JPH01116912A - Magneto-resistance effect type magnetic head - Google Patents

Magneto-resistance effect type magnetic head

Info

Publication number
JPH01116912A
JPH01116912A JP27403987A JP27403987A JPH01116912A JP H01116912 A JPH01116912 A JP H01116912A JP 27403987 A JP27403987 A JP 27403987A JP 27403987 A JP27403987 A JP 27403987A JP H01116912 A JPH01116912 A JP H01116912A
Authority
JP
Japan
Prior art keywords
magnetic
layer
magnetically sensitive
electrode conductive
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27403987A
Other languages
Japanese (ja)
Inventor
Hideo Suyama
英夫 陶山
Kenichiro Tsunewaki
常脇 謙一郎
▲たき▼野 浩
Hiroshi Takino
Hiroaki Yada
矢田 博昭
Munekatsu Fukuyama
宗克 福山
Noboru Wakabayashi
登 若林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP27403987A priority Critical patent/JPH01116912A/en
Publication of JPH01116912A publication Critical patent/JPH01116912A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Heads (AREA)

Abstract

PURPOSE:To evade the formation a random magnetic domain and unstable operation by leading out an electrode conductive layer for a magnetic sensing part almost at right angles to the sense current direction of the magnetism sensing part and extending this electrode conductive layer out of a shield magnetic body. CONSTITUTION:A main operation part in front of and nearby the magnetism sensing part 2 on a contact or facing surface 8 for a magnetic recording medium is extended almost without any edge or bent part over nearly the entire range of the arrangement part of magnetic material layer 7 in the application direction of a signal magnetic field from the magnetic recording medium, i.e. hard-to- magnetize axis direction and therefore at right angles to the feeding direction of a sense current, in other words, in the easy-to-magnetize axis direction. A shield magnetic material layer 7 has no step, so the formation of a random magnetic domain is evaded, the characteristics of the magnetism sensing part 2 is stabilized, and the error rate of a reproducing device is improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、磁気抵抗効果型磁気ヘッド、特にシールド型
磁気抵抗効果型磁気ヘッドに関わる。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a magnetoresistive magnetic head, particularly a shielded magnetoresistive magnetic head.

〔発明のa要〕[A essential point of the invention]

本発明は、磁気抵抗効果を有する感磁部が基板上に設け
られ、この感磁部を覆ってシールド磁性体層が配置され
たシールド型の磁気抵抗効果型磁気へラドにおいて、七
〇感磁部におけるセンス電流方向とほぼ直交する方向に
この感磁部に対する電極導電j−の導出がなされ、この
電極導電層がシールド磁性体外に延在させるようにして
電極導電層の縁部によるシールド磁性体層の段差に基づ
く磁区の乱れを最小限に留めて不安定な磁区動作による
ヘッドの出力の劣化を回避する。
The present invention provides a shield type magnetoresistive magnetic helad in which a magnetic sensing part having a magnetoresistive effect is provided on a substrate, and a shielding magnetic layer is arranged to cover this magnetic sensing part. The electrode conductivity j- for this magnetically sensitive part is derived in a direction substantially perpendicular to the direction of the sense current in the part, and this electrode conductive layer is extended outside the shielding magnetic body to prevent the shielding magnetic body from the edge of the electrode conductive layer. To avoid deterioration of head output due to unstable magnetic domain operation by minimizing disturbance of magnetic domains due to layer steps.

〔従来の技術〕[Conventional technology]

磁気抵抗効果型磁気ヘッド(以下MR型磁気ヘッドとい
う)において、その感磁FI1%すなわち磁気抵抗効果
(以下MR効果という)素子を絶縁層を介して積層され
た2枚のMR効果を有するSDRあるいは一方がMR効
果を有し他方がMR効来がないかほとんど有しない磁性
薄膜の4?1層体によって構成し、両wi膜に同一方向
のセンス電流を通ずるようにしたMR型磁気ヘッドが例
えば特開昭61−182620号公報、特開昭62−5
2711号公報、特願昭60−247752号出願の公
開公報に開示されている。このような構成によるMR型
磁気ヘッドにおいては、その感磁部を構成する磁気抵抗
特性が単磁区構成となり、磁壁の発生が回避されること
からバルクハウゼンノイズの発生を抑制することができ
る。
In a magnetoresistive magnetic head (hereinafter referred to as MR type magnetic head), the magnetically sensitive FI1%, that is, the magnetoresistive effect (hereinafter referred to as MR effect) element is stacked with two sheets of SDR or SDR having an MR effect laminated with an insulating layer interposed therebetween. For example, an MR type magnetic head is constructed of four to one layers of magnetic thin films, one of which has an MR effect and the other of which has no or almost no MR effect, and a sense current is passed in the same direction through both wi films. JP-A-61-182620, JP-A-62-5
This method is disclosed in Japanese Patent Application No. 2711 and Japanese Patent Application No. 60-247752. In the MR type magnetic head having such a configuration, the magnetoresistance characteristic of the magnetic sensing portion has a single magnetic domain configuration, and the generation of domain walls is avoided, so that the generation of Barkhausen noise can be suppressed.

このようなMR型磁気ヘッドは、例えば第7図にその拡
大平面図を示し第8図に第7図A−A線上の断面図を示
すように、基板(1)上に少なくとも一方がMR効果を
有する第1及び第2の強磁性薄膜(11)及び(12)
が非磁性中間層(13)を介して積層されてなる感磁部
(2)を、その前方端面が磁気記録媒体との対接ないし
は対向面(8)に臨み、かつこの面(8)と直交するよ
うに後方に延在して配置されるとともに、この感磁部(
2)上または下に感磁部(2]の延在方向とほぼ直交し
て横切るいわばI・ラック幅方向に延在してこの感磁部
(2)に対してトラック幅方向と直交する方向(感磁部
(2)への信号磁界の印加方向)にバイアス磁界を与え
て感磁部(2)における磁気抵抗特性が直線性を有する
範囲で動作させるためのバイアス磁界発生用導体(5)
が表面絶縁JMI(14)を介して積層形成されてなる
。一方、感磁部(2)の前方端部及び後方端部には、感
磁部(2)に対して磁気記録媒体との対接ないしは対向
面(8)とほぼ直交する方向すなわち磁気記録媒体から
得られる信号磁界方向に沿う方向にセンス電流iを印加
するに供する前方及び後方各電極導電層(3)及び(4
)が被着形成され、また強磁性薄E(11)及び(12
)の磁化困難軸方向が、信号磁界及びセンス電流iの通
電方向に沿う方向となるように選定される。この構成に
おいて磁気記録媒体からの記録情報に基く信号磁界によ
る感磁部(2)の抵抗変化を、そのセンス電流lによる
両端の電圧変化として検出して、磁気記録媒体上の記録
の再生を行うようになされる。
In such an MR type magnetic head, at least one side has an MR effect on the substrate (1), as shown in FIG. 7, which is an enlarged plan view, and FIG. first and second ferromagnetic thin films (11) and (12) having
are laminated via a non-magnetic intermediate layer (13), the front end surface of which faces the surface (8) that faces or faces the magnetic recording medium, and which faces this surface (8). This magnetically sensitive part (
2) Above or below, a direction that extends in the rack width direction and is perpendicular to the track width direction with respect to the magnetic sensing portion (2). Conductor for generating a bias magnetic field (5) for applying a bias magnetic field in the direction (in the direction of application of the signal magnetic field to the magnetically sensitive part (2)) to operate within the range where the magnetoresistance characteristics in the magnetically sensitive part (2) have linearity.
are laminated with a surface insulating JMI (14) interposed therebetween. On the other hand, the front end and the rear end of the magnetically sensitive part (2) are provided with a magnetic recording medium in a direction substantially perpendicular to the facing surface (8) or facing the magnetic recording medium with respect to the magnetically sensitive part (2). The front and rear electrode conductive layers (3) and (4) serve to apply a sense current i along the direction of the signal magnetic field obtained from the
) are deposited, and ferromagnetic thin E(11) and (12
) is selected so that the direction of the axis of difficult magnetization is along the direction of the signal magnetic field and the direction in which the sense current i flows. In this configuration, a change in the resistance of the magnetic sensing part (2) due to a signal magnetic field based on recorded information from the magnetic recording medium is detected as a voltage change at both ends due to the sense current l, and the recording on the magnetic recording medium is reproduced. It is done like this.

このような構成によるMR型磁気ヘッドにおいては、磁
気ヘッドとしての分解能を上げるために、MR効果素子
すなわち感磁部(2)の上下に磁性体が配置したシール
ド型構造をとることが多い。この場合、基板+1)とし
て磁性体が用いられて下部磁性体とされ、一方この基板
11)上の感磁部(2)上を覆って絶縁層(6)を介し
て磁性金属例えばパーマロイ(N i−F e合金)が
数μ−の厚さをもって、スパ゛ツタあるいは及びメツキ
されたシールド磁性体(7)が配置される。
In order to improve the resolution of the magnetic head, an MR type magnetic head having such a configuration often has a shield type structure in which magnetic materials are placed above and below the MR effect element, that is, the magnetic sensing part (2). In this case, a magnetic material is used as the substrate +1) to serve as the lower magnetic material, while a magnetic material such as permalloy (N A sputtered or plated shielding magnetic material (7) is disposed with a thickness of several microns (i-Fe alloy).

このようなシールド型MR型磁気ヘッド構成をとる場合
、磁気ヘッド特性として不安定な特性を示す場合がある
When such a shielded MR type magnetic head configuration is adopted, the magnetic head characteristics may exhibit unstable characteristics.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は、上述したシールド型のMR型磁気ヘッドにお
ける特性の不安定性の問題の解決を図る。
The present invention aims to solve the above-mentioned problem of instability of characteristics in the shield type MR magnetic head.

すなわち、本発明においては、このような問題点が第7
図及び第8図で説明した上部シールド磁性体1−(71
の磁区状態によって生じることを究明し、この究明に基
いて磁区状、態の安定化を図る構成をとって上述した問
題の解決を図る。
That is, in the present invention, such a problem is solved as the seventh problem.
Upper shield magnetic body 1-(71
We will investigate what is caused by the magnetic domain state, and based on this investigation, we will create a configuration that stabilizes the magnetic domain state and state to solve the above-mentioned problems.

すなわち、上述したシールド型のMR型磁気ヘッドにお
いては、上述した第8図に示されるように、そのシール
ド磁性体層(7)の被着面、がバイアス磁界発生用導体
(5)及び電極導電層(3)及び(勾の存在によって凹
凸面となっている。すなわち、上述の構成においてその
感磁部(2)は、その全体の厚さが例えば800人程以
上いう比較的薄い厚さを有するためにその端縁がシール
ド磁性体層(7)下に存在する場合においてもその段差
はさほど問題にならないが、バイアス磁界発生用導体(
5)及び電極導電層(3)及び(4)に関しては、その
電気的信頼性すなわち断線の発生を回避すること、また
批杭の低減化を図るなどの理由からかなり大なる厚さ例
えば3000人程度以上の厚さに選定するために、これ
らバイアス磁界発生用導体(5)及び電極導電層(3)
及び(4)の端縁がシールド磁性体N(7)下に存在す
る場合、絶縁層(6)を介してシールド磁性体層(7)
が被着形成されるにも拘らず、その端縁における段差が
比較的激しくなり、ここにおけるシールド磁性体層(7
)の屈曲が顕著となる。
That is, in the shielded MR magnetic head described above, as shown in FIG. The layer (3) has an uneven surface due to the presence of the gradient. That is, in the above structure, the magnetically sensitive part (2) has a relatively thin total thickness of, for example, about 800 or more. Even if the edge of the bias magnetic field generating conductor (7) is under the shielding magnetic layer (7), the difference in level does not pose much of a problem.
5) and the electrode conductive layers (3) and (4) have a fairly large thickness, for example, 3,000 layers, in order to ensure their electrical reliability, that is, to avoid the occurrence of wire breakage, and to reduce the risk of pile damage. These bias magnetic field generating conductor (5) and electrode conductive layer (3)
If the edges of (4) and (4) exist under the shielding magnetic material layer (7), the shielding magnetic material layer (7) is placed through the insulating layer (6).
Despite being deposited and formed, the step at the edge becomes relatively large, and the shielding magnetic layer (7
) becomes noticeable.

今、例えばシールド磁性体層(7)が平坦な面として形
成された場合の磁区状態をみると第9図にその磁区パタ
ーンを鎖線をもって示すように、その主たる磁区は磁化
容易軸方向に延在するほぼ一方向に平行配列された18
0°磁区構成となる。因みにこの場合のシールド磁性体
層(7)は、その厚さが数μ讃とされ、磁歪は10′″
“′オーダーであってほとんど零磁歪と考えられる。と
ころが、前述の第7図で示されているように、シールド
磁性体層(7)下に導体(5)及び電極導電層(3)及
び(4)が第10図破線図ボのように存在する場合、こ
れら導体<5)及び電極導電層(3)及び(4)の端縁
によって生ずる段差に基づく屈曲によって第10図に鎖
線図示のように180゛磁区に歪みすなわち乱れによる
ランダム磁区を住する。この磁区の乱れが特に感磁部(
2)の近傍で住するとその不安定な磁区動作は、感磁部
(2)の磁気抵抗特性に大きな影響を及ぼし、これが直
ちにヘッドの出力の劣化を招来し、磁気記録再生装置シ
ステムとしてはエラーレートの悪化を来す。
Now, for example, if we look at the magnetic domain state when the shield magnetic material layer (7) is formed as a flat surface, the main magnetic domain extends in the direction of the easy axis of magnetization, as shown in Fig. 9 by the chain line. 18 arranged in parallel in almost one direction
It has a 0° magnetic domain configuration. Incidentally, the thickness of the shield magnetic layer (7) in this case is several micrometers, and the magnetostriction is 10''
It is considered to be on the order of "' and almost zero magnetostriction. However, as shown in FIG. 4) exists as shown in the dashed line in Fig. 10, the bending due to the step caused by the edges of these conductors <5) and the electrode conductive layers (3) and (4) causes the bending to occur as shown in the broken line in Fig. 10. A random magnetic domain exists in the 180° magnetic domain due to distortion or disturbance.The disturbance of this magnetic domain is particularly noticeable in the magnetically sensitive area (
If you live near 2), the unstable magnetic domain operation will have a large effect on the magnetoresistive characteristics of the magnetically sensitive part (2), which will immediately lead to a deterioration of the head output and cause errors in the magnetic recording and reproducing system. This results in a deterioration of the rate.

そして、このランダム磁区の発生は、180°磁区の磁
壁方向に沿う段差によるシールド磁性体層(7)の屈曲
に関しては、ランダム磁区の発生に大きな影響が生じな
いがこれと直交する方向に関しては大きな影響を及ぼす
。つまり、例えば前方の電極導電層(3)を第7図で示
すように感磁部(2)の前方から一側方、図において右
方向にのみ延在させる場合、その左端(3a)による段
差、さらに後方電橋導電層(4)を感磁部(2)の延長
方向に後方に沿って延在させる場合は、その左右両側縁
(4a)及び(4b)による段差によって第10図に示
すように、これら段差特に磁化容易軸方向を横切る段差
が存在する場合、これによる磁区の乱れが感磁部(2)
に大きく影響する。また例えば前方電極導電層(3)及
びバイアス導体15)がシールド磁性体層(1下におい
てそのパターンに屈曲部を有する場合、その屈曲形状に
応じた段差が180°磁区に歪みを生ずるすなわちラン
ダム磁区の発生に大きな影響を及ぼす。
The generation of random magnetic domains does not have a large effect on the generation of random magnetic domains when the shield magnetic layer (7) is bent due to a step along the domain wall direction of the 180° magnetic domain, but it does have a large effect on the generation of random magnetic domains in the direction orthogonal to this. affect. In other words, for example, when the front electrode conductive layer (3) extends only to one side from the front of the magnetically sensitive part (2), as shown in FIG. Furthermore, when the rear electrically conductive layer (4) is extended rearward in the direction of extension of the magnetically sensitive part (2), the difference in level between the left and right edges (4a) and (4b) is shown in FIG. As shown in FIG.
greatly affects. Further, for example, if the front electrode conductive layer (3) and the bias conductor 15) have a bent part in the pattern under the shield magnetic layer (1), a step corresponding to the bent shape causes a 180° magnetic domain distortion, that is, a random magnetic domain. has a major impact on the occurrence of

そして、特にこのランダム磁区は、感磁部(2)の磁気
記録媒体との対接ないしは対向面(8)の近傍において
すなわち磁気記録媒体からの信号磁界の導入側すなわち
感磁部(2)の主たる動作部側において大きな影響を与
える。
In particular, this random magnetic domain is generated near the surface (8) of the magnetic sensing part (2) in contact with the magnetic recording medium, that is, on the side where the signal magnetic field from the magnetic recording medium is introduced, that is, in the magnetic sensing part (2). It has a big impact on the main operating parts.

本発明においては、このような究明に基づいて感磁部に
影響を及ぼすシールド磁性体層におけるランダム磁区の
発生、不安定な動作の発生を回避・する。
In the present invention, based on such research, the generation of random magnetic domains and unstable operation in the shield magnetic layer that affect the magnetically sensitive portion are avoided.

〔問題点を解決するための手段〕[Means for solving problems]

本発明においては、第1図に平面図を示し第2図に第1
図のA−A線上の断面図を示すように、基板+1>上に
少なくとも一方が磁気抵抗効果を有する対の強磁性薄膜
(11)及び(12)が非磁性中間層(13)を介して
積層されてなる感磁部(2)と、この感磁部(2)の両
端から信号磁界と同方向にセンス電流1を印加し、この
感磁部(2)におけるセンス電流1方向とほぼ直交する
方向に導出される電極導電層(3)及び(4)と、感磁
部(2)を絶縁層(14)を介して横切るように延在す
るバイアス磁界発生用導体(5)とを有し、この感磁部
(2)の配置部上を覆ってシールド磁性体層(7)が配
置されてなるMR型磁気ヘッドにおいて、その電極導電
層(3)及び(4)とバイアス磁界発生用導体(5)が
シールド磁性体層(7)の配置部下において、そのほぼ
全域特に磁気記録媒体との対接ないしは対向面(8)側
の感磁部(2)の前方側近傍の主たる動作部においては
、磁気記録媒体からの信号磁界の印加方向つまり磁化困
難軸したがってセンス電流の通電方向の各方向と直交す
る方向、云い換えれば磁化容易軸方向については磁性体
層(7)の配置部のほとんど全域にわたって端縁や屈曲
部がほとんど存在しないように延在させた構成とする。
In the present invention, FIG. 1 shows a plan view, and FIG.
As shown in the cross-sectional view taken along the line A-A in the figure, a pair of ferromagnetic thin films (11) and (12), at least one of which has a magnetoresistive effect, is formed on the substrate +1 via a non-magnetic intermediate layer (13). A sense current 1 is applied in the same direction as the signal magnetic field from both ends of the laminated magnetically sensitive part (2), and is almost orthogonal to the direction of the sense current 1 in this magnetically sensitive part (2). It has electrode conductive layers (3) and (4) led out in the direction of However, in an MR type magnetic head in which a shielding magnetic layer (7) is arranged to cover the area where the magnetically sensitive part (2) is arranged, the electrode conductive layers (3) and (4) and the shielding magnetic layer (7) are used for generating a bias magnetic field. Under the arrangement of the shielding magnetic layer (7), the conductor (5) operates almost throughout the entire area, especially in the vicinity of the front side of the magnetically sensitive part (2) facing the magnetic recording medium or on the opposing surface (8). In this case, the direction in which the signal magnetic field is applied from the magnetic recording medium, that is, the direction perpendicular to the direction of the hard magnetization axis and the current direction of the sense current, in other words, the direction of the easy magnetization axis, is determined by the arrangement of the magnetic layer (7). The structure is such that it extends over almost the entire area with almost no edges or bent parts.

−向、第1図及び第2図において、第7図及び第8図と
対応する部分には同一符号を付して重複説明を省略する
1 and 2, parts corresponding to those in FIGS. 7 and 8 are denoted by the same reference numerals, and redundant explanation will be omitted.

〔作用〕[Effect]

上述した本発明構成によれば、シールド磁性体層(7)
下において少くとも感磁部(2)の近傍、特に磁気記録
媒体との対接ないしは対向面(8)側すなわち磁気記録
媒体からの信号磁界が与えられる実効動作部近傍におい
ては、磁化困難軸方向(信号磁界及びセンス電流iの方
向)に沿う方向の端縁が存在しないようにしてこれによ
るシールド磁性体層(7)に段差が生じないようにした
ことによってランダム磁区の発生が効果的に回避され、
これによって感磁部(2)の特性の安定化が図られ、再
生装置としてのエラーレートの改善が図られる。
According to the above-described configuration of the present invention, the shield magnetic layer (7)
In the lower part, at least near the magnetically sensitive part (2), especially on the side facing the magnetic recording medium or on the opposing surface (8), that is, in the vicinity of the effective operating part to which the signal magnetic field from the magnetic recording medium is applied, the direction of the hard magnetization axis (The direction of the signal magnetic field and the sense current i) Since there is no edge in the direction along the direction of the signal magnetic field and sense current i, the generation of random magnetic domains is effectively avoided by preventing the formation of a step in the shield magnetic layer (7). is,
This stabilizes the characteristics of the magnetically sensitive section (2) and improves the error rate of the playback device.

〔実施例〕〔Example〕

第1図及び第2図を参照してさらに本発明の一例を詳細
に説明゛する。基板(1)は例えばNi−Zn系フェラ
イト+Mn−Zn系フェライト等の磁性基板より措成し
得、必要に応じてこれの上に絶縁層(図示せず)を介し
て例えばそれぞれMR効果を有するパーマロイ(N i
−F e系合金)、あるいはNi−Fe−Co系合金、
Ni−Co系合金等の金属薄膜よりなる強磁性薄膜(1
1)及び(12)を非磁性絶縁中間層(13)例えばA
120gを介してそれぞれ全面蒸着して後、これをパタ
ーン化して例えば帯状に延在する感磁部(2)を構成す
る。
An example of the present invention will be further explained in detail with reference to FIGS. 1 and 2. The substrate (1) may be made of a magnetic substrate such as Ni-Zn ferrite + Mn-Zn ferrite, and if necessary, an insulating layer (not shown) may be provided thereon to provide, for example, an MR effect. Permalloy (N i
-Fe alloy) or Ni-Fe-Co alloy,
A ferromagnetic thin film (1
1) and (12) as a non-magnetic insulating intermediate layer (13) such as A
After evaporating 120 g over the entire surface, this is patterned to form, for example, a magnetically sensitive portion (2) extending in a strip shape.

非磁性中間層(13)は、強磁性薄膜(11)及び(1
2)間に、交換相互作用に比し静磁的相互作用が支配的
に作用するような数百Å以下の厚さに選定される。強磁
性薄膜(11)及び(12)は、それぞれ数百人に選定
されて感磁部(2)の全体の厚さが例えば800人程以
下形成される。
The non-magnetic intermediate layer (13) consists of ferromagnetic thin films (11) and (1).
2) A thickness of several hundred angstroms or less is selected so that magnetostatic interaction acts more dominantly than exchange interaction. The ferromagnetic thin films (11) and (12) are each selected to have a thickness of several hundred, so that the total thickness of the magnetically sensitive portion (2) is, for example, about 800 or less.

向、両強磁性薄膜(11)及び(12)の一方は、MR
効果を有しないかあるいはほとんど有しない強磁性i膜
例えばセンダスト、co糸アモルファス合金、Moパー
マロイ等の高透磁率強磁性軟磁性薄膜によって構成し得
る。しかしながら、この場合、両薄膜(11)及び(1
2)はその飽和磁束密度、厚さ等の選“定によって両薄
[%(11)及び(12)の磁束量が一致するようにし
てその磁束が両薄膜(11)及び(12)に関して全体
的に閉じ得るようになされて磁区の発生が生じないよう
になされる。
one of the two ferromagnetic thin films (11) and (12) is MR
A ferromagnetic i-film having no or almost no effect may be constructed of a high permeability ferromagnetic soft magnetic thin film such as Sendust, Co thread amorphous alloy, Mo permalloy, etc. However, in this case, both thin films (11) and (1
2) By selecting the saturation magnetic flux density, thickness, etc., the amount of magnetic flux in both thin films (11) and (12) is made to match, and the magnetic flux is The structure is designed such that it can be closed automatically to prevent the generation of magnetic domains.

感磁部(2)上には、Sigh4+ 5i(h等の絶縁
層(14)が被着形成され、感磁部(2)の前方及び後
方の両端上に電極コンタクト窓(14a)及び(14b
 )が穿設され、これらコンタクト窓(14a)及び(
14b )を通じてそれぞれ前方及び後方各電極導電層
(3)及び(4)が被着され、さらに絶縁Fit(14
)を介して感磁部(2)上を横切ってバイアス磁界発生
用導体(5)が被着される。これら電極導電層(3)及
び(4)とバイアス導体(5)はMO、W、 T i等
の金属層を全面的に被着し、フォトリソグラフィによっ
てパターン化することによって同時に形成し得る。そし
て、これら電橋導電層(3)及び(4)とバイアス磁界
発生用導体(5)はそれぞれ感磁部(2)の延長方向と
直交する方向(すなわちこれに対するセンス電流iの通
電方向、困難軸方向及び磁気記録媒体からの信号磁界の
印加方向と直交する方向)に感磁部(2)の両側方に渡
って延在させる。バイアス磁界発生用導体(5)の両端
は、バイアス磁界発生用電流を通電するための端子t1
及びL2の導出が通常のようになされるが、電極導電層
(3)及び(4)についてはその各両端、若しくは各一
端、例えば図示のように左右各互いに他の一端からセン
ス電流通電用の各端子LSF及びtSBが導出される。
An insulating layer (14) such as Sigh4+ 5i (h) is formed on the magnetically sensitive part (2), and electrode contact windows (14a) and (14b) are formed on both the front and rear ends of the magnetically sensitive part (2).
) are drilled, and these contact windows (14a) and (
The front and rear electrode conductive layers (3) and (4) are deposited through the insulating Fit (14b), respectively.
) A conductor (5) for generating a bias magnetic field is deposited across the magnetic sensing part (2). These electrode conductive layers (3) and (4) and the bias conductor (5) can be formed simultaneously by depositing a metal layer such as MO, W, Ti, etc. over the entire surface and patterning it by photolithography. The bridge conductive layers (3) and (4) and the bias magnetic field generating conductor (5) are arranged in a direction perpendicular to the direction of extension of the magnetically sensitive part (2) (i.e., the direction in which the sense current i is applied with respect to this direction is difficult). The magnetically sensitive portion (2) is made to extend on both sides of the magnetically sensitive portion (2) in the axial direction and in the direction orthogonal to the direction in which the signal magnetic field is applied from the magnetic recording medium. Both ends of the bias magnetic field generating conductor (5) are connected to a terminal t1 for passing a bias magnetic field generating current.
and L2 are derived in the usual manner, but the electrode conductive layers (3) and (4) are connected from both ends or one end of each, for example, as shown in the figure, the sense current is supplied from the other end of each of the left and right ends. Each terminal LSF and tSB are derived.

そして、感磁部(2)の配置部上゛に絶縁層(6)を介
して高透磁率を有する例えばパーマロイよりなるシール
ド磁性体層(7)がスパッタリングあるいはめっき等に
よって数μ麟の厚さに被着形成される。
A shielding magnetic material layer (7) made of permalloy, for example, having high magnetic permeability is placed on the arrangement part of the magnetically sensitive part (2) via an insulating layer (6) by sputtering or plating to a thickness of several micrometers. is formed by adhering to it.

この構成において、特にシールド磁性体層(7)下にお
いて各電極導電層(3)及び(4)とバイアス磁界発生
用導体(5)は互いに平行にすなわち感磁部(2)の長
手方向すなわちセンス電流iの通電方向、困難軸方向、
信号磁界の印加方向に直交する方向に直線的に延在させ
てこの延在方向の全域に渡って屈曲ないしは端縁が存在
することがないようにする。
In this configuration, especially under the shield magnetic layer (7), each electrode conductive layer (3) and (4) and the bias magnetic field generating conductor (5) are arranged parallel to each other, that is, in the longitudinal direction of the magnetically sensitive part (2), that is, the sense Current direction of current i, difficult axis direction,
It is made to extend linearly in a direction perpendicular to the direction in which the signal magnetic field is applied, so that no bends or edges exist over the entire area in this extending direction.

すなわち、電極導電層(3)及び(4)の端子導出端側
とは反対側の端縁はシールド磁性体層(7)外に存在す
るようにする。そして、基板(1)からシールド磁性体
層(7)に渡ってその前方端を研磨して感磁部(2)の
前方端面が臨む磁気記録媒体との対接ないしは対向面(
8)が形成される。
That is, the edges of the electrode conductive layers (3) and (4) on the side opposite to the terminal lead-out end side are made to exist outside the shield magnetic layer (7). Then, the front end of the shield magnetic material layer (7) from the substrate (1) is polished so that the front end face of the magnetically sensitive part (2) faces the magnetic recording medium (
8) is formed.

尚、第1図に示した例においては、シールド磁性体層(
?)がその磁気記録媒体との対接ないしは対四面(8)
に臨む側の前方端における幅と後方端における幅とが同
一幅の方形状とされている場合であるが、ある場合は第
3図に示すように磁気記録媒体との対接ないしは対向面
(8)に臨む部分においては、そのトラック幅よりも大
ではあるものの幅狭とし、後方に向かって幅広となるす
なわち後方に末広がりの形状とすることもできる。
In the example shown in FIG. 1, the shield magnetic layer (
? ) faces or faces the magnetic recording medium (8)
In some cases, the width at the front end facing the magnetic recording medium and the width at the rear end facing the magnetic recording medium are the same width, but in some cases, as shown in FIG. The width of the portion facing 8) may be narrower, although larger than the track width, and the width may be widened toward the rear, that is, the portion may have a shape that widens toward the rear.

また、第1図に示したパターンにおいては、前方及び後
方の各電極導電層(3)及び(4)の一端から端子導出
を行うようにした場合であるが、ある場合は、これら電
極導電1tit (31及び(4)のそれぞれの両端を
シールド磁性体t* +7>外あるいはその一部がシー
ルド磁性体N(7)下に存在するように、互いに端部を
連結するループ状となしてそのループ部から端子tsF
及びtseの導出を行うようにすることもできる。
In addition, in the pattern shown in FIG. 1, the terminals are led out from one end of each of the front and rear electrode conductive layers (3) and (4), but in some cases, these electrode conductive layers (1tit) (Both ends of each of 31 and (4) are connected to each other in a loop shape so that the shield magnetic material t* +7> outside or a part of it exists under the shield magnetic material N(7). From the loop section to the terminal tsF
It is also possible to derive tse and tse.

また、上述の例においては単一の感磁部(2)を設けた
場合であるが、例えば第4図に示すように対の感磁部(
2)を設けてこれら対の感磁部(2)の後端側よりそれ
ぞれ後方電極導電層(4)の導出を行うようにすること
もできる。この場合、対の後方電極導電層間において不
連続部すなわち端縁が生じこれによってシールド磁性体
層(7)に段差すなわち屈曲が発生する恐れがあるもの
の、これは感磁部(2)の後方側に存在することによっ
てこれによって磁区の乱れが多少性じても感磁部(2)
の実効的動作部への影響が小さいことからこれを許容す
ることができる。
In addition, in the above example, a single magnetically sensitive part (2) is provided, but for example, as shown in FIG. 4, a pair of magnetically sensitive parts (
2), and the rear electrode conductive layer (4) can be led out from the rear end side of each pair of magnetically sensitive parts (2). In this case, a discontinuity, that is, an edge may occur between the pair of rear electrode conductive layers, which may cause a step or bend in the shield magnetic layer (7). Even if some disturbance of the magnetic domain occurs due to the existence of the magnetically sensitive part (2)
This can be tolerated because the effect on the effective operating part is small.

さらにまた本発明においては、同一の磁気ヘッドにおい
てMR型磁気ヘッドとインダクティブ型の記録用磁気ヘ
ッドとが積層された構成をとる場合に通用することもで
きる。この場合の一例の上面図を第5図に示し、そのA
−A線上の断面図を第6図に示す。第5図及び第6図に
おいて第1図及び第2図と対応する部分においては同一
符号を付して重複説明を省略するが、この場合において
は、上部シールド磁性体層(7)がインダクティブ型記
録用磁気ヘッド素子の一方のコアを兼ねさせることがで
き、そのシールド磁性体層(7)の後方平坦部上にイン
ダクティブ磁気ヘッドのヘッド線輪(32)を形成する
例えば渦巻状の導電パターンを形成する。そしてこれの
上にインダクティブ磁気ヘッドのトラック幅を規定する
所要の幅を有する他方のコア(33)を絶縁層(34)
を介して被着形成する。このコア(33)は、その前方
端は、磁気媒体との対接ないしは対向面(8)に磁気ギ
ャップgのスペーサを形成する非磁性絶縁)iff (
31)を介して臨ましめ、後方端は、線輪(32)の中
心部において、絶縁Jim(34)に穿設した窓(34
a)を通じてシールド磁性体層(7)に連接させ、コア
(33)及びシールド磁性体層(7)によって閉磁路が
構成され、線輪(32)を具備するインダクティブ型の
記録ヘッドが構成される。そして線輪(32)の外端か
ら一方の端子tR1が導出され、内端には、絶縁層(3
4)に穿設した′、8(34b)を通じて端子導出用導
電層(35)が破着され、これより他方の端子tR2が
導出される。
Furthermore, the present invention can also be applied to a structure in which an MR type magnetic head and an inductive type recording magnetic head are stacked in the same magnetic head. A top view of an example of this case is shown in FIG.
A cross-sectional view taken along line -A is shown in FIG. In FIGS. 5 and 6, parts corresponding to those in FIGS. 1 and 2 are given the same reference numerals and redundant explanations are omitted. In this case, the upper shield magnetic layer (7) is of an inductive type. For example, a spiral conductive pattern forming a head ring (32) of the inductive magnetic head is formed on the rear flat part of the shielding magnetic layer (7), which can also serve as one core of the recording magnetic head element. Form. Then, on top of this, the other core (33) having the required width that defines the track width of the inductive magnetic head is covered with an insulating layer (34).
Adhesion is formed through. The front end of this core (33) is a non-magnetic insulator that forms a spacer with a magnetic gap g on the surface (8) facing or facing the magnetic medium) if (
31), and the rear end is a window (34) bored in the insulating Jim (34) at the center of the wire ring (32).
connected to the shield magnetic layer (7) through a), a closed magnetic path is formed by the core (33) and the shield magnetic layer (7), and an inductive type recording head including a coil (32) is formed. . One terminal tR1 is led out from the outer end of the coil (32), and an insulating layer (3
The conductive layer (35) for leading out the terminal is torn through the holes 4) and 8 (34b), and the other terminal tR2 is led out from this.

尚、この場合そのシールド磁性体層(7)はその磁気記
録媒体との対接ないしは対向面(8)に臨むトラック幅
方向の幅がトラック幅より大に選定されるも、後方より
は幅狭すなわち後方に向う末広がり形状とすることが望
ましくこのように前方に関して幅狭とすることによって
このシールド磁性体層(7)の存在による磁気記録媒体
との対接ないしは対向面(8)に臨む部分における幅が
小とされたことによって、この部分における剥れる事故
の確率を小とすることができ、また後方においては平坦
な面とされ、ここにヘッド線輪(32)の被着を行うこ
とができるので、この線輪の段切れ等の事故の発生を効
果的に回避することができる。
In this case, the width of the shield magnetic layer (7) in the track width direction facing the magnetic recording medium or facing surface (8) is selected to be larger than the track width, but narrower than the rear side. In other words, it is desirable to have a shape that widens toward the rear, and by making the width narrower in the front direction, the shielding magnetic layer (7) makes it possible to reduce the width of the portion facing the magnetic recording medium or facing the opposing surface (8). By making the width small, it is possible to reduce the probability of an accident of peeling in this part, and the rear part is a flat surface, where the head wire ring (32) can be attached. Therefore, the occurrence of accidents such as breakage of the wire ring can be effectively avoided.

因みに、シールド磁性体層(7)を後方に末広がり形状
とした場合においても、これが第11図に示すように例
えば後方電極導電層(4)の端縁(4a)及び磁区に乱
れが生じ、これが磁気ヘッドの特性劣化を招来するもの
であるが、本発明によるときはこの端縁(4a)及び(
4b)等による段差がシールド磁性体層(7)に発生し
ないようにしたことによって180”磁区が比較的整然
と生じ、これによってシ−ルド磁性体層におけるランダ
ム磁区の発生が抑制される。
Incidentally, even when the shield magnetic layer (7) is shaped to spread out toward the rear, this causes disturbances, for example, in the edge (4a) and the magnetic domain of the rear electrode conductive layer (4), as shown in FIG. This causes deterioration of the characteristics of the magnetic head, but according to the present invention, these edges (4a) and (
4b) etc. are prevented from occurring in the shield magnetic layer (7), 180'' magnetic domains are generated in a relatively orderly manner, thereby suppressing the generation of random magnetic domains in the shield magnetic layer.

(発明の効果) 上述したように本発明によれば、シールド型のMR磁気
ヘッド構成をとるにも拘らず、その上層のシールド磁性
体層(7)が少くとも感磁部(2)のセンス電流1lI
et化困難軸方向、信号磁界の印加方向に沿う方向に延
在する段差が感磁部(2)の実効動作部近傍において発
生ずることを回避するようにしたので180°磁区が乱
れたり、このランダム磁区の発生による感磁部12)へ
の磁化の乱れの発生、すなわち不安定な動作が回避され
、これによって安定したMR磁気ヘッドを構成できる。
(Effects of the Invention) As described above, according to the present invention, although the shield type MR magnetic head structure is adopted, the upper shield magnetic layer (7) at least protects the magnetic sensing part (2) from sensing. current 1lI
The step extending in the direction of the et-conversion difficult axis and the direction in which the signal magnetic field is applied is avoided from occurring in the vicinity of the effective operating part of the magnetically sensitive part (2), so the 180° magnetic domain is disturbed and this Disturbance of magnetization in the magnetically sensitive portion 12) due to the generation of random magnetic domains, that is, unstable operation, is avoided, thereby making it possible to construct a stable MR magnetic head.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による磁気ヘッドの一例の路線的拡大平
面図、第2図はその第1図A−A線上のW[面図、第3
図及び第4図はそれぞれ本発明の磁気ヘットの他の例の
拡大平面図、第5図は本発明による他の例の路線的拡大
平面図、第6図はそのA−A線上の路線的拡大断面図、
第7図及び第8図は従来の磁気ヘッドの路線的拡大平面
図及び第7図のA−A線上の路線的拡大断面図、第9図
〜第11図はシールド磁性体層の磁区の説明図である。 (1)は基板、(2)は感磁部、 (3)及び(4)は
電極導電層、(5)はバイアス磁界発生用導体、(7)
はシールド磁性体層である。
FIG. 1 is an enlarged plan view of an example of the magnetic head according to the present invention, and FIG.
4 and 4 are respectively enlarged plan views of other examples of the magnetic head of the present invention, FIG. 5 is an enlarged plan view of another example of the magnetic head according to the present invention, and FIG. Enlarged cross-sectional view,
7 and 8 are an enlarged plan view of a conventional magnetic head and an enlarged sectional view taken along line A-A in FIG. 7, and FIGS. 9 to 11 are explanations of magnetic domains in the shield magnetic layer. It is a diagram. (1) is the substrate, (2) is the magnetic sensing part, (3) and (4) are the electrode conductive layers, (5) is the bias magnetic field generating conductor, (7)
is a shielding magnetic layer.

Claims (1)

【特許請求の範囲】[Claims] 基板上に少くとも一方が磁気抵抗効果を有する対の強磁
性薄膜が非磁性中間層を介して積層されてなる感磁部と
、該感磁部の両端から信号磁界と同方向にセンス電流を
印加し該感磁部におけるセンス電流方向とほぼ直交する
方向に導出される電極導電層と、上記感磁部を絶縁層を
介して横切るように延在するバイアス磁界発生用導体と
を有し、上記感磁部の一部上を覆ってシールド磁性体層
が配置された磁気抵抗効果型磁気ヘッドにおいて、上記
電極導電層と上記バイアス磁界発生用導体が上記シール
ド磁性体層の配置部においては上記感磁部への信号磁界
の印加方向とほぼ直交する方向に延在し、上記電極導電
層と、上記バイアス磁界発生用導体が上記シールド磁性
体層の配置部外に延在するように配置されたことを特徴
とする磁気抵抗効果型磁気ヘッド。
A magnetically sensitive part is formed by laminating a pair of ferromagnetic thin films, at least one of which has a magnetoresistive effect, on a substrate with a nonmagnetic intermediate layer interposed therebetween, and a sense current is applied from both ends of the magnetically sensitive part in the same direction as the signal magnetic field. an electrode conductive layer that is applied in a direction substantially perpendicular to the sense current direction in the magnetically sensitive section, and a conductor for generating a bias magnetic field that extends across the magnetically sensitive section via an insulating layer; In the magnetoresistive magnetic head in which a shielding magnetic layer is disposed covering a part of the magnetically sensitive part, the electrode conductive layer and the bias magnetic field generating conductor are arranged in the area where the shielding magnetic layer is disposed. The electrode conductive layer and the bias magnetic field generating conductor are arranged so as to extend in a direction substantially perpendicular to the direction in which the signal magnetic field is applied to the magnetically sensitive part, and extend outside the area where the shield magnetic layer is arranged. A magnetoresistive magnetic head characterized by:
JP27403987A 1987-10-29 1987-10-29 Magneto-resistance effect type magnetic head Pending JPH01116912A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27403987A JPH01116912A (en) 1987-10-29 1987-10-29 Magneto-resistance effect type magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27403987A JPH01116912A (en) 1987-10-29 1987-10-29 Magneto-resistance effect type magnetic head

Publications (1)

Publication Number Publication Date
JPH01116912A true JPH01116912A (en) 1989-05-09

Family

ID=17536113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27403987A Pending JPH01116912A (en) 1987-10-29 1987-10-29 Magneto-resistance effect type magnetic head

Country Status (1)

Country Link
JP (1) JPH01116912A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03273514A (en) * 1990-03-23 1991-12-04 Nec Corp Magnetoresistance effect head
US6946401B2 (en) 1998-11-17 2005-09-20 Applied Materials, Inc. Plasma treatment for copper oxide reduction

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03273514A (en) * 1990-03-23 1991-12-04 Nec Corp Magnetoresistance effect head
US6946401B2 (en) 1998-11-17 2005-09-20 Applied Materials, Inc. Plasma treatment for copper oxide reduction
US8183150B2 (en) 1998-11-17 2012-05-22 Applied Materials, Inc. Semiconductor device having silicon carbide and conductive pathway interface

Similar Documents

Publication Publication Date Title
US4639806A (en) Thin film magnetic head having a magnetized ferromagnetic film on the MR element
US5446613A (en) Magnetic head assembly with MR sensor
US4896235A (en) Magnetic transducer head utilizing magnetoresistance effect
US5402292A (en) Magnetoresistance effect type thin film magnetic head using high coercion films
JPH07272225A (en) Magnetic resistive head
US5808843A (en) Magnetoresistance effect reproduction head
US6120920A (en) Magneto-resistive effect magnetic head
JPH07176019A (en) Flat magnetoresistance head
JPH07192227A (en) Magneto-resistance effect type magnetic head
JPH064832A (en) Combine thin film magnetic head
JP2731506B2 (en) Magnetoresistive magnetic head and method of manufacturing the same
JPH087229A (en) Magnetoresistance effect type magnetic head
JP2668925B2 (en) Magnetoresistive magnetic head
JPH01116912A (en) Magneto-resistance effect type magnetic head
JPH07296339A (en) Dual-element reluctance sensor
JP2596010B2 (en) Magnetoresistive magnetic head
JP2508475B2 (en) Magnetoresistive magnetic head
JPH0473210B2 (en)
JPH0441415B2 (en)
JPH11112055A (en) Magnetic sensor
JPH04159606A (en) Compound-type thin film magnetic head
JPH05266437A (en) Magnetoresistance effect type head
JPS6154012A (en) Magneto-resistance effect head
JPH011114A (en) thin film magnetic head
JP3040892B2 (en) Magnetoresistive thin film magnetic head