JP2668897B2 - Magnetoresistive magnetic head - Google Patents

Magnetoresistive magnetic head

Info

Publication number
JP2668897B2
JP2668897B2 JP62274042A JP27404287A JP2668897B2 JP 2668897 B2 JP2668897 B2 JP 2668897B2 JP 62274042 A JP62274042 A JP 62274042A JP 27404287 A JP27404287 A JP 27404287A JP 2668897 B2 JP2668897 B2 JP 2668897B2
Authority
JP
Japan
Prior art keywords
magnetic
metal thin
thin films
ferromagnetic metal
insulating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62274042A
Other languages
Japanese (ja)
Other versions
JPH01116915A (en
Inventor
英夫 陶山
時晴 山田
憲男 斎藤
宗克 福山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP62274042A priority Critical patent/JP2668897B2/en
Publication of JPH01116915A publication Critical patent/JPH01116915A/en
Application granted granted Critical
Publication of JP2668897B2 publication Critical patent/JP2668897B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Magnetic Heads (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、磁気抵抗効果型磁気ヘッドに関わる。 〔発明の概要〕 本発明は少くとも一方が磁気抵抗効果を有する第1及
び第2の強磁性金属薄膜が非磁性絶縁中間層を介して積
層された積層型構成をとる感磁部よりなる磁気抵抗効果
型磁気ヘッドにおいて、この感磁部に対する電極の被着
部を電極上に直接的に連接するを回避して感磁部のその
第1及び第2の強磁性金属薄膜の端面で連接するように
して電極と強磁性金属薄膜との接触による磁気的特性の
劣化を回避して安定して優れた磁気的特性を有し信頼性
に優れた磁気抵抗効果型磁気ヘッドを構成する。 〔従来の技術〕 磁気抵抗効果型磁気ヘッド(以下MR型磁気という)に
おいて、その感磁部すなわち磁気抵抗効果素子を、非磁
性絶縁中間層を介して積層された磁気抵抗効果(以下MR
効果という)を有する2枚の強磁性薄膜或いは一方がMR
効果を有する2枚の強磁性薄膜の積層体によって構成
し、両薄膜に同一方向のセンス電流を通ずるようにした
MR型磁気ヘッドが例えば特開昭61−182620号公報及び特
開昭62−52711号公報に開示されている。このような構
成によるMR型磁気ヘッドにおいては、その感磁部が非磁
性中間層の介在によって静磁的に結合された磁気抵抗薄
膜の積層によって、各磁性薄膜において同一方向のセン
ス電流によって互いに反平行の磁化が発生するようにな
されて、全体として単磁区構成となり、磁壁の発生が回
避されてバルクハウゼンノイズの発生が抑制されるよう
になされている。 このようなMR型磁気ヘッドは、例えば第7図にその断
面図を示すように、基板(1)上に感磁部(2)が形成
され、その両端に電極金属層(3)及び(4)が被着さ
れて両電極金属層(3)及び(4)間にセンス電流iが
通ずるようになされる。この場合、感磁部(2)の表面
には、表面絶縁層(14)が被着され、これに電極金属層
(3)及び(4)を感磁部(2)に被着するに供する電
極コンタクト窓(14a)及び(14b)が穿設され、この絶
縁層(14)を介して感磁部(2)上を横切って、これに
所要のバイアス磁界を与えるバイアス導体(5)が形成
される。感磁部(2)上には、少くとも感磁部(2)上
を含んで絶縁層(6)を介して上部シールド磁性体
(7)が被着される。(8)は磁気記録媒体との対接な
