方向に
センス電流を印加するようになされ、該感磁部における
センス電流方向とほぼ直交する方向に導出される対の電
極導電層と上記感磁部を絶縁層を介して横切るように延
在するバイアス磁界発生用導体とを有し、上記感磁部の
配置部上を覆ってシールド磁性体層が配置された磁気抵
抗効果型磁気ヘッドにおいて、上記電極導電層と上記バ
イアス磁界発生用導体とが上記シールド磁性体層の配置
部においては上記感磁部への信号磁界の印加方向とほぼ
直交する方向に延在し、上記各電極導電層の各両端が上
記シールド磁性体層の配置部外においてあるいはその一
部が上記シールド磁性体下において相互に連結するよう
にループ状とされ該ループ部からそれぞれ端子導出がな
されたことを特徴とする磁気抵抗効果型磁気ヘッド。
A magnetically sensitive part has a ferromagnetic thin film having a magnetoresistive effect on a substrate, and a sense current is applied to both ends of the magnetically sensitive part in the same direction as a signal magnetic field, and a sense current is applied to the magnetically sensitive part in the same direction as a signal magnetic field. A pair of electrode conductive layers led out in a direction substantially perpendicular to the sense current direction and a bias magnetic field generating conductor extending across the magnetically sensitive section via an insulating layer, and an arrangement of the magnetically sensitive section. In a magnetoresistive magnetic head in which a shield magnetic layer is disposed over a portion of the magnetoresistive head, the electrode conductive layer and the bias magnetic field generating conductor are connected to the magnetically sensitive portion in the portion where the shield magnetic layer is disposed. The electrode conductive layers extend in a direction substantially perpendicular to the direction in which the signal magnetic field is applied, such that both ends of each of the electrode conductive layers are connected to each other outside the area where the shielding magnetic layer is arranged, or a part thereof is under the shielding magnetic layer. 1. A magnetoresistive magnetic head, characterized in that the loop portion has a loop shape, and terminals are led out from the loop portion.
JP27404087A 1987-10-29 1987-10-29 Magnetoresistive magnetic head Expired - Fee Related JP2596010B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27404087A JP2596010B2 (en) 1987-10-29 1987-10-29 Magnetoresistive magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27404087A JP2596010B2 (en) 1987-10-29 1987-10-29 Magnetoresistive magnetic head

Publications (2)

Publication Number Publication Date
JPH01116913A true JPH01116913A (en) 1989-05-09
JP2596010B2 JP2596010B2 (en) 1997-04-02

Family

ID=17536127

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27404087A Expired - Fee Related JP2596010B2 (en) 1987-10-29 1987-10-29 Magnetoresistive magnetic head

Country Status (1)

Country Link
JP (1) JP2596010B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0459404A2 (en) * 1990-05-30 1991-12-04 Sony Corporation Magnetoresistance-effect thin film head

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0459404A2 (en) * 1990-05-30 1991-12-04 Sony Corporation Magnetoresistance-effect thin film head
US5351158A (en) * 1990-05-30 1994-09-27 Sony Corporation Magnetoresistance effect thin film head with interconnected electrode structure

Also Published As

Publication number Publication date
JP2596010B2 (en) 1997-04-02

Similar Documents

Publication Publication Date Title
US4896235A (en) Magnetic transducer head utilizing magnetoresistance effect
US5402292A (en) Magnetoresistance effect type thin film magnetic head using high coercion films
JPS6286519A (en) Magnetic head for twin truck
EP0021392A1 (en) Magnetic transducing head assemblies
JP2001250208A (en) Magneto-resistive element
US5535077A (en) Magnetoresistive head having magnetically balanced magnetoresistive elements laminated on opposite sides of an electrically conductive film
US5661620A (en) Magneto-resistance effect magnetic head
KR100267411B1 (en) Magnetoresistive head
JPH01116913A (en) Magneto-resistance type magnetic head
JP2508475B2 (en) Magnetoresistive magnetic head
JPH0441415B2 (en)
JPH09260742A (en) Magnetoresistance effect device
JP2668897B2 (en) Magnetoresistive magnetic head
JPH11112055A (en) Magnetic sensor
JPH01116912A (en) Magneto-resistance effect type magnetic head
JPH026490Y2 (en)
JP3609104B2 (en) Magnetoresistive thin film head
JPS63181109A (en) Magneto-resistance effect type magnetic head
JPH0572642B2 (en)
US20020018324A1 (en) Ferromagnetic tunneling magneto-resistive head
JPH03290812A (en) Magnetic head
JPS63181108A (en) Magneto-resistance effect type magnetic head
JPH0981916A (en) Magnetoresistance effect type head
JPH06119620A (en) Magneto-resistance effect head
JP2001209914A (en) Magnetoresistive thin film magnetic head and method of manufacture

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees