JPS63181109A - Magneto-resistance effect type magnetic head - Google Patents

Magneto-resistance effect type magnetic head

Info

Publication number
JPS63181109A
JPS63181109A JP1193387A JP1193387A JPS63181109A JP S63181109 A JPS63181109 A JP S63181109A JP 1193387 A JP1193387 A JP 1193387A JP 1193387 A JP1193387 A JP 1193387A JP S63181109 A JPS63181109 A JP S63181109A
Authority
JP
Japan
Prior art keywords
magnetic
electrode layer
magnetic field
magnetically sensitive
sensing part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1193387A
Other languages
Japanese (ja)
Inventor
Hideo Suyama
英夫 陶山
▲たき▼野 浩
Hiroshi Takino
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP1193387A priority Critical patent/JPS63181109A/en
Publication of JPS63181109A publication Critical patent/JPS63181109A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Magnetic Heads (AREA)

Abstract

PURPOSE:To reduce the Barkhausen noise by forming a rear electrode layer extremely widely from the front ridge of a coated part of a magnetic sensing part to the rear end toward the rear part. CONSTITUTION:In adopting the MR magnetic head (magneto-resistance effect type magnetic head) of shield type, the rear electrode layer 7 is widened rapidly toward the rear part especially and the improvement of Barkhausen noise is attained effectively by reducing the current density. Moreover, the magnetic sensing part 2 is prolonged in a direction being nearly orthogonal to the opposed contact face 3 of the magnetic recording medium, electrode layers 6, 7 are arranged at both ends and a signal magnetic field is given in a direction coincident with the direction of the sense current conducting direction, and in a direction orthogonal to the contact face 3 and the magnetic sensing part is adopted for the multi-layered structure of the magnetic sensing part 2, then the production of Barkhausen noise is avoided.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は磁気抵抗効果型磁気ヘッド特にシールド型磁気
抵抗効果型磁気ヘッドに関わる。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a magnetoresistive magnetic head, particularly a shield type magnetoresistive magnetic head.

〔発明の概要〕[Summary of the invention]

本発明は基板上に、少くとも一方が磁気抵抗効果を有す
る対の軟磁性Fit!!が非磁性中間層を介して積層さ
れてなる感磁部を、その前方端面が磁気記録媒体との対
接面に臨むようにしてこれより後方に磁気記録媒体との
対接面とほぼ直交する方向に延在して配置し、感磁部の
前方端部及び後方端部にそれぞれ前方電極層及び後方電
極層を被着し、感磁部の延長方向と交わる方向に延長し
てバイアス磁界発生用導体を配置しこの前方及び後方電
極層を有する感磁部とバイアス磁界発生用導体の配置部
上を覆うように磁性体が配置されたシールド型構成をと
り、特にその後方電極層をその感磁部の後方端部に対す
る連結部の前方縁から後方に向って急激に幅広となして
よりバルクハウゼンノイズの発生を効果的に回避する。
The present invention provides a pair of soft magnetic Fit! on a substrate, at least one of which has a magnetoresistive effect. ! are laminated with a non-magnetic intermediate layer interposed therebetween, with the front end face thereof facing the surface facing the magnetic recording medium, and extending backward from this in a direction substantially perpendicular to the surface facing the magnetic recording medium. A conductor for generating a bias magnetic field is arranged so as to extend, and a front electrode layer and a rear electrode layer are respectively deposited on the front end and the rear end of the magnetically sensitive part, and extend in a direction intersecting the extension direction of the magnetically sensitive part. A shield type structure is adopted in which a magnetic material is placed so as to cover the magnetic sensing part having the front and rear electrode layers and the area where the bias magnetic field generating conductor is arranged, and in particular, the rear electrode layer is placed on the magnetic sensing part. The width of the connecting portion is suddenly widened toward the rear from the front edge of the connecting portion to the rear end of the connecting portion, thereby effectively avoiding the occurrence of Barkhausen noise.

〔従来の技術〕[Conventional technology]

従来一般の磁気抵抗効果型磁気ヘッド(以下MR型磁気
ヘッドという)は、その感磁部が単層の磁気抵抗効果を
有する磁性薄膜(以下MR磁性薄膜という)によって構
成され、このMR型磁気ヘッドにおいてシールド型構成
をとる場合、その感磁部が基板上に磁気記録媒体との対
接面に一側端面が臨むように配置形成するとともに、こ
の感磁部に対して所定のバイアス磁界を印加するための
バイアス磁界発生用導体が設けられ、この感磁部とバイ
アス磁界発生用導体の配置部上を覆ってシールド用磁性
体が配置された構成とする。
Conventionally, a general magnetoresistive magnetic head (hereinafter referred to as an MR type magnetic head) has a magnetic sensing portion composed of a single-layer magnetic thin film having a magnetoresistive effect (hereinafter referred to as an MR magnetic thin film). When a shield type configuration is adopted, the magnetically sensitive part is arranged and formed on the substrate so that one end face faces the surface in contact with the magnetic recording medium, and a predetermined bias magnetic field is applied to this magnetically sensitive part. A conductor for generating a bias magnetic field is provided to generate a bias magnetic field, and a magnetic material for shielding is disposed so as to cover the magnetic sensing part and the area where the conductor for generating a bias magnetic field is arranged.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した単層のMR磁性薄膜よりなる感磁部を有する?
IR型磁気ヘッドにおいては、バルクハウゼンノイズ、
すなわち磁壁の移動に基づくノイズの発生が問題となる
Does it have a magnetically sensitive part made of the above-mentioned single-layer MR magnetic thin film?
In IR type magnetic heads, Barkhausen noise,
In other words, noise generation due to movement of domain walls becomes a problem.

、このようなバルクハウゼンノイズの回避を図るように
したMR型磁気ヘッドとして本出願人は先に特願昭60
−179135号出願において、その感磁部を非磁性中
間層を介して対の磁性薄膜を積層した多層構造とするこ
とによってバルクハウゼンノイズの低減化を図るとか、
さらに特願昭60−247752号出願において感磁部
に通ずるセンス電流を信号磁界と同方向とすることによ
って、よりバルクハウゼンノイズの低減化を図るように
したMR型磁気ヘッドの提案をなした。
As an MR type magnetic head designed to avoid such Barkhausen noise, the present applicant previously filed a patent application in 1983.
- In the application No. 179135, Barkhausen noise is reduced by making the magnetic sensing part have a multilayer structure in which a pair of magnetic thin films are laminated with a non-magnetic intermediate layer interposed therebetween.
Furthermore, in Japanese Patent Application No. 60-247752, an MR type magnetic head was proposed in which the Barkhausen noise was further reduced by making the sense current flowing through the magnetic sensing part in the same direction as the signal magnetic field.

このように感磁部として対の磁性薄膜を、非磁性中間層
を介して積層された構造とするとか、この感磁部に与え
られる磁気記録媒体からの信号磁界に基づく抵抗変化を
例えば電圧変化として積出するために通ずるセンス電流
を信号磁界と同方向に選定する場合、後述するところか
ら明らかなようにバルクハウゼンノイズの低減化を図る
ことができるものであるが、例えばシールド型構成をと
る場合、感磁部に対するセンス電流供給の電極層被着部
におけるこの電極層に通ずるセンス電流に因る発生磁界
による感磁部端部の磁化に基づくバルクハウゼンノイズ
、さらにこれの上に近接して設けられるシールド磁性体
に対する磁化による感磁部への影響に基づくバルクハウ
ゼンノイズの問題点が生じる。
In this way, a pair of magnetic thin films as a magnetically sensitive part may be laminated with a non-magnetic intermediate layer interposed therebetween, or a change in resistance based on a signal magnetic field from a magnetic recording medium applied to this magnetically sensitive part may be expressed as a voltage change, for example. When selecting the sense current that flows in the same direction as the signal magnetic field, it is possible to reduce Barkhausen noise as will be explained later. In this case, there is Barkhausen noise due to the magnetization of the end of the magnetically sensitive part due to the magnetic field generated by the sense current flowing through this electrode layer in the electrode layer attachment part of the sense current supply to the magnetically sensitive part, and furthermore, Barkhausen noise is caused by the magnetization of the end of the magnetically sensitive part due to the magnetic field generated by the sense current flowing through this electrode layer. The problem of Barkhausen noise arises due to the effect on the magnetically sensitive part due to the magnetization of the provided shielding magnetic material.

本発明はこのような問題点をも解決しようとするもので
ある。
The present invention attempts to solve these problems as well.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、第1図にその路線的拡大平面図を示し、第2
図に第1図のA−All上の断面図を示すように、基板
(11上にMR効果を有する感磁部(2)を、その前方
端面が磁気記録媒体との対接面(3)に臨みかつこの対
接面(3)とほぼ直交するように後方に延在して配置し
て設けるとともに、この感磁部(2)とほぼ直交して横
切るようにm縁間(4)を介してこの感磁部(2)に対
してバイアス磁界を印加するためのバイアス磁界発生用
導体(5)を形成する。
The present invention is shown in FIG.
As shown in the cross-sectional view on A-All in FIG. facing the contact surface (3) and extending rearward so as to be substantially orthogonal to this contact surface (3), and an m-edge gap (4) extending substantially orthogonally and across this magnetically sensitive portion (2). A conductor (5) for generating a bias magnetic field is formed to apply a bias magnetic field to the magnetically sensitive portion (2) through the magnetic field.

一方、感磁部(2)の前方端部及び後方端部にそれぞれ
電気的に連結してこの感磁部(2)にセンス電流iを印
加するに供する前方電極層(6)及び後方電極層(7)
を被着形成する。
On the other hand, a front electrode layer (6) and a rear electrode layer are electrically connected to the front end and the rear end of the magnetically sensitive part (2), respectively, and serve to apply a sense current i to the magnetically sensitive part (2). (7)
Form the adhesion.

これら前方電極層(6)及び後方電極層(7)を有する
感磁部(2)とバイアス磁界発生用導体(5)の配置部
上を覆って絶縁層(4)を介してシールド用の磁性体(
8)を被着する。
A magnetic field for shielding is formed by covering the area where the magnetic sensitive part (2) having the front electrode layer (6) and the rear electrode layer (7) and the bias magnetic field generating conductor (5) are arranged and passing it through the insulating layer (4). body(
8).

磁気記録媒体は、図示しないが対接面(3)の前方を第
1図において主面と直交する方向に相対的に移動するよ
うになされる。
Although not shown, the magnetic recording medium is configured to move relatively in front of the facing surface (3) in a direction perpendicular to the main surface in FIG. 1.

感磁部(2)は第3図に示すように対の第1及び第2の
軟磁性薄膜(9)及び顛が非磁性中間層Oυを介して積
層されてなる。第1及び第2の軟磁性薄膜(9)及びQ
lの少くとも一方はMR効果を有する軟磁性薄膜、例え
ばFe+Go+Niあるいはこれらのうちの2種以上の
合金NiFe、NiCo、NiFeCo等よりなる薄膜
層によって形成される。
As shown in FIG. 3, the magnetically sensitive part (2) is formed by laminating a pair of first and second soft magnetic thin films (9) and a frame with a nonmagnetic intermediate layer Oυ interposed therebetween. First and second soft magnetic thin films (9) and Q
At least one of them is formed by a soft magnetic thin film having an MR effect, for example, a thin film layer made of Fe+Go+Ni or an alloy of two or more of these such as NiFe, NiCo, NiFeCo, etc.

非磁性中間NGOは、SiO2,A 1 g02等の絶
縁物あるいはTi 、 Mo、 Ag等の非磁性金属層
によって形成し得る。そしてこの非磁性中間層αυは両
軟磁性m膜(9)及び01間に、交換相互作用に比し静
磁的相互作用が支配的に作用するような5人〜1000
0人例えば5人〜500人の厚さに選定し得る。また、
第1及び第2の軟磁性薄膜(9)及びαΦの一方をMR
効果を有しない軟磁性薄膜によって形成する場合、その
材料としては例えばセンダスト、Co系アモルファス合
金、Moパーマロイ等の高透磁率軟磁性薄膜によって構
成する。また、この感磁部(2)の両軟磁性vyI膜(
9)及びα俤は、その飽和磁束密度、厚さ等の選定によ
って両頂膜(9)及び01の磁束量が一致するようにし
て磁束が両頂膜(9)及びα(至)に関して全体的に閉
じるようにされる。そして、両歌磁性薄膜(9)及びQ
lをMR効果を有する磁性薄膜とするときは、両歌磁性
薄膜(9)及びOIは同一材料、寸法形状とすることが
望ましいが、一方MR効果がないかほとんどない材料に
よって構成するときはこの軟磁性薄膜は、MR効果のあ
る方の軟磁性薄膜に比し電気抵抗が充分大となるように
その構成材料の比抵抗、厚さ等の選定を行うことが望ま
しい。
The non-magnetic intermediate NGO may be formed of an insulator such as SiO2, A1g02, or a non-magnetic metal layer such as Ti, Mo, Ag. This non-magnetic intermediate layer αυ is formed between the two soft magnetic m films (9) and 01 in such a way that the magnetostatic interaction acts more dominantly than the exchange interaction.
The thickness can be selected from 0 to 500 people, for example. Also,
MR of one of the first and second soft magnetic thin films (9) and αΦ
In the case of forming an ineffective soft magnetic thin film, the material may be a high magnetic permeability soft magnetic thin film such as sendust, Co-based amorphous alloy, Mo permalloy, or the like. In addition, both soft magnetic vyI films (
9) and α (to) are determined by selecting the saturation magnetic flux density, thickness, etc. so that the amount of magnetic flux of both the apical films (9) and 01 is the same, so that the magnetic flux is adjusted as a whole for both the apical films (9) and α (to). It will be closed automatically. And both magnetic thin films (9) and Q
When l is a magnetic thin film having an MR effect, it is desirable that both magnetic thin films (9) and OI be made of the same material and have the same size and shape.On the other hand, when they are made of a material that has no or almost no MR effect, It is desirable to select the specific resistance, thickness, etc. of the constituent materials of the soft magnetic thin film so that its electrical resistance is sufficiently greater than that of the soft magnetic thin film that has the MR effect.

そして、特に本発明においては上述の構成において、そ
の後方電極層(71を感磁部(21の後方端部への被着
部の前方縁(7a)から後方に向って急激に幅広をなす
形状に選定する。
In particular, in the present invention, in the above-mentioned configuration, the rear electrode layer (71) has a shape that rapidly widens rearward from the front edge (7a) of the part attached to the rear end of the magnetically sensitive part (21). be selected.

前方電極層(6)は、バイアス磁界発生用導体(5)の
長手方向に沿う方向に延在させる。
The front electrode layer (6) extends in the longitudinal direction of the bias magnetic field generating conductor (5).

このような構成において、前方電極層(6)及び後方電
極層(7)間すなわち感磁部(2)に、対接面(3)と
直交する方向、すなわち感磁部(2)の延在方向にセン
ス電流iを通電させる。
In such a configuration, between the front electrode layer (6) and the rear electrode layer (7), that is, in the magnetically sensitive part (2), there is a direction perpendicular to the opposing surface (3), that is, the extension of the magnetically sensitive part (2). A sense current i is applied in the direction.

また、バイアス磁界発生用導体(5)に通電して感磁部
(2)にこれに対して信号磁界が与えられない状態でセ
ンス電流iの方向に対して所要の角度例えばほぼ45°
に磁化が向くようなバイアス磁界を与える。
In addition, when the bias magnetic field generating conductor (5) is energized and no signal magnetic field is applied to the magnetically sensitive part (2), a required angle, for example approximately 45°, is set relative to the direction of the sense current i.
Apply a bias magnetic field that directs the magnetization.

感磁部(2)の各軟磁性薄膜(9)及び(至)は、その
センス電流iの通電方向と直交する方向すなわち幅方向
に磁化容易軸を存在させる。
Each of the soft magnetic thin films (9) and (to) of the magnetically sensitive part (2) has an axis of easy magnetization in a direction orthogonal to the direction of conduction of the sense current i, that is, in the width direction.

図においてt、及びt2は前方及び後方両電極層(6)
及び(7)から導出した端子を示し、T1及びT。
In the figure, t and t2 are both the front and rear electrode layers (6)
and shows the terminals derived from (7), T1 and T.

はバイアス磁界発生用導体(5)の両端から導出した端
子を示す。
indicates terminals led out from both ends of the bias magnetic field generating conductor (5).

〔作 用〕[For production]

上述の本発明構成によれば、バルクハウゼンノイズが効
果的に除去される゛。これについて説明する。
According to the configuration of the present invention described above, Barkhausen noise is effectively removed. This will be explained.

まず、バルクハウゼンノイズの発生原因の1つを説明す
ると、従来一般の?lR型磁気ヘッドのように、その感
磁部が前述したように単層のMR磁性薄膜によって構成
されている場合、このMR磁性薄膜は、磁気異方性エネ
ルギー、形状異方性等に起因する静磁エネルギー等の和
が層全体として最小となるような状態を保持すべく第1
0図に示すような磁区構造をとる。すなわち、この単N
Mi性薄膜が長方形の磁性薄膜(51)であり、短辺方
向に磁気異方性を有する場合、その面内において短辺方
向に沿って磁化方向が交互に逆向きの磁区(52)が生
じるとともに、これら隣り合う磁区(52)に関して閉
ループを形成するようにその両端間に磁性薄膜(51)
の長辺方向に沿ってll[次逆向きの磁区(53)が生
じている。したがって、このような磁性薄膜に外部磁界
が与えられると磁壁(54) 、 (55)が移動し、
これによりバルクハウゼンノイズが発生する。
First, to explain one of the causes of Barkhausen noise, it is common in the past. When the magnetic sensing part of the 1R type magnetic head is composed of a single-layer MR magnetic thin film as described above, this MR magnetic thin film has a magnetic anisotropy due to magnetic anisotropy energy, shape anisotropy, etc. The first
It has a magnetic domain structure as shown in Figure 0. In other words, this single N
When the Mi thin film is a rectangular magnetic thin film (51) and has magnetic anisotropy in the short side direction, magnetic domains (52) whose magnetization directions are alternately opposite are generated along the short side direction within the plane. At the same time, a magnetic thin film (51) is placed between both ends of these adjacent magnetic domains (52) to form a closed loop.
A magnetic domain (53) in the opposite direction is generated along the long side direction of ll. Therefore, when an external magnetic field is applied to such a magnetic thin film, the domain walls (54) and (55) move,
This causes Barkhausen noise.

これに比し、本発明構成においては、その感磁部(2)
が非磁性中間NOυを介して軟磁性@ @ (9)及び
α〔が積層された構造とされていることによって外部磁
界が与えられていない状態では第3図に示すように軟磁
性薄膜(9)及びaIは矢印M1及びM2で示すように
それぞれ磁化容易軸方向に互いに反平行な磁化状態にあ
り、磁壁が生じていない、このように磁壁が存在しない
ことについては、磁性流体を用いたビッタ−(Bitt
er)法による磁区観察によってVf1認したところで
ある。
In contrast, in the configuration of the present invention, the magnetically sensitive portion (2)
is layered with soft magnetic @@(9) and α[ through the non-magnetic intermediate NOυ, so that when no external magnetic field is applied, the soft magnetic thin film (9 ) and aI are in a magnetization state antiparallel to each other in the direction of the easy axis of magnetization, as shown by arrows M1 and M2, and no domain wall is formed.This absence of a domain wall can be explained by -(Bitt
Vf1 was confirmed by magnetic domain observation using the er) method.

そして、このような感磁部(2)に対し、その磁化困難
軸方向に外部磁界Hを強めていくと第5図A〜Cにその
磁化状態を軟磁性薄膜αlに対しては実線矢印で、軟磁
性薄膜(9)に対しては破線矢印で模式的に示すように
第5図Aで示す第3図に示した反平行の磁化状態から外
部磁界Hにより第5図Bに示すように回転磁化過程によ
り磁化が回転し、さらに強い外部磁界により第5図Cに
示すように両歌磁性薄膜(9)及びα〔が同方向に磁化
される。この場合両軟磁性薄膜(9)及びα〔において
、その面内で磁化が回転するので磁壁は生ずることがな
くバルクハウゼンノイズの発生が回避される。つまり、
両軟磁性薄膜(9)及びOlの磁化困難軸方向を磁束の
伝播方向とすることによって磁壁移動に起因するバルク
ハウゼンノイズが回避される。さらに、このような感磁
部(2)を有する磁気ヘッドの動作を第6図〜第8図を
参照して説明する。第6図〜第8図は感磁部(2)の両
軟磁性薄膜(9)及び0口のみを模式的に示したもので
これら軟磁性薄膜(9)及びα〔は、第6図中にe、a
、で示す方向に初期状態で磁化容易軸を有する。すなわ
ち、端子1.及びtt間にセンス電流iを通ずる場合、
それと直交する方向に磁化容易軸e、a、を有する。そ
して、これら軟磁性薄膜怜)及びa偽にセンス電流iを
通電することによって非磁性中間層(図示せず)を挟ん
で対向する両軟磁性薄膜(9)及びOlには電流iと直
交する互いに逆向きの磁界が発生し、これによって軟磁
性薄膜(9)及びQlは同図に実線及び破線矢印M、及
びM2で示すように磁化される。一方、この感磁部(2
)には電流iに沿う方向に第7図に示すように外部から
バイアス磁界H言が与えられると、このバイアス磁界H
aによって軟磁性薄膜(9)及び0〔の磁化の向きは同
第7図に矢印M□及びMHで示すように、所要の角度だ
け回転される。このバイアス磁界H1によって与えられ
る磁化の方向は電流iの方向に対してほぼ45°となる
ようにそのバイアス磁界Hsの大きさが選ばれるもので
ある。このバイアス磁界H6は、第1図及び第2図に示
すバイアス磁界発生用導体(5)によって得る。このよ
うにバイアス磁界H,によってセンス電流iに対してほ
ぼ45′の磁化を与えるようにすることは、磁界−抵抗
特性曲線が高い感度と直線性を示す部分において動作さ
せるためになされるものであって、通常のMR型磁気ヘ
ッドにおいて行われていると同様である。この状態で第
8図に示すように信号磁界Hsがセンス電流iに沿う方
向すなわち磁化困難軸方向に与えられると磁化が回転し
、それぞれその磁化の方向が矢印MsI及びMl、に示
すように反時計方向及び時計方向に角度θ1及び−01
回転する。これによって各軟磁性薄膜(9)及びαφが
例えば共にMR磁性薄膜である場合は、それぞれ抵抗変
化が生じることになるが、このMR磁性薄膜の抵抗の変
化は角度の変化をθとするときCO1! ”θに比例す
るので、令弟7図における両軟磁性薄膜(9)及びα〔
の磁化Mll及びMHが互いに90°ずれているとする
と01及び−θ1の変化で、両軟磁性薄膜(9)及びQ
lに関して抵抗の変化の増減が一敗する。
When the external magnetic field H is strengthened in the direction of the hard magnetization axis for such a magnetically sensitive part (2), the magnetization state is shown in FIGS. 5A to 5C as shown by solid arrows for the soft magnetic thin film αl. , the soft magnetic thin film (9) is changed from the antiparallel magnetization state shown in FIG. 5A shown in FIG. 3 to the state shown in FIG. The magnetization is rotated by the rotational magnetization process, and both magnetic thin films (9) and α are magnetized in the same direction by a stronger external magnetic field, as shown in FIG. 5C. In this case, in both the soft magnetic thin films (9) and [alpha], the magnetization rotates within their planes, so no domain wall is generated, and Barkhausen noise is avoided. In other words,
Barkhausen noise caused by domain wall movement is avoided by setting the direction of the hard magnetization axes of both the soft magnetic thin films (9) and Ol as the propagation direction of the magnetic flux. Furthermore, the operation of the magnetic head having such a magnetic sensing portion (2) will be explained with reference to FIGS. 6 to 8. Figures 6 to 8 schematically show only the soft magnetic thin films (9) and 0 of the magnetically sensitive part (2). ni e, a
It has an axis of easy magnetization in the initial state in the direction shown by . That is, terminal 1. When a sense current i is passed between and tt,
It has easy axes of magnetization e and a in the direction orthogonal thereto. By applying a sense current i to these soft magnetic thin films (9) and (a), a current orthogonal to the current i is applied to both soft magnetic thin films (9) and O1 facing each other with a non-magnetic intermediate layer (not shown) in between. Magnetic fields in opposite directions are generated, and thereby the soft magnetic thin film (9) and Ql are magnetized as shown by solid and broken line arrows M and M2 in the figure. On the other hand, this magnetic sensing part (2
) is given an external bias magnetic field H in the direction along the current i as shown in FIG.
By a, the magnetization directions of the soft magnetic thin films (9) and 0 are rotated by a required angle, as shown by arrows M□ and MH in FIG. The magnitude of the bias magnetic field Hs is selected so that the direction of magnetization given by the bias magnetic field H1 is approximately 45° with respect to the direction of the current i. This bias magnetic field H6 is obtained by a bias magnetic field generating conductor (5) shown in FIGS. 1 and 2. The bias magnetic field H provides a magnetization of approximately 45' to the sense current i in order to operate in a region where the magnetic field-resistance characteristic curve shows high sensitivity and linearity. This is similar to what is done in a normal MR type magnetic head. In this state, as shown in FIG. 8, when a signal magnetic field Hs is applied in the direction along the sense current i, that is, in the direction of the hard magnetization axis, the magnetization rotates, and the direction of the magnetization is reversed as shown by the arrows MsI and Ml. Angle θ1 and -01 clockwise and clockwise
Rotate. As a result, if each soft magnetic thin film (9) and αφ are both MR magnetic thin films, a change in resistance will occur, but the change in resistance of this MR magnetic thin film is CO1 when the change in angle is θ. ! ``Since it is proportional to θ, both soft magnetic thin films (9) and α [
If the magnetizations Mll and MH of
An increase or decrease in resistance changes with respect to l.

つまり、一方の軟磁性薄膜(9)の抵抗が増加すれば他
方の軟磁性薄膜−もその抵抗は増加する方向に変化する
。そして、これら軟磁性薄膜(9)及び叫の抵抗変化す
なわち感磁部(2)の両端の端子1.及び11間に抵抗
変化を生じ、この抵抗変化を端子1゜及びt8間の電圧
変化として検出することができることになる。
In other words, if the resistance of one soft magnetic thin film (9) increases, the resistance of the other soft magnetic thin film also changes in the direction of increasing. Then, the resistance changes between these soft magnetic thin films (9) and the terminals 1 at both ends of the magnetically sensitive part (2). A resistance change occurs between terminals 1 and 11, and this resistance change can be detected as a voltage change between terminals 1° and t8.

本発明構成においては、磁気記録媒体との対接面(3)
とほぼ直交する方向に感磁部(2)が延在するようにし
、この延在方向にセンス電流iを通ずるようにして、上
述したようにこのセンス電流iに沿う方向に磁気記録媒
体からの記録磁界に基づく信号磁界Hsを与えるように
するものであるが、このような構成とする場合の作用上
の特徴はセンス電流iの方向を信号磁界H8の方向と直
交する方向を選定する場合と比較することによってより
明確となる。すなわち、今第11図に示すように第6図
で説明したと同様に両軟磁性薄膜(9)及び(Imに軟
磁性薄膜の異方性磁界Hxを考慮した上での、電流とし
て大電流を通じた状態では、これによって発生する磁界
によって両軟磁性薄膜(9)及びα〔は電流iと直交す
る方向にそれぞれ実線及び破線矢印で示すように磁化さ
れる。この状態で、電流iと直交する方向に信号磁界H
sが与えられると、これは軟磁性薄膜(9)及びOlの
電流iによる磁化に沿う方向となり、この磁界Hsが磁
化容易軸方向に与えられたと同様の挙動を示す。つまり
磁壁の発生と移動が生じバルクハウゼンノイズが発生す
る。
In the configuration of the present invention, the contact surface (3) with the magnetic recording medium
The magnetic sensing part (2) is made to extend in a direction substantially perpendicular to , and a sense current i is passed in this extending direction, and as described above, the magnetic recording medium is The signal magnetic field Hs based on the recording magnetic field is applied, but the operational feature of such a configuration is that the direction of the sense current i is selected to be orthogonal to the direction of the signal magnetic field H8. It becomes clearer by comparison. That is, as shown in FIG. 11, in the same way as explained in FIG. In this state, the magnetic field generated by this magnetizes both the soft magnetic thin films (9) and α in the direction orthogonal to the current i, as shown by the solid and broken arrows, respectively. signal magnetic field H in the direction of
When s is given, this direction follows the magnetization of the soft magnetic thin film (9) and Ol due to the current i, and exhibits the same behavior as if this magnetic field Hs was given in the direction of the easy axis of magnetization. In other words, domain walls are generated and moved, resulting in Barkhausen noise.

ここで磁性薄膜の磁化容易軸方向にセンス電流iが流さ
れ、センス電流iと同方向に信号磁界Hsが与えられる
構成を考えた場合、センス電流iが比較的小さい場合に
は磁性層の磁化容易軸方向に磁化は向くことになり、信
号磁界Hsは第11図に示すと同様に磁化容易軸方向に
与えられる結果になり、バルクハウゼンノイズが発生し
好ましくない。言い換えれば、本発明におけるように感
磁部(2)を磁気記録媒体との対接面(3)にほぼ直交
する方向に延在させ、その前方及び後方端に電極層(6
)及び(7)を設けて、この感磁部(2)の延在方向に
したがって対接面+3+と直交する方向、言い換えれば
磁気媒体からの信号磁界と同方向にセンス電流iを通ず
るようにするときは、よりバルクハウゼンノイズの改善
が図られることになる。
If we consider a configuration in which a sense current i is passed in the direction of the easy axis of magnetization of the magnetic thin film and a signal magnetic field Hs is applied in the same direction as the sense current i, if the sense current i is relatively small, the magnetization of the magnetic layer The magnetization will be oriented in the easy axis direction, and the signal magnetic field Hs will be applied in the easy axis direction as shown in FIG. 11, which is undesirable as Barkhausen noise will occur. In other words, as in the present invention, the magnetically sensitive part (2) extends in a direction substantially perpendicular to the surface (3) facing the magnetic recording medium, and the electrode layer (6) is provided at the front and rear ends thereof.
) and (7) are provided so that the sense current i is passed in the direction orthogonal to the contact surface +3+ according to the extending direction of the magnetically sensitive part (2), in other words, in the same direction as the signal magnetic field from the magnetic medium. When doing so, the Barkhausen noise can be further improved.

尚、上述した例においては信号磁界H5に対してほぼ直
交する方向に磁化容易軸を有する磁性薄膜について述べ
たが、磁性薄膜の主面内に磁気異方性を有しない等友釣
磁性層を用いても同様である。この場合には、比較的小
さなセンス電流を流せば磁化方向がセンス電流と直交し
、つまり信号磁界の方向と直交するためバルクハウゼン
ノイズは発生しない。
In the above example, a magnetic thin film having an axis of easy magnetization in a direction substantially perpendicular to the signal magnetic field H5 was described, but it is also possible to use an isotropic magnetic layer having no magnetic anisotropy within the main surface of the magnetic thin film. The same applies. In this case, if a relatively small sense current is passed, the magnetization direction is perpendicular to the sense current, that is, perpendicular to the direction of the signal magnetic field, so Barkhausen noise does not occur.

そして、さらに本発明においては、感磁部(2)の後方
端部に対する後方電極層(7)をその感磁部(2)の後
方端部への被着部の前方端縁(7a)から後方に向って
急峻に広がる形状としたことによってよりバルクハウゼ
ンノイズの改善が図られる。これについて説明するに、
上述の構成において前方電極層(6)については、これ
が感磁部(2)の対接面(3)側に臨むように配置した
ことによってすなわち対接面(3)って発生する磁界が
バイアス磁界と同方向に選定されるものであるが、−a
に後方電極層(7)についてはバイアス磁界発生用導体
(5)からの端子導出等の問題からこれをバイアス導体
の延在方向すなわち感磁部(2)におけるセンス電流i
と直交する方向に延在することがパターン配置すなわち
占有面積等の都合上問題となりがちで、これがため第9
図に示すように後方電極層(7)については感磁部(2
)の配置部方向に沿う方向に通電がなされ、この電極層
(7)において発生する磁界が感磁部(2)の後方端部
にバイアス磁界によって与えられる磁化とは異なる方向
の磁化に固定され、これによって磁壁が生じバルクハウ
ゼンノイズを発生する原因となる。
Further, in the present invention, the rear electrode layer (7) for the rear end of the magnetically sensitive part (2) is connected from the front edge (7a) of the attached part to the rear end of the magnetically sensitive part (2). The Barkhausen noise can be improved by adopting a shape that widens steeply toward the rear. To explain this,
In the above configuration, the front electrode layer (6) is arranged so as to face the opposing surface (3) of the magnetically sensitive part (2), so that the magnetic field generated on the opposing surface (3) is biased. It is selected in the same direction as the magnetic field, but -a
As for the rear electrode layer (7), due to issues such as how to lead out the terminal from the bias magnetic field generating conductor (5), the sense current i in the direction of extension of the bias conductor, that is, in the magnetic sensing part (2)
Extending in the direction perpendicular to the
As shown in the figure, for the rear electrode layer (7), the magnetically sensitive part (2
), and the magnetic field generated in this electrode layer (7) is fixed in a direction different from the magnetization given by the bias magnetic field to the rear end of the magnetically sensitive part (2). , which causes a magnetic domain wall and causes Barkhausen noise.

さらに、シールド型構成をとる場合のようにシールド用
の磁性体(8)が近接して配置される場合にこの磁性体
(8)が電極層(7)によって発生する磁界によって磁
化し、これが感磁部(2)に、影響を及ぼしてバルクハ
ウゼンノイズの発生原因となる。しかるに本発明によれ
ば電極N(7)をその感磁部(2)の後方端部の被着部
から急激に幅広としたのでここにおける電流通路を分散
することができ、電流密度を充分低下させることができ
るので、これによって発生する磁界が感磁部(2)に与
えられる影響さらに磁性体(8)に与える影響を低減化
することができ、バルクハウゼンノイズの低減化を図る
ことができる。
Furthermore, when the magnetic material (8) for shielding is placed close to each other as in the case of a shield type configuration, this magnetic material (8) is magnetized by the magnetic field generated by the electrode layer (7), and this becomes sensitive. This affects the magnetic part (2) and causes Barkhausen noise. However, according to the present invention, the width of the electrode N (7) is suddenly widened from the attachment part at the rear end of the magnetically sensitive part (2), so that the current path there can be dispersed, and the current density can be sufficiently reduced. Therefore, the effect of the magnetic field generated thereby on the magnetic sensing part (2) and further on the magnetic body (8) can be reduced, and Barkhausen noise can be reduced. .

〔実施例〕〔Example〕

第1図及び第2図を参照して本発明によるシールド型M
R磁気ヘッドの一例を詳細に説明する。この場合基板(
11は、例えばNt−Zn系フェライト、Mn−Z’n
系フェライト等の磁性基板より構成し得、必要に応じて
これの上に5iot等の絶縁層(4)を被着し、これの
上に少くとも一方力<l’IR効果を有する軟磁性薄膜
(9)及びQlが非磁性中間層αDを介して積層された
構成を有する感磁部(2)を、その前方端面が磁気記録
媒体との対接面(3)に臨むように、しかもこの対接面
(3)と直交する方向に帯状に延在させて被着形成する
With reference to FIGS. 1 and 2, the shield type M according to the present invention
An example of the R magnetic head will be described in detail. In this case the substrate (
11 is, for example, Nt-Zn ferrite, Mn-Z'n
The insulating layer (4) of 5iot or the like is deposited on this if necessary, and a soft magnetic thin film having at least one-sided force <l' IR effect is formed on this. (9) and Ql are laminated via a non-magnetic intermediate layer αD. It is formed to extend in a band shape in a direction perpendicular to the facing surface (3).

そして、この感磁部(2)の前方端部及び後方端部にそ
れぞれ良導電性の非磁性もしくは軟磁性を有する前方電
極層(6)及び後方電極層(7)を被着する。
Then, a front electrode layer (6) and a rear electrode layer (7) having good electrical conductivity and having non-magnetism or soft magnetism are respectively deposited on the front end and the rear end of the magnetically sensitive part (2).

前方電極層(6)は前述したようにその一例端面すなわ
ち前方端面が対接面(3)に臨んでこれに沿うように延
在させ、後方電極層(7)は感磁部(2)の後方端部へ
の被着部の前方縁(7a)から急激に後方に向って広が
る例えば台形“状パターンとする。さらに、これら電極
層(6)及び(7)と感磁部(2)上に絶縁層(2)を
介して感磁部(2)の延在方向と直交する方向にこの感
磁部(2)上を横切ってバイアス磁界発生用導体(5)
を被着し、さらにこれの上に絶縁層■を介してシ−ルド
用の磁性体(8)を被着する。
As mentioned above, the front electrode layer (6) has its end face facing the opposing surface (3) and extends along this, and the rear electrode layer (7) extends along the magnetically sensitive part (2). For example, a trapezoidal pattern is formed that rapidly spreads backward from the front edge (7a) of the part to be attached to the rear end.Furthermore, the electrode layers (6) and (7) and the magnetically sensitive part (2) are A conductor (5) for generating a bias magnetic field crosses over the magnetically sensitive part (2) in a direction perpendicular to the extending direction of the magnetically sensitive part (2) via the insulating layer (2).
A magnetic material (8) for shielding is further deposited on this with an insulating layer (1) interposed therebetween.

(2)及びα船は前方電極N(6)及び後方電極層(7
)からそれぞれ導出した端子導出部で、(15a)及び
(15b)はバイアス磁界発生用導体(5)の両端から
導出した端子導出部を示す。
(2) and α ship are the front electrode N (6) and the rear electrode layer (7
), and (15a) and (15b) indicate terminal lead-out parts led out from both ends of the bias magnetic field generating conductor (5).

尚、これら各感磁部(2)を構成する軟磁性薄膜(9)
In addition, the soft magnetic thin film (9) constituting each of these magnetically sensitive parts (2)
.

叫、中間層αD1電極層T6)、 +71、バイアス磁
界発生用導体(5)、それぞれ全面蒸着スパッタリング
等によって形成してフォトリソグラフィによってパター
ン化することによって形成し得る。
The intermediate layer αD1 electrode layer T6), +71, and the bias magnetic field generating conductor (5) can be formed by, for example, full-surface evaporation sputtering, and then patterned by photolithography.

また、第1図に示す例においては、感磁部(2)が1つ
のトラック幅内に1本配置された構成とした場合である
が、第4図に示すように所要のトランク幅T11内に複
数例えば2本の感磁部(2)を並置配列した構成をとる
こともでき、この場合においてもその後方電極層(7)
は感磁部(2)の後方端部との被着部の前方縁(7a)
から急峻に互いに他の方向に広がる形状となし得る。
In addition, in the example shown in FIG. 1, one magnetic sensing section (2) is arranged within one track width, but as shown in FIG. It is also possible to adopt a configuration in which a plurality of, for example, two magnetically sensitive parts (2) are arranged in parallel, and in this case also, the rear electrode layer (7)
is the front edge (7a) of the attached part with the rear end of the magnetically sensitive part (2)
It can be formed into a shape that sharply diverges from each other in other directions.

〔発明の効果〕〔Effect of the invention〕

上述したように本発明によれば、シールド型のMR型磁
気ヘッド構成をとる場合において、特にその後方電極層
(7)を後方に急峻に広がる幅広となしてこれに通ずる
電流密度を低減化したことによって効果的にバルクハウ
ゼンノイズの改善が図られる。また、その感磁部(2)
を磁気記録媒体との対接面(3)とほぼ直交する方向に
延在させ、その両端に電極層(6)及び(7)を配置し
てセンス電流を対接面(3)と直交する方向、したがっ
てこのセンス電流の通電方向と一致する方向に信号磁界
を与えるようにしたこと、さらに感磁部(2)を多層構
造の感磁部としたこと等によってバルクハウゼンノイズ
の発生が効果的に回避されたシールド型のMR型磁気ヘ
ッドを得ることができるものである。
As described above, according to the present invention, when a shielded MR magnetic head is configured, the rear electrode layer (7) in particular is made wide so as to steeply spread rearward, thereby reducing the current density that leads to the rear electrode layer (7). This effectively improves Barkhausen noise. In addition, the magnetic sensing part (2)
extends in a direction substantially perpendicular to the surface (3) in contact with the magnetic recording medium, and electrode layers (6) and (7) are arranged at both ends thereof to direct the sense current orthogonally to the surface (3) in contact with the magnetic recording medium. The generation of Barkhausen noise is effectively suppressed by applying the signal magnetic field in the same direction as the sense current direction, and by making the magnetic sensing part (2) a magnetic sensing part with a multilayer structure. This makes it possible to obtain a shielded MR type magnetic head that avoids this problem.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による磁気ヘッドの一例の路線的拡大平
面図、第2図は第1図のA−A線上の断面図、第3図は
その感磁部の説明図、第4図は本発明の他の例の磁気ヘ
ッドの要部のパターン図、第5図は感磁部の外部磁界に
よる磁化状態の説明図、第6図〜第8図は動作説明図、
第9図は比較例の感磁部と電極配置を示す図、第10図
は単層磁性薄膜磁区構造を示す図、第11図は比較例の
説明図である。 (1)は基板、(2)は感磁部、(3)は磁気記録媒体
との対接面、(4)は絶縁層、(5)はバイアス磁界発
生用導体、(6)は前方電極層、(7)は後方電極層、
(9)及びα・は軟磁性薄膜、onは非磁性中間層であ
る。
FIG. 1 is an enlarged plan view of an example of a magnetic head according to the present invention, FIG. 2 is a sectional view taken along line A-A in FIG. A pattern diagram of the main parts of a magnetic head according to another example of the present invention, FIG. 5 is an explanatory diagram of the magnetization state of the magnetic sensitive part due to an external magnetic field, and FIGS. 6 to 8 are explanatory diagrams of the operation.
FIG. 9 is a diagram showing the magnetic sensing part and electrode arrangement of a comparative example, FIG. 10 is a diagram showing a single-layer magnetic thin film magnetic domain structure, and FIG. 11 is an explanatory diagram of the comparative example. (1) is the substrate, (2) is the magnetic sensing part, (3) is the surface in contact with the magnetic recording medium, (4) is the insulating layer, (5) is the bias magnetic field generating conductor, and (6) is the front electrode. layer, (7) is the rear electrode layer,
(9) and α· are soft magnetic thin films, and on is a nonmagnetic intermediate layer.

Claims (1)

【特許請求の範囲】 基板上に、磁気記録媒体との対接面にほぼ直交して後方
に延在し前方端面が上記対接口に臨むように設けられた
感磁部と、該感磁部を絶縁層を介して横切るように延在
するバイアス磁界発生用導体とが設けられ、 これら感磁部とバイアス磁界発生用導体の配置部上を覆
って磁性体が配されてなり、 上記感磁部は、少くとも一方が磁気抵抗効果を有する対
の軟磁性薄膜が非磁性中間層を介して積層されてなり、 該感磁部の前方端部と後方端部とにはそれぞれ前方電極
層及び後方電極層が被着され、 上記前方電極層の前方端面は上記磁気記録媒体との対接
面に臨み、 上記後方電極層は上記感磁部の後方端への連結部の前方
縁から後方に向って急激に幅広とされてなることを特徴
とする磁気抵抗効果型磁気ヘッド。
[Scope of Claims] A magnetic sensing part provided on a substrate so as to extend rearward and substantially perpendicular to a surface in contact with a magnetic recording medium, with a front end face facing the contact opening, and the magnetic sensing part A conductor for generating a bias magnetic field is provided which extends across the magnetic field through an insulating layer, and a magnetic body is disposed to cover the magnetic sensing part and the area where the conductor for generating a bias magnetic field is arranged. The magnetically sensitive part is formed by laminating a pair of soft magnetic thin films, at least one of which has a magnetoresistive effect, with a nonmagnetic intermediate layer interposed therebetween, and a front electrode layer and a front electrode layer are provided at the front end and the rear end of the magnetically sensitive part, respectively. A rear electrode layer is deposited, the front end surface of the front electrode layer faces the surface that faces the magnetic recording medium, and the rear electrode layer extends rearward from the front edge of the connecting part to the rear end of the magnetically sensitive part. A magnetoresistive magnetic head is characterized by a sharply wider width.
JP1193387A 1987-01-21 1987-01-21 Magneto-resistance effect type magnetic head Pending JPS63181109A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1193387A JPS63181109A (en) 1987-01-21 1987-01-21 Magneto-resistance effect type magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1193387A JPS63181109A (en) 1987-01-21 1987-01-21 Magneto-resistance effect type magnetic head

Publications (1)

Publication Number Publication Date
JPS63181109A true JPS63181109A (en) 1988-07-26

Family

ID=11791471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1193387A Pending JPS63181109A (en) 1987-01-21 1987-01-21 Magneto-resistance effect type magnetic head

Country Status (1)

Country Link
JP (1) JPS63181109A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06203340A (en) * 1992-11-17 1994-07-22 Internatl Business Mach Corp <Ibm> Magnetic-reluctance sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06203340A (en) * 1992-11-17 1994-07-22 Internatl Business Mach Corp <Ibm> Magnetic-reluctance sensor
JP2725987B2 (en) * 1992-11-17 1998-03-11 インターナショナル・ビジネス・マシーンズ・コーポレイション Magnetoresistive sensor

Similar Documents

Publication Publication Date Title
US5768066A (en) Magnetoresistive head having an antiferromagnetic layer interposed between first and second magnetoresistive elements
JPH07105006B2 (en) Magnetoresistive magnetic head
JPH07320229A (en) Spin-valve dual magnetoresistance reproducing head
JP3651619B2 (en) Magnetoresistive transducer and magnetic recording apparatus
JPH0950613A (en) Magnetoresistive effect element and magnetic field detecting device
JP2001014616A (en) Magnetic conversion element, thin-film magnetic head and their production
US5661621A (en) Magnetoresistive head
KR100284779B1 (en) Spin valve magnetoresistance effect magnetic head and magnetic disk device
US6120920A (en) Magneto-resistive effect magnetic head
JPH07192227A (en) Magneto-resistance effect type magnetic head
JPH087229A (en) Magnetoresistance effect type magnetic head
JP2668925B2 (en) Magnetoresistive magnetic head
JPS63181109A (en) Magneto-resistance effect type magnetic head
JP2508475B2 (en) Magnetoresistive magnetic head
JP3243092B2 (en) Thin film magnetic head
JPS61264772A (en) Magnetoresistance effect element
JPH1125428A (en) Magneto-resistance effect type head and its initialization method
JP2596010B2 (en) Magnetoresistive magnetic head
JPH11110720A (en) Magneto-resistive type head
JPH10320721A (en) Magneto-resistance effect head
JPH11112055A (en) Magnetic sensor
JPH026490Y2 (en)
JPH02165408A (en) Magneto-resistance effect type magnetic head
JPS63181108A (en) Magneto-resistance effect type magnetic head
JPH07320231A (en) Magnetoresistance effect type head