JPH11110720A - Magneto-resistive type head - Google Patents
Magneto-resistive type headInfo
- Publication number
- JPH11110720A JPH11110720A JP9306305A JP30630597A JPH11110720A JP H11110720 A JPH11110720 A JP H11110720A JP 9306305 A JP9306305 A JP 9306305A JP 30630597 A JP30630597 A JP 30630597A JP H11110720 A JPH11110720 A JP H11110720A
- Authority
- JP
- Japan
- Prior art keywords
- film
- ferromagnetic
- magnetoresistive head
- magnetic
- ferromagnetic film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000005294 ferromagnetic effect Effects 0.000 claims abstract description 133
- 230000005291 magnetic effect Effects 0.000 claims abstract description 107
- 230000005415 magnetization Effects 0.000 claims abstract description 74
- 230000005290 antiferromagnetic effect Effects 0.000 claims abstract description 17
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 claims abstract description 13
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 7
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 5
- 229910003321 CoFe Inorganic materials 0.000 claims abstract description 4
- 229910052796 boron Inorganic materials 0.000 claims abstract description 4
- 229910015140 FeN Inorganic materials 0.000 claims abstract 2
- 238000000034 method Methods 0.000 claims description 6
- 239000000758 substrate Substances 0.000 abstract description 3
- 239000010410 layer Substances 0.000 description 29
- 238000010586 diagram Methods 0.000 description 10
- 239000004020 conductor Substances 0.000 description 8
- 229910019236 CoFeB Inorganic materials 0.000 description 7
- 229910045601 alloy Inorganic materials 0.000 description 5
- 239000000956 alloy Substances 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 239000003302 ferromagnetic material Substances 0.000 description 4
- 229910052721 tungsten Inorganic materials 0.000 description 4
- 239000002885 antiferromagnetic material Substances 0.000 description 3
- 230000004907 flux Effects 0.000 description 3
- 238000010030 laminating Methods 0.000 description 3
- 239000000696 magnetic material Substances 0.000 description 3
- 229910052715 tantalum Inorganic materials 0.000 description 3
- 229910019041 PtMn Inorganic materials 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 229910052735 hafnium Inorganic materials 0.000 description 2
- 229910052741 iridium Inorganic materials 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 229910052758 niobium Inorganic materials 0.000 description 2
- 229910052703 rhodium Inorganic materials 0.000 description 2
- 229910052707 ruthenium Inorganic materials 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 229910052720 vanadium Inorganic materials 0.000 description 2
- 229910000684 Cobalt-chrome Inorganic materials 0.000 description 1
- 229910003289 NiMn Inorganic materials 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 239000010952 cobalt-chrome Substances 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- -1 etc. Inorganic materials 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- 229910001845 yogo sapphire Inorganic materials 0.000 description 1
- 229910003145 α-Fe2O3 Inorganic materials 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y25/00—Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y10/00—Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/127—Structure or manufacture of heads, e.g. inductive
- G11B5/33—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
- G11B5/39—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
- G11B5/3903—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/48—Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed
- G11B5/488—Disposition of heads
- G11B5/4886—Disposition of heads relative to rotating disc
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/127—Structure or manufacture of heads, e.g. inductive
- G11B5/33—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
- G11B5/39—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
- G11B2005/3996—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects large or giant magnetoresistive effects [GMR], e.g. as generated in spin-valve [SV] devices
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Nanotechnology (AREA)
- Manufacturing & Machinery (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Theoretical Computer Science (AREA)
- Hall/Mr Elements (AREA)
- Magnetic Heads (AREA)
- Thin Magnetic Films (AREA)
Abstract
Description
【発明の属する技術分野】本発明は、磁気抵抗効果型ヘ
ッドに関し、特にスピンバルブ型の磁気抵抗効果型ヘッ
ドに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetoresistive head and, more particularly, to a spin-valve magnetoresistive head.
【従来の技術】スピンバルブ型の磁気抵抗効果型ヘッド
は、例えば、特開平2−61572号(米国特許第4,
949,039号)に開示されている。第1強磁性層、
非磁性中間層、第2強磁性層が積層されてなるMR層
は、第1及び第2強磁性層間の磁化方向の角度差に応じ
て、MR層の電気抵抗が変化する。実用的なスピンバル
ブ型は、一方の強磁性層の磁化方向が固定され、他方の
強磁性層の磁化方向が記録媒体の磁化方向に応じて自由
に回転するように構成される。強磁性層の磁化方向を固
定する際、強磁性体に直接結合する反強磁性層を設け、
反強磁性層の磁気的交換結合により、強磁性体の磁化方
向を固定することが提案されている。図1(a)は、従
来の磁気抵抗効果型ヘッドを示す要部斜視図であり、図
1(b)は、各強磁性膜の磁化方向を示す図である。図
中、図示しない基板の上に、下部シールド膜18a、図
示しない絶縁膜、フリー強磁性膜14、非磁性中間膜1
3、ピン強磁性膜12、反強磁性膜11、一対の引出し
導体膜17、図示しない絶縁膜、上部シールド膜18b
が順に形成される。ピン強磁性膜12はNiFe,32
0Å、非磁性中間膜はCu,32Å、フリー強磁性膜1
4はNiFe,45Åである。図2(a)は、図1の磁
気抵抗効果型ヘッドの再生波形であり、図2(b)は、
フリー強磁性膜の磁化の振れを示す。図2(a)中、横
軸は記録媒体の磁化反転位置からの距離であり、縦軸は
再生出力である。図中、正及び負の孤立波形の再生出力
が示してあり、その非対象性は−19%である。図2
(b)中、横軸はフリー強磁性膜の面内の位置を浮上面
からの高さで表し、縦軸はフリー強磁性膜の素子高さ方
向(z軸)磁化成分であり、コア幅方向(y軸)からの
磁化回転角ΘをsinΘで表したものである。図中、中
央の線は静的なバイアス状態を示し、両側の線はそれぞ
れ正または負の方向に磁化が振れたときの状態を示す。
ピン強磁性膜12とフリー強磁性膜14の磁化のなす角
度は、90°であることが理想である。しかしが、実際
には、ピン強磁性膜12との静磁的カップリングによ
り、フリー強磁性膜14の磁化方向が、ピン強磁性膜1
2の磁化方向の反対方向に向かって回転する。これによ
り、非対称性が生じるのである。この非対称性を少なく
するため、ピン強磁性膜12の磁化方向は、コア幅方向
に対して90°でなく、80°になっている。2. Description of the Related Art A spin valve type magnetoresistive head is disclosed, for example, in Japanese Patent Application Laid-Open No. 2-61572 (US Pat.
949,039). A first ferromagnetic layer,
In the MR layer formed by laminating the nonmagnetic intermediate layer and the second ferromagnetic layer, the electrical resistance of the MR layer changes according to the angle difference between the magnetization directions of the first and second ferromagnetic layers. A practical spin-valve type is configured such that the magnetization direction of one ferromagnetic layer is fixed, and the magnetization direction of the other ferromagnetic layer freely rotates according to the magnetization direction of the recording medium. When fixing the magnetization direction of the ferromagnetic layer, an antiferromagnetic layer that is directly coupled to the ferromagnetic material is provided,
It has been proposed to fix the magnetization direction of a ferromagnetic material by magnetic exchange coupling of an antiferromagnetic layer. FIG. 1A is a perspective view of a main part showing a conventional magnetoresistive head, and FIG. 1B is a diagram showing a magnetization direction of each ferromagnetic film. In the drawing, a lower shield film 18a, an insulating film (not shown), a free ferromagnetic film 14, and a nonmagnetic intermediate film 1 are formed on a substrate (not shown).
3, pin ferromagnetic film 12, antiferromagnetic film 11, a pair of lead conductor films 17, insulating film (not shown), upper shield film 18b
Are sequentially formed. The pin ferromagnetic film 12 is made of NiFe, 32
0 °, nonmagnetic intermediate film is Cu, 32 °, free ferromagnetic film 1
4 is NiFe, 45 °. FIG. 2A shows a reproduction waveform of the magnetoresistive head of FIG. 1, and FIG.
4 shows the fluctuation of the magnetization of the free ferromagnetic film. In FIG. 2A, the horizontal axis is the distance from the magnetization reversal position of the recording medium, and the vertical axis is the reproduction output. In the figure, reproduced outputs of positive and negative isolated waveforms are shown, and the asymmetry is -19%. FIG.
In (b), the horizontal axis represents the position in the plane of the free ferromagnetic film by the height from the air bearing surface, the vertical axis represents the magnetization component in the element height direction (z axis) of the free ferromagnetic film, and the core width. The magnetization rotation angle か ら from the direction (y-axis) is represented by sinΘ. In the figure, the center line shows a static bias state, and the lines on both sides show the state when the magnetization swings in the positive or negative direction, respectively.
Ideally, the angle between the magnetization of the pin ferromagnetic film 12 and the magnetization of the free ferromagnetic film 14 is 90 °. However, in practice, due to the magnetostatic coupling with the pin ferromagnetic film 12, the magnetization direction of the free ferromagnetic film 14 is changed to the pin ferromagnetic film 1
2 rotates in a direction opposite to the magnetization direction. This causes asymmetry. In order to reduce this asymmetry, the magnetization direction of the pin ferromagnetic film 12 is not 90 ° but 80 ° with respect to the core width direction.
【発明が解決しようとする課題】磁気抵抗効果型ヘッド
の高感度化には、フリー強磁性膜14の薄膜化が不可欠
である。しかし、フリー強磁性膜14の薄膜化に伴い、
ピン強磁性膜12の磁界によって、フリー強磁性膜14
の磁化方向はコア幅方向から素子高さ方向に傾き、コア
幅方向に対して−50°となっている。従って、下側に
余裕が少なく、バイアス特性が悪化している。この結
果、磁気抵抗効果型ヘッドの再生出力が低下し、非対称
性が悪化するという問題がある。一方、この問題を解決
するため、特開平8−55312号は、第3の強磁性膜
を設け、センス電流により第3の強磁性膜に発生する磁
界を、ピン強磁性膜の磁界を打ち消す方向とすることを
提案している。第3の強磁性体の材料としては、NiF
eが提案されている。しかし、NiFeは比抵抗が小さ
く、磁気抵抗効果に寄与しない第3の強磁性膜での電流
ロスが問題となる。また、この特開平8−55312号
の膜構造は、基板より、第3の強磁性膜/フリー強磁性
膜/ピン強磁性膜であるか、或いは、フリー強磁性膜/
ピン強磁性膜/第3の強磁性膜である。しかし、フリー
強磁性膜の磁化制御の考慮すると、これらの膜構造は優
れていいない。本発明の目的は、フリー強磁性膜の磁化
を制御する第3の強磁性膜に適した材料を提供すること
である。本発明の他の目的は、フリー強磁性膜の磁化を
制御する第3の強磁性膜に適した膜配置を提供すること
である。In order to increase the sensitivity of the magnetoresistive head, it is essential to make the free ferromagnetic film 14 thinner. However, with the thinning of the free ferromagnetic film 14,
Due to the magnetic field of the pin ferromagnetic film 12, the free ferromagnetic film 14
Is inclined from the core width direction to the element height direction, and is -50 ° with respect to the core width direction. Therefore, there is little room below, and the bias characteristics are degraded. As a result, there is a problem that the reproduction output of the magnetoresistive head is reduced and the asymmetry is deteriorated. On the other hand, in order to solve this problem, Japanese Patent Application Laid-Open No. 8-55312 discloses a method in which a third ferromagnetic film is provided, and a magnetic field generated in the third ferromagnetic film by a sense current is directed to cancel the magnetic field of the pin ferromagnetic film. It is proposed that. The material of the third ferromagnetic material is NiF
e has been proposed. However, NiFe has a low specific resistance and causes a problem of current loss in the third ferromagnetic film which does not contribute to the magnetoresistance effect. Further, the film structure disclosed in Japanese Patent Application Laid-Open No. 8-55312 is different from a substrate in that a third ferromagnetic film / free ferromagnetic film / pin ferromagnetic film
Pin ferromagnetic film / third ferromagnetic film. However, considering the magnetization control of the free ferromagnetic film, these film structures are not excellent. An object of the present invention is to provide a material suitable for a third ferromagnetic film that controls the magnetization of a free ferromagnetic film. Another object of the present invention is to provide a film arrangement suitable for a third ferromagnetic film for controlling the magnetization of the free ferromagnetic film.
【課題を解決するための手段】上述した課題を解決する
ために、本発明は、磁化方向が固定された第1強磁性膜
と、磁化方向が前記第1強磁性膜の磁化方向と直行する
と共に、外部磁化を受けて自由に回転する第2強磁性膜
と、前記第1及び第2強磁性膜の間に設けられた第1非
磁性中間層と、前記第1または第2のいずれか一方の外
側に設けられた第3強磁性膜と、前記第1または第2の
いずれか一方と前記第3強磁性膜の間に設けられた第2
非磁性中間膜と、を備え、前記第3強磁性膜は、NiF
e,CoFe,FeNのいずれか一つを主成分とし、
B,Cr,Cr,Zrの少なくと一つを添加する。前記
第3強磁性膜は、NiFeCrであることが望ましい。
さらに、Crを1〜9.4at%添加することが望まし
い。一方、前記第3強磁性膜の厚さは、30〜50Åで
あることが望ましい。さらに、40Å付近であることが
望ましい。また、前記第2非磁性中間膜は、100μΩ
cm以上の比抵抗を有することが望ましく、さらに、T
aであることが望ましい。一方、他の観点によれば、本
発明は、基板上に、反強磁性膜、前記反強磁性膜により
磁化方向がコア高さ方向に固定された第1強磁性膜、第
1非磁性中間膜、磁化方向がコア幅方向であると共に、
外部磁化をうけて自由に回転する第2強磁性膜、第2非
磁性中間膜、第3強磁性膜の順に積層されてなる磁気抵
抗効果型ヘッドである。前記第3強磁性膜は、軟磁性膜
であり、センス電流と協同して、前記第1強磁性膜の磁
化方向と逆向きに磁化される。さらに他の観点によれ
ば、本発明は、磁化方向がコア高さ方向に固定された硬
磁性膜と、磁化方向がコア幅方向であると共に、外部磁
化を受けて自由に回転する強磁性膜と、前記硬磁性膜と
前記強磁性膜の間に設けられた第1非磁性中間膜と、前
記硬磁性膜または前記強磁性膜のいずれか一方の外側に
設けられた軟磁性膜と、前記硬磁性膜または前記強磁性
膜のいすれか一方と前記軟磁性膜の間に設けられた第2
非磁性中間膜と、を備える。前記軟磁性膜は、センス電
流と協同して、前記硬磁性膜の磁化方向と逆向きに磁化
される。In order to solve the above-mentioned problems, the present invention provides a first ferromagnetic film having a fixed magnetization direction and a magnetization direction perpendicular to the magnetization direction of the first ferromagnetic film. A second ferromagnetic film that rotates freely by receiving external magnetization, a first non-magnetic intermediate layer provided between the first and second ferromagnetic films, and one of the first and second ferromagnetic films. A third ferromagnetic film provided on one outside, and a second ferromagnetic film provided between one of the first or second and the third ferromagnetic film.
A non-magnetic intermediate film, wherein the third ferromagnetic film comprises NiF
e, CoFe or FeN as a main component,
At least one of B, Cr, Cr, and Zr is added. Preferably, the third ferromagnetic film is made of NiFeCr.
Further, it is desirable to add 1 to 9.4 at% of Cr. Meanwhile, it is preferable that the thickness of the third ferromagnetic film is 30 to 50 degrees. Further, it is desirable to be around 40 °. The second non-magnetic intermediate film has a thickness of 100 μΩ.
cm or more.
a is desirable. On the other hand, according to another aspect, the present invention provides an antiferromagnetic film, a first ferromagnetic film having a magnetization direction fixed to a core height direction by the antiferromagnetic film, and a first nonmagnetic intermediate film. The film and magnetization direction are in the core width direction,
This is a magneto-resistance effect type head in which a second ferromagnetic film that rotates freely under external magnetization, a second non-magnetic intermediate film, and a third ferromagnetic film are stacked in this order. The third ferromagnetic film is a soft magnetic film, and is magnetized in a direction opposite to the magnetization direction of the first ferromagnetic film in cooperation with a sense current. According to still another aspect, the present invention provides a hard magnetic film in which the magnetization direction is fixed to the core height direction, and a ferromagnetic film in which the magnetization direction is the core width direction and freely rotates by receiving external magnetization. A first non-magnetic intermediate film provided between the hard magnetic film and the ferromagnetic film, a soft magnetic film provided outside one of the hard magnetic film and the ferromagnetic film, A second magnetic layer provided between the hard magnetic film or the ferromagnetic film and the soft magnetic film;
A non-magnetic intermediate film. The soft magnetic film is magnetized in a direction opposite to a magnetization direction of the hard magnetic film in cooperation with a sense current.
【発明の実施の形態】図1(a)は、従来の磁気抵抗効
果型ヘッドを示す要部斜視図であり、図1(b)は、各
強磁性膜の磁化方向を示す図である。図2(a)は、図
1の磁気抵抗効果型ヘッドの再生波形であり、図2
(b)は、フリー強磁性膜の磁化の触れを示す。図3
(a)は、第1実施例による磁気抵抗効果型ヘッドの斜
視図であり、図3(b)は、磁気抵抗効果素子の膜構造
(材料及び厚さ)を示す。図4(a)は、NiFeCr
下地膜のCr量と、飽和磁束密度Bsの関係を示すグラ
フであり、図4(b)は、Cr量と比抵抗ρの関係を示
すグラフであり、図4(c)は、Cr量と、単位膜厚当
たりの抵抗変化率の関係を示すグラフである。図4
(c)によれば、単位膜厚当たりの抵抗変化率は、Cr
量が1〜9.4at%の時良好である。図5は、センス
電流の大きさと、外部磁界が無い時のフリー層の角度の
関係を、NiFeCr層(バイアス制御層BCL)の厚
さをパラメータとして示したグラフである。図6(a)
は、第2実施例の電気抵抗効果型ヘッドを示す要部斜視
図であり、図6(b)は、各強磁性膜の磁化方向を示す
図である。図7(a)は、図6の磁気抵抗効果型ヘッド
の再生波形であり、図7(b)は、フリー強磁性膜の磁
化の触れを示す。図6(a)は本発明の磁気抵抗効果型
ヘッドの要部断面図である.矩型のSV素子は,(1)
PdPtMn膜からなる反強磁性膜,(2)CoFeB
膜からなる強磁性膜1,(3)Cu膜による非磁性中間
膜1,(4)NiFe/CoFeB積層膜からなる強磁
性膜2,(5)Ta膜による非磁性中間膜2,(6)N
iFeCr膜による軟磁性膜が電気的に接合することに
よって構成されている.(7)はAuあるいはW膜から
なる引き出し導体層,(8)−a,bはNiFeからな
る磁気シールドである.この場合,強磁性膜1(2)の
膜厚は20Å,非磁性中間膜1(3)の膜厚は32Å,
強磁性膜2(4)の膜厚は45Å,非磁性中間膜2
(5)の膜厚は75Å,軟磁性膜(6)の膜厚は40Å
である.引き出し導体膜(7)は,SV素子の長手方向
に対して所定幅で切除されて素子両端で素子に接合して
いる.反強磁性層(1),強磁性膜1(2),非磁性中
間膜1(3),強磁性膜2(4),非磁性中間膜2
(5),軟磁性膜(6),引き出し導体層(7)は2つ
の磁気シールド(8)−a,bの間(再生ギャップに相
当)に配置されるが,非磁性絶縁層を介して磁気シール
ド(8)−a,bと電気的に絶縁されている.本発明の
磁気抵抗効果型ヘッドに,強磁性膜1の磁化方向とセン
ス電流磁界の方向が同方向となるようにセンス電流を流
した場合の、図6(b)は外部磁界がない場合の各磁性
膜の磁化の向き,図7(a)は再生波形,再生出力,非
対称性,図7(b)は媒体磁界印加に伴う強磁性膜2の
磁化の振れである.従来例と同様に,非対称性を改善す
るため,強磁性膜1の磁化方向はコア幅方向に対して8
0°となっている.このように,非磁性中間膜2,軟磁
性膜をさらに積層することによって,再生出力,非対称
性が改善する.これは,強磁性膜2の磁化方向はコア幅
方向に対して+6度となり,従来よりも磁化方向が水平
に近くなるためである.また,図10は非磁性中間膜2
の比抵抗が変化した場合の再生出力の変化を示したグラ
フである.信頼性良くデータを再生するためには,再生
出力が600μVpp以上必要である.このため,非磁
性中間膜2の比抵抗は100μΩcm以上である必要が
ある.図8(a)は、第3実施例の磁気抵抗効果型ヘッ
ドを示す要部斜視図であり、図8(b)は、各強磁性膜
の磁化方向を示す図である。図9(a)は、図8の磁気
抵抗効果型ヘッドの再生波形であり、図9(b)は、フ
リー強磁性膜の磁化の触れを示す。図8(a)は本発明
の磁気抵抗効果型ヘッドの要部断面図である.矩形のS
V素子は,(2)α−Fe2O3/CoFeB積層膜か
らなる硬磁性膜1,(3)Cu膜による非磁性中間膜
1,(4)NiFe/CoFeB積層膜からなる強磁性
膜2,(5)Ti膜による非磁性中間膜2,(6)Fe
N膜による軟磁性膜が電気的に接合することによって構
成されている.(7)はAuあるいはW膜からなる引き
出し導体層,(8)−a,bはNiFeからなる磁気シ
ールドである.この場合,硬磁性膜1(2)の膜厚は2
0Å,非磁性中間膜1(3)の膜厚は32Å,強磁性膜
2(4)の膜厚は45Å,非磁性中間膜2(5)の膜厚
は75Å,軟磁性膜(6)の膜厚は20Åである.引き
出し導体膜(7)は、SV素子の長手方向に対して所定
幅で切除されて素子両端で素子に接合している.硬磁性
膜1(2),非磁性中間膜1(3),強磁性膜2
(4),非磁性中間膜2(5),軟磁性膜(6),引き
出し導体層(7)は2つの磁気シールド(8)−a,b
の間(再生ギャップに相当)に配置されるが,非磁性絶
縁層を介して磁気シールド(8)−a,bと電気的に絶
縁されている.本発明の磁気抵抗効果型ヘッドに,硬磁
性膜1の磁化方向とセンス電流磁界の方向が逆方向とな
るようにセンス電流を流した場合の,図8(b)は外部
磁界がない場合の各磁性膜の磁化の向き,図9(a)は
再生波形,再生出力,非対称性,図9(b)は媒体磁界
印加に伴う強磁性膜2の磁化の振れである.従来例と同
様に,非対称性を改善するため,硬磁性膜1の磁化方向
はコア幅方向に対して80°となっている.このよう
に,非磁性中間膜2,軟磁性膜をさらに積層することに
よって,再生出力,非対称性が改善する.これは,強磁
性膜2の磁化方向はコア幅方向に対して+4度となり,
従来よりも磁化方向が水平に近くなるためである.今回
の実施例では反強磁性膜に用いる反強磁性体としてPd
PtMnを用いたが,NiMn,NiO,IrMn,R
hMn,PtMn,CrMn等のそれ以外の反強磁性体
を用いてもよい.また,今回の実施例では強磁性膜1,
2はそれぞれ,CoFeB膜,CoFeB/NiFe積
層膜を用いたが,CoFeB膜,CoFe膜,CoFe
/NiFe積層膜,Co/NiFeCr膜といったCo
系合金膜,Co系合金/NiFe系合金積層膜のような
強磁性膜,強磁性積層膜を用いてもよい.また,今回の
実施例では軟磁性膜としてNiFeCr,FeNを用い
たが,それ以外の軟磁性体,たとえば,NiFeに添加
元素としてTi,V,Zr,Nb,Mo,Hf,Ta,
W,Ru,Rh,Al,Ir等の1種または2種加えた
合金,あるいは,FeNに添加元素としてTi,V,C
r,Zr,Nb,Mo,Hf,Ta,W,Ru,Rh,
Al,Ir等の1種または2種加えた合金を用いてもよ
い.また,今回の実施例では,非磁性中間膜2としてT
i,Taといった非磁性体を用いたが,それ以外にも,
SiO2,Al2O3等の非磁性体をもちいてもよい.
また,今回の実施例では,硬磁性膜1とてα−Fe3O
3/CoFeB積層膜を用いたが,反強磁性体/強磁性
体の積層膜や,CoCrといったそれ以外の硬磁性膜を
用いてもよい.また,今回の実施例では磁気抵抗効果素
子を「反強磁性膜/強磁性膜1/非磁性中間膜1/強磁
性膜2/非磁性中間膜2/軟磁性膜」または「軟磁性膜
/非磁性中間膜2/硬磁性膜1/非磁性中間膜1/強磁
性膜2」という順で積層したが,逆の積層である「軟磁
性膜/非磁性中間膜2/強磁性膜2/非磁性中間膜1/
強磁性膜1/反強磁性膜」,「強磁性膜2/非磁性中間
膜1/強磁性膜1/反強磁性膜/非磁性中間膜2/軟磁
性膜」,「軟磁性膜/非磁性中間膜2/強磁性膜2/非
磁性中間膜1/硬磁性膜」または「強磁性膜2/非磁性
中間膜1/硬磁性膜/非磁性中間膜2/軟磁性膜」とい
う構造にしてもよい.FIG. 1A is a perspective view showing a main part of a conventional magnetoresistive head, and FIG. 1B is a view showing the magnetization direction of each ferromagnetic film. FIG. 2A shows a reproduction waveform of the magnetoresistive head of FIG.
(B) shows the touch of the magnetization of the free ferromagnetic film. FIG.
FIG. 3A is a perspective view of the magnetoresistive head according to the first embodiment, and FIG. 3B shows the film structure (material and thickness) of the magnetoresistive element. FIG. 4A shows NiFeCr.
FIG. 4B is a graph showing the relationship between the amount of Cr in the underlayer and the saturation magnetic flux density Bs, FIG. 4B is a graph showing the relationship between the amount of Cr and the specific resistance ρ, and FIG. 4 is a graph showing a relationship between resistance change rates per unit film thickness. FIG.
According to (c), the rate of resistance change per unit film thickness is Cr
It is good when the amount is 1 to 9.4 at%. FIG. 5 is a graph showing the relationship between the magnitude of the sense current and the angle of the free layer when there is no external magnetic field, using the thickness of the NiFeCr layer (the bias control layer BCL) as a parameter. FIG. 6 (a)
FIG. 6 is a perspective view of a principal part showing an electric resistance effect type head according to a second embodiment, and FIG. 6B is a diagram showing a magnetization direction of each ferromagnetic film. FIG. 7A shows a reproduction waveform of the magnetoresistive head of FIG. 6, and FIG. 7B shows how the magnetization of the free ferromagnetic film touches. FIG. 6A is a sectional view of a main part of a magnetoresistive head according to the present invention. The rectangular SV element is (1)
Antiferromagnetic film made of PdPtMn film, (2) CoFeB
Ferromagnetic film composed of a film 1, (3) Nonmagnetic intermediate film composed of a Cu film 1, (4) Ferromagnetic film composed of a NiFe / CoFeB laminated film 2, (5) Nonmagnetic intermediate film composed of a Ta film 2, (6) N
It is constituted by electrically bonding a soft magnetic film made of an iFeCr film. (7) is a lead conductor layer made of an Au or W film, and (8) -a and b are magnetic shields made of NiFe. In this case, the thickness of the ferromagnetic film 1 (2) is 20 °, the thickness of the non-magnetic intermediate film 1 (3) is 32 °,
The thickness of the ferromagnetic film 2 (4) is 45 °, and the nonmagnetic intermediate film 2
The thickness of (5) is 75 ° and the thickness of the soft magnetic film (6) is 40 °.
. The lead conductor film (7) is cut off at a predetermined width in the longitudinal direction of the SV element, and is joined to the element at both ends of the element. Antiferromagnetic layer (1), ferromagnetic film 1 (2), nonmagnetic intermediate film 1 (3), ferromagnetic film 2 (4), nonmagnetic intermediate film 2
(5) The soft magnetic film (6) and the lead conductor layer (7) are arranged between the two magnetic shields (8) -a and b (corresponding to the read gap), but with the nonmagnetic insulating layer interposed therebetween. Magnetic shield (8)-electrically insulated from a and b. FIG. 6B shows a case where a sense current is applied to the magnetoresistive head of the present invention so that the magnetization direction of the ferromagnetic film 1 and the direction of the sense current magnetic field are the same, and FIG. FIG. 7A shows the reproduction waveform, reproduction output, and asymmetry, and FIG. 7B shows the magnetization fluctuation of the ferromagnetic film 2 due to the application of the medium magnetic field. As in the conventional example, the magnetization direction of the ferromagnetic film 1 is set to be 8
0 °. As described above, by further laminating the non-magnetic intermediate film 2 and the soft magnetic film, the reproduction output and the asymmetry are improved. This is because the magnetization direction of the ferromagnetic film 2 is +6 degrees with respect to the core width direction, and the magnetization direction is closer to horizontal than in the conventional case. FIG. 10 shows the non-magnetic intermediate film 2.
Fig. 5 is a graph showing the change of the reproduction output when the specific resistance of the sample changes. In order to reproduce data with high reliability, the reproduction output needs to be 600 μVpp or more. For this reason, the specific resistance of the nonmagnetic intermediate film 2 needs to be 100 μΩcm or more. FIG. 8A is a perspective view of an essential part showing a magnetoresistive head according to a third embodiment, and FIG. 8B is a diagram showing the magnetization direction of each ferromagnetic film. FIG. 9A shows a reproduction waveform of the magnetoresistive head of FIG. 8, and FIG. 9B shows the touch of the magnetization of the free ferromagnetic film. FIG. 8A is a sectional view of a main part of a magnetoresistive head according to the present invention. Rectangular S
The V element is composed of (2) a hard magnetic film composed of an α-Fe2O3 / CoFeB laminated film, (3) a non-magnetic intermediate film composed of a Cu film, (4) a ferromagnetic film composed of a NiFe / CoFeB laminated film, and (5) ) Non-magnetic intermediate film 2 of Ti film, (6) Fe
It is constituted by electrically bonding soft magnetic films of N films. (7) is a lead conductor layer made of an Au or W film, and (8) -a and b are magnetic shields made of NiFe. In this case, the thickness of the hard magnetic film 1 (2) is 2
0 °, the thickness of the nonmagnetic intermediate film 1 (3) is 32 °, the thickness of the ferromagnetic film 2 (4) is 45 °, the thickness of the nonmagnetic intermediate film 2 (5) is 75 °, and the thickness of the soft magnetic film (6) is The film thickness is 20 °. The lead conductor film (7) is cut at a predetermined width in the longitudinal direction of the SV element and is joined to the element at both ends of the element. Hard magnetic film 1 (2), non-magnetic intermediate film 1 (3), ferromagnetic film 2
(4) The non-magnetic intermediate film 2 (5), the soft magnetic film (6), and the lead conductor layer (7) are two magnetic shields (8) -a, b
(Corresponding to the read gap), but is electrically insulated from the magnetic shields (8) -a, b via the nonmagnetic insulating layer. FIG. 8B shows a case where a sense current is applied to the magnetoresistive head of the present invention so that the magnetization direction of the hard magnetic film 1 and the direction of the sense current magnetic field are opposite to each other. FIG. 9 (a) shows the reproduction waveform, reproduction output, and asymmetry, and FIG. 9 (b) shows the magnetization fluctuation of the ferromagnetic film 2 due to the application of the medium magnetic field. As in the conventional example, the magnetization direction of the hard magnetic film 1 is 80 ° with respect to the core width direction in order to improve the asymmetry. As described above, by further laminating the non-magnetic intermediate film 2 and the soft magnetic film, the reproduction output and the asymmetry are improved. This means that the magnetization direction of the ferromagnetic film 2 is +4 degrees with respect to the core width direction,
This is because the magnetization direction is closer to horizontal than in the past. In this embodiment, the antiferromagnetic material used for the antiferromagnetic film is Pd.
Although PtMn was used, NiMn, NiO, IrMn, R
Other antiferromagnetic materials such as hMn, PtMn, and CrMn may be used. In this embodiment, the ferromagnetic films 1 and
2 used a CoFeB film and a CoFeB / NiFe laminated film, respectively.
Co / NiFe laminated film, Co / NiFeCr film
A ferromagnetic film such as a Co-based alloy film, a Co-based alloy / NiFe-based alloy laminated film, or a ferromagnetic laminated film may be used. In this embodiment, NiFeCr and FeN are used as the soft magnetic film. However, other soft magnetic materials such as Ti, V, Zr, Nb, Mo, Hf, Ta,
Alloys added with one or two of W, Ru, Rh, Al, Ir, etc., or Ti, V, C
r, Zr, Nb, Mo, Hf, Ta, W, Ru, Rh,
An alloy containing one or two of Al, Ir, etc. may be used. In this embodiment, the nonmagnetic intermediate film 2 is made of T
Non-magnetic materials such as i and Ta were used.
A non-magnetic material such as SiO2 and Al2O3 may be used.
In the present embodiment, the hard magnetic film 1 is made of α-Fe3O
Although the 3 / CoFeB laminated film is used, a laminated film of antiferromagnetic material / ferromagnetic material or other hard magnetic film such as CoCr may be used. Further, in this embodiment, the magnetoresistive effect element is referred to as “antiferromagnetic film / ferromagnetic film 1 / nonmagnetic intermediate film 1 / ferromagnetic film 2 / nonmagnetic intermediate film 2 / soft magnetic film” or “soft magnetic film / The non-magnetic intermediate film 2 / hard magnetic film 1 / non-magnetic intermediate film 1 / ferromagnetic film 2 were laminated in this order, but the reverse lamination was "soft magnetic film / non-magnetic intermediate film 2 / ferromagnetic film 2 / Nonmagnetic interlayer 1 /
"Ferromagnetic film 1 / anti-ferromagnetic film", "ferromagnetic film 2 / non-magnetic intermediate film 1 / ferromagnetic film 1 / anti-ferromagnetic film / non-magnetic intermediate film 2 / soft magnetic film", "soft magnetic film / non-magnetic film" The structure is “magnetic intermediate film 2 / ferromagnetic film 2 / non-magnetic intermediate film 1 / hard magnetic film” or “ferromagnetic film 2 / non-magnetic intermediate film 1 / hard magnetic film / non-magnetic intermediate film 2 / soft magnetic film”. You may.
【発明の効果】本発明によれば,反強磁性膜に接合した
強磁性膜または硬磁性膜によって生じる磁界を打ち消す
ための軟性膜を磁気抵抗効果膜の近傍に設けることによ
って,磁気抵抗効果型ヘッドの再生出力,非対称性を向
上することが可能になる.According to the present invention, a soft film for canceling a magnetic field generated by a ferromagnetic film or a hard magnetic film bonded to an antiferromagnetic film is provided in the vicinity of the magnetoresistive film, thereby providing a magnetoresistive film. It is possible to improve the reproduction output and asymmetry of the head.
【図1】図1(a)は、従来の磁気抵抗効果型ヘッドを
示す要部斜視図であり、図1(b)は、各強磁性膜の磁
化方向を示す図である。FIG. 1A is a perspective view of a main part showing a conventional magnetoresistive head, and FIG. 1B is a diagram showing a magnetization direction of each ferromagnetic film.
【図2】図2(a)は、図1の磁気抵抗効果型ヘッドの
再生波形であり、図2(b)は、フリー強磁性膜の磁化
の触れを示す。FIG. 2A shows a reproduction waveform of the magnetoresistive head of FIG. 1, and FIG. 2B shows a touch of magnetization of a free ferromagnetic film.
【図3】図3(a)は、第1実施例による磁気抵抗効果
型ヘッドの斜視図であり、図3(b)は、磁気抵抗効果
素子の膜構造(材料及び厚さ)を示す。FIG. 3A is a perspective view of a magnetoresistive head according to a first embodiment, and FIG. 3B shows a film structure (material and thickness) of the magnetoresistive element.
【図4】図4(a)は、NiFeCr下地膜のCr量
と、飽和磁束密度Bsの関係を示すグラフであり、図4
(b)は、Cr量と比抵抗ρの関係を示すグラフであ
り、図4(c)は、Cr量と、単位膜厚当たりの抵抗変
化率の関係を示すグラフである。FIG. 4A is a graph showing the relationship between the amount of Cr in a NiFeCr underlayer and the saturation magnetic flux density Bs.
4B is a graph showing the relationship between the amount of Cr and the specific resistance ρ, and FIG. 4C is a graph showing the relationship between the amount of Cr and the rate of change in resistance per unit film thickness.
【図5】図5は、センス電流の大きさと、外部磁界が無
い時のフリー層の角度の関係を、NiFeCr層(バイ
アス制御層BCL)の厚さをパラメータとして示したグ
ラフである。FIG. 5 is a graph showing the relationship between the magnitude of a sense current and the angle of a free layer when there is no external magnetic field, using the thickness of a NiFeCr layer (bias control layer BCL) as a parameter.
【図6】図6(a)は、第2実施例の磁気抵抗効果型ヘ
ッドを示す要部斜視図であり、図6(b)は、各強磁性
膜の磁化方向を示す図である。FIG. 6A is a perspective view of a main part showing a magnetoresistive head according to a second embodiment, and FIG. 6B is a diagram showing the magnetization direction of each ferromagnetic film.
【図7】図7(a)は、図6の磁気抵抗効果型ヘッドの
再生波形であり、図7(b)は、フリー強磁性膜の磁化
の触れを示す。7 (a) is a reproduction waveform of the magnetoresistive head of FIG. 6, and FIG. 7 (b) shows a touch of magnetization of a free ferromagnetic film.
【図8】図8(a)は、第3実施例の磁気抵抗効果型ヘ
ッドを示す要部斜視図であり、図8(b)は、各強磁性
膜の磁化方向を示す図である。FIG. 8A is a perspective view of a main part showing a magnetoresistive head according to a third embodiment, and FIG. 8B is a diagram showing a magnetization direction of each ferromagnetic film.
【図9】図9(a)は、図8の磁気抵抗効果型ヘッドの
再生波形であり、図9(b)は、フリー強磁性膜の磁化
の触れを示す。9 (a) is a reproduction waveform of the magnetoresistive head of FIG. 8, and FIG. 9 (b) shows how the magnetization of the free ferromagnetic film is touched.
─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───
【手続補正書】[Procedure amendment]
【提出日】平成10年1月7日[Submission date] January 7, 1998
【手続補正1】[Procedure amendment 1]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】図面の簡単な説明[Correction target item name] Brief description of drawings
【補正方法】変更[Correction method] Change
【補正内容】[Correction contents]
【図面の簡単な説明】[Brief description of the drawings]
【図1】図1(a)は、従来の磁気抵抗効果型ヘッドを
示す要部斜視図であり、図1(b)は、各強磁性膜の磁
化方向を示す図である。FIG. 1A is a perspective view of a main part showing a conventional magnetoresistive head, and FIG. 1B is a diagram showing a magnetization direction of each ferromagnetic film.
【図2】図2(a)は、図1の磁気抵抗効果型ヘッドの
再生波形であり、図2(b)は、フリー強磁性膜の磁化
の触れを示す。FIG. 2A shows a reproduction waveform of the magnetoresistive head of FIG. 1, and FIG. 2B shows a touch of magnetization of a free ferromagnetic film.
【図3】図3(a)は、第1実施例による磁気抵抗効果
型ヘッドの斜視図であり、図3(b)は、磁気抵抗効果
素子の膜構造(材料及び厚さ)を示す。FIG. 3A is a perspective view of a magnetoresistive head according to a first embodiment, and FIG. 3B shows a film structure (material and thickness) of the magnetoresistive element.
【図4】図4(a)は、NiFeCr下地膜のCr量
と、飽和磁束密度Bsの関係を示すグラフであり、図4
(b)は、Cr量と比抵抗ρの関係を示すグラフであ
り、図4(c)は、Cr量と、単位膜厚当たりの抵抗変
化率の関係を示すグラフである。FIG. 4A is a graph showing the relationship between the amount of Cr in a NiFeCr underlayer and the saturation magnetic flux density Bs.
4B is a graph showing the relationship between the amount of Cr and the specific resistance ρ, and FIG. 4C is a graph showing the relationship between the amount of Cr and the rate of change in resistance per unit film thickness.
【図5】図5は、センス電流の大きさと、外部磁界が無
い時のフリー層の角度の関係を、NiFeCr層(バイ
アス制御層BCL)の厚さをパラメータとして示したグ
ラフである。FIG. 5 is a graph showing the relationship between the magnitude of a sense current and the angle of a free layer when there is no external magnetic field, using the thickness of a NiFeCr layer (bias control layer BCL) as a parameter.
【図6】図6(a)は、第2実施例の磁気抵抗効果型ヘ
ッドを示す要部斜視図であり、図6(b)は、各強磁性
膜の磁化方向を示す図である。FIG. 6A is a perspective view of a main part showing a magnetoresistive head according to a second embodiment, and FIG. 6B is a diagram showing the magnetization direction of each ferromagnetic film.
【図7】図7(a)は、図6の磁気抵抗効果型ヘッドの
再生波形であり、図7(b)は、フリー強磁性膜の磁化
の触れを示す。7 (a) is a reproduction waveform of the magnetoresistive head of FIG. 6, and FIG. 7 (b) shows a touch of magnetization of a free ferromagnetic film.
【図8】図8(a)は、第3実施例の磁気抵抗効果型ヘ
ッドを示す要部斜視図であり、図8(b)は、各強磁性
膜の磁化方向を示す図である。FIG. 8A is a perspective view of a main part showing a magnetoresistive head according to a third embodiment, and FIG. 8B is a diagram showing a magnetization direction of each ferromagnetic film.
【図9】図9(a)は、図8の磁気抵抗効果型ヘッドの
再生波形であり、図9(b)は、フリー強磁性膜の磁化
の触れを示す。9 (a) is a reproduction waveform of the magnetoresistive head of FIG. 8, and FIG. 9 (b) shows how the magnetization of the free ferromagnetic film is touched.
【図10】図10は、図6の磁気抵抗効果型ヘッドの再
生出力と非磁性中間膜2の比抵抗の関係を示す図であ
る。FIG. 10 is a diagram showing the relationship between the reproduction output of the magnetoresistive head of FIG. 6 and the specific resistance of the non-magnetic intermediate film 2;
【符号の説明】 1 反強磁性膜 2 強磁性膜1 3 非磁性中間膜1 4 強磁性膜2 5 非磁性中間膜2 6 軟磁性膜 7 引き出し導体 8a,8b 磁気シールド 9 信号検出領域[Description of Signs] 1 Antiferromagnetic film 2 Ferromagnetic film 1 3 Nonmagnetic intermediate film 1 4 Ferromagnetic film 2 5 Nonmagnetic intermediate film 2 6 Soft magnetic film 7 Leading conductors 8a, 8b Magnetic shield 9 Signal detection area
Claims (18)
に、外部磁化を受けて自由に回転する第2強磁性膜と、 前記第1及び第2強磁性膜の間に設けられた第1非磁性
中間層と、 前記第1または第2のいずれか一方の外側に設けられた
第3強磁性膜と、 前記第1または第2のいずれか一方と前記第3強磁性膜
の間に設けられた第2非磁性中間膜と、を備え、 前記第3強磁性膜は、NiFe,CoFe,FeNのい
ずれか一つを主成分とし、B,Cr,Cr,Zrの少な
くと一つを添加することを特徴とする磁気抵抗効果型ヘ
ッド。A first ferromagnetic film having a fixed magnetization direction; a second ferromagnetic film having a magnetization direction perpendicular to the magnetization direction of the first ferromagnetic film and rotating freely by receiving external magnetization; A first non-magnetic intermediate layer provided between the first and second ferromagnetic films; a third ferromagnetic film provided outside one of the first and second ferromagnetic films; Or a second nonmagnetic intermediate film provided between any one of the second and the third ferromagnetic film, wherein the third ferromagnetic film is made of one of NiFe, CoFe, and FeN. A magnetoresistive head comprising, as a main component, at least one of B, Cr, Cr, and Zr.
ことを特徴とする請求項1に記載の磁気抵抗効果型ヘッ
ド。2. The magnetoresistive head according to claim 1, wherein said third ferromagnetic film is made of NiFeCr.
t%添加することを特徴とする請求項2に記載の磁気抵
抗効果型ヘッド。3. The third ferromagnetic film contains Cr in an amount of 1 to 9.4a.
3. The magnetoresistive head according to claim 2, wherein t% is added.
であることを特徴とする請求項1に記載の磁気抵抗効果
型ヘッド。4. The third ferromagnetic film has a thickness of 30 to 50 °.
2. The magnetoresistive head according to claim 1, wherein:
あることを特徴とする請求項4に記載の磁気抵抗効果型
ヘッド。5. The magnetoresistive head according to claim 4, wherein the thickness of said third ferromagnetic film is around 40 °.
以上の比抵抗を有することを特徴とする請求項1に記載
の磁気抵抗効果型ヘッド。6. The second nonmagnetic intermediate film has a thickness of 100 μΩcm.
2. The magnetoresistive head according to claim 1, wherein said head has the above specific resistance.
を特徴とする請求項6に記載の磁気抵抗効果型ヘッド。7. The magnetoresistive head according to claim 6, wherein the second specific magnetic intermediate film is made of Ta.
より磁化方向がコア高さ方向に固定された第1強磁性
膜、第1非磁性中間膜、磁化方向がコア幅方向であると
共に、外部磁化をうけて自由に回転する第2強磁性膜、
第2非磁性中間膜、第3強磁性膜の順に積層されてなる
磁気抵抗効果型ヘッド。8. An antiferromagnetic film, a first ferromagnetic film having a magnetization direction fixed to a core height direction by the antiferromagnetic film, a first nonmagnetic intermediate film, and a magnetization direction in a core width direction. And a second ferromagnetic film that rotates freely under external magnetization,
A magnetoresistive head comprising a second non-magnetic intermediate film and a third ferromagnetic film stacked in this order.
ンス電流と協同して、前記第1強磁性膜の磁化方向と逆
向きに磁化されることを特徴とする請求項8に記載の磁
気抵抗効果型ヘッド。9. The method according to claim 8, wherein the third ferromagnetic film is a soft magnetic film, and is magnetized in a direction opposite to a magnetization direction of the first ferromagnetic film in cooperation with a sense current. 3. The magnetoresistive head according to item 1.
磁性膜と、 磁化方向がコア幅方向であると共に、外部磁化を受けて
自由に回転する強磁性膜と、 前記硬磁性膜と前記強磁性膜の間に設けられた第1非磁
性中間膜と、 前記硬磁性膜または前記強磁性膜のいずれか一方の外側
に設けられた軟磁性膜と、 前記硬磁性膜または前記強磁性膜のいずれか一方と前記
軟磁性膜の間に設けられた第2非磁性中間膜と、 を備えたことを特徴とする磁気抵抗効果型ヘッド。10. A hard magnetic film whose magnetization direction is fixed to the core height direction, a ferromagnetic film whose magnetization direction is the core width direction and which rotates freely by receiving external magnetization, A first nonmagnetic intermediate film provided between the ferromagnetic films, a soft magnetic film provided outside one of the hard magnetic film and the ferromagnetic film, and the hard magnetic film or the ferromagnetic film And a second non-magnetic intermediate film provided between any one of the films and the soft magnetic film.
て、前記硬磁性膜の磁化方向と逆向きに磁化されること
を特徴とする請求項10に記載の磁気抵抗効果型ヘッ
ド。11. The magnetoresistive head according to claim 10, wherein the soft magnetic film is magnetized in a direction opposite to a magnetization direction of the hard magnetic film in cooperation with a sense current.
FeNのいずれか一つを主成分とし、B,Cr,Cr,
Zrの少なくと一つを添加したことを特徴とする請求項
9または11に記載の磁気抵抗効果型ヘッド。12. The soft magnetic film comprises NiFe, CoFe,
One of FeN as a main component, B, Cr, Cr,
The magnetoresistive head according to claim 9 or 11, wherein at least one of Zr is added.
とを特徴とする請求項12に記載の磁気抵抗効果型ヘッ
ド。13. The magnetoresistive head according to claim 12, wherein said soft magnetic film is made of NiFeCr.
t%添加することを特徴とする請求項13に記載の磁気
抵抗効果型ヘッド。14. The soft magnetic film according to claim 1, wherein Cr is 1 to 9.4a.
14. The magnetoresistive head according to claim 13, wherein t% is added.
あることを特徴とする請求項12に記載の磁気抵抗効果
型ヘッド。15. The magnetoresistive head according to claim 12, wherein said soft magnetic film has a thickness of 30 to 50 °.
ることを特徴とする請求項12に記載の磁気抵抗効果型
ヘッド。16. The magnetoresistive head according to claim 12, wherein said soft magnetic film has a thickness of about 40 °.
m以上の比抵抗を有することを特徴とする請求項12に
記載の磁気抵抗効果型ヘッド。17. The method according to claim 17, wherein the second non-magnetic intermediate film has a thickness of 100 μΩc.
13. The magnetoresistive head according to claim 12, having a specific resistance of at least m.
とを特徴とする請求項17に記載の磁気抵抗効果型ヘッ
ド。18. The magnetoresistive head according to claim 17, wherein said second specific magnetic intermediate film is made of Ta.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9306305A JPH11110720A (en) | 1997-10-01 | 1997-10-01 | Magneto-resistive type head |
DE19844887A DE19844887A1 (en) | 1997-10-01 | 1998-09-30 | Magnetoresistive head of spin valve type |
CN98119406A CN1213816A (en) | 1997-10-01 | 1998-09-30 | Magnetoresistive head |
KR1019980040877A KR19990036719A (en) | 1997-10-01 | 1998-09-30 | Magnetoresistive Head |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9306305A JPH11110720A (en) | 1997-10-01 | 1997-10-01 | Magneto-resistive type head |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH11110720A true JPH11110720A (en) | 1999-04-23 |
Family
ID=17955513
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9306305A Pending JPH11110720A (en) | 1997-10-01 | 1997-10-01 | Magneto-resistive type head |
Country Status (4)
Country | Link |
---|---|
JP (1) | JPH11110720A (en) |
KR (1) | KR19990036719A (en) |
CN (1) | CN1213816A (en) |
DE (1) | DE19844887A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6108177A (en) * | 1998-11-19 | 2000-08-22 | International Business Machines Corporation | Tunnel junction structure with FeX ferromagnetic layers |
KR100379981B1 (en) * | 1999-12-06 | 2003-04-11 | 알프스 덴키 가부시키가이샤 | Spin-valve type magnetoresistance effect device, thin film magnetic head having the same, and method of manufacturing them |
US6788501B2 (en) | 2002-09-24 | 2004-09-07 | International Business Machines Corporation | GMR read head having a pinned layer with an active portion oxidized to reduce the magnetic moment thereof |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105911103A (en) * | 2016-04-13 | 2016-08-31 | 南京工业大学 | Pinning spin valve structure, biomagnetic sensor and biomolecule detection method |
-
1997
- 1997-10-01 JP JP9306305A patent/JPH11110720A/en active Pending
-
1998
- 1998-09-30 CN CN98119406A patent/CN1213816A/en active Pending
- 1998-09-30 KR KR1019980040877A patent/KR19990036719A/en active IP Right Grant
- 1998-09-30 DE DE19844887A patent/DE19844887A1/en not_active Withdrawn
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6108177A (en) * | 1998-11-19 | 2000-08-22 | International Business Machines Corporation | Tunnel junction structure with FeX ferromagnetic layers |
KR100379981B1 (en) * | 1999-12-06 | 2003-04-11 | 알프스 덴키 가부시키가이샤 | Spin-valve type magnetoresistance effect device, thin film magnetic head having the same, and method of manufacturing them |
US6788501B2 (en) | 2002-09-24 | 2004-09-07 | International Business Machines Corporation | GMR read head having a pinned layer with an active portion oxidized to reduce the magnetic moment thereof |
Also Published As
Publication number | Publication date |
---|---|
CN1213816A (en) | 1999-04-14 |
KR19990036719A (en) | 1999-05-25 |
DE19844887A1 (en) | 1999-04-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3253556B2 (en) | Magnetoresistive element, magnetic head and magnetic storage device using the same | |
JP4177954B2 (en) | Magnetic tunnel junction stacked head and method of manufacturing the same | |
JP2002359412A (en) | Magnetoresistive effect element, magnetoresistive effect type magnetic sensor, magnetoresistive effect type magnetic head, and magnetic memory | |
JP2001126219A (en) | Spin valve magneto-resistive sensor and thin film magnetic head | |
JP2001331913A (en) | Magnetic tunnel junction type read-in head, its manufacturing method and magnetic field detecting device | |
JP2002150512A (en) | Magnetoresistive element and magnetoresistive magnetic head | |
US6903906B2 (en) | Magnetic head with a lamination stack to control the magnetic domain | |
US8922953B1 (en) | Dual current-perpendicular-to-the-plane (CPP) magnetoresistive (MR) sensor with antiparallel-free (APF) structure and integrated reference layers/shields | |
JP2002353535A (en) | Magnetoresistive effect element, magnetoresistive effect type magnetic sensor, magnetoresistive effect type magnetic head, and magnetic memory | |
JPH10154311A (en) | Magneto-resistive element and shielding type magneto-resistive sensor | |
JP2007109807A (en) | Magnetoresistive element, magnetic head, and magnetgic recording device | |
JP2002025012A (en) | Magnetoresistive effect thin film magnetic head | |
JPH0916915A (en) | Magneto-resistive transducer and magnetic recorder | |
JP2001250208A (en) | Magneto-resistive element | |
JP2002150511A (en) | Spin valve magnetoresistive element and magnetic head using the same | |
US6671136B2 (en) | Magnetic head and magnetic disk apparatus | |
JPH10289417A (en) | Thin-film magnetic head | |
JPH0954916A (en) | Spin valve magnetoresistive transducer and magnetic recording device | |
JP2004103806A (en) | Exchangeable coupling film, spin valve film, thin film magnetic head, magnetic head device, and magnetic recoding/reproducing apparatus | |
JPH0969211A (en) | Magnetoresistance effect film, magnetic head and magnetic recorder/reproducer | |
KR20020013579A (en) | Spin-valve magnetoresistance effect head, composite magnetic head comprising the same, and magnetoresistance recorded medium drive | |
JP2001274479A (en) | Spin valve structure, magnetoresistive effect element, and thin film magnetic head | |
JPH11110720A (en) | Magneto-resistive type head | |
JP2010062191A (en) | Magnetoresistive element, magnetic head, information storage device, and magnetic memory | |
JPH10320721A (en) | Magneto-resistance effect head |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20020312 |