いしは対向面で、感磁部(2)の前方端面がこの面
(8)に臨むようになされ、この面(8)側から磁気記
録媒体上の記録情報によって与えられる信号磁界とセン
ス電流iの通電方向が平行関係にあるように選定され、
バイアス導体(5)にはバイアス電流がセンス電流iと
直交する方向に与えられて感磁部(2)に所要のバイア
ス磁界が与えられて感磁部(2)がその抵抗変化の直線
性に優れた部分において動作するようになされる。 感磁部(2)は、MR効果を有する例えばパーマロイ
(NiFe合金)等の第1及び第2の強磁性金属薄膜(11)
及び(12)が非磁性絶縁中間層(13)を介して積層され
てなり、電極金属層(3)及び(4)は例えばモリブデ
ンMo、タングステンW等の金属層によって構成されこれ
が表面絶縁層(14)に形成された電極コンタクト窓(14
a)及び(14b)を通じて感磁部(2)上に連接するよう
に感磁部(2)の上層の強磁性金属薄膜(12)に跨るよ
うに被着される。 この構成において感磁部(2)における磁気記録媒体
からの信号磁界による抵抗変化をセンス電流の通電によ
る電圧変化をしてとり出して磁気記録媒体上の記録を読
み出すようになされている。 〔発明が解決しようとする問題点〕 上述したMR型磁気ヘッドによれば、バルクハウゼンノ
イズの改善が効果的に図られるものであるが、特にその
感磁部(2)を構成する磁性薄膜としてパーマロイ等の
金属薄膜が用いられる場合、この感磁部(2)の形成後
における磁気ヘッドの製造過程で経る熱処理工程、ある
いは磁気ヘッドの完成後においての使用時における磁気
ヘッドを具備する磁気ヘッド装置の磁気媒体との対接等
に基づく温度上昇等によって特性劣化を招来するという
経時変化及び信頼性に問題がある。 本発明は、このような特性劣化ないしは信頼性の低下
が特に感磁部(2)の磁性薄膜として金属薄膜を用いる
場合、この金属薄膜と電極金属層(3)及び(4)との
接触部においてこれら金属相互の拡散に基づいて生ずる
ことを究明し、これに基づいて上述した諸問題の解決を
図る。 すなわち、上述したように感磁部(2)に対してセン
ス電流の方向と磁気記録媒体からの信号磁界の方向とを
平行に選定する場合、その感磁部(2)にセンス電流を
通ずるための一方の電極金属層(3)は感磁部(2)の
前方端すなわち磁気記録媒体との対接ないしは対向面
(8)に臨む端部において被着されることが必要であ
り、ここにおける磁気的特性劣化は感磁部(2)の信号
再生に大きく寄与することから特に問題となるところで
ある。 〔問題点を解決するための手段〕 本発明は、第1図にその拡大平面図を示し、第2図に
そのA−A線上の拡大断面図を示すように、基板(1)
上に少くとも一方が磁気抵抗効果を有する第1及び第2
の強磁性金属薄膜(11)及び(12)が非磁性絶縁中間層
を介して積層された感磁部(2)が設けられた構成をと
るものであるが、この感磁部(2)に一対の電極金属層
(3)及び(4)が感磁部(2)の特にその端面で限定
的に電気的に連結されるようになされる。すなわち、感
磁部(2)を構成する第1及び第2の強磁性金属薄膜
(11)及び(12)と同パターンをもって上層の第2の強
磁性金属薄膜(12)上に薄膜例えば数百Åの厚さを有す
る薄膜パターン絶縁層(15)が被着されてなり、これの
上に表面絶縁層(14)が被着されて、これの感磁部
(2)の前方及び後方両端に電極コンタクト用窓(14
a)及び(14b)が穿設されて電極金属層(3)及び
(4)が感磁部(2)の第1及び第2の強磁性金属薄膜
(11)及び(12)の端面すなわち側端縁においてのみ直
接的に連接するようになされて電気的に連結するように
なされる。 尚、第1図及び第2図において第7図と対応する部分
には同一符号を付して重複説明を省略する。 〔作用〕 上述の本発明構成によれば、電極金属層(3)及び
(4)が感磁部(2)の第1及び第2の強磁性金属薄膜
(11)及び(12)に対して、その端縁においてのみ相互
に連接するようにしたことによって、この接触によって
磁気的特性に問題が生じたとしても両電極(3)及び
(4)の感磁部(2)における主たるセンス電流iの通
電部においては電極金属層(3)及び(4)の直接的接
触が回避されていることによって磁気的特性の劣化が回
避されるので感磁部としての特性の劣化が効果的に回避
される。 〔実施例〕 第1図及び第2図を参照して本発明の一例を詳細に説
明する。基板(1)は例えばMn−Zn系フェライトあるい
はNi−Zn系フェライト等の磁性基板より構成し得、必要
に応じてこれの上に絶縁層(図示せず)を介して感磁部
(2)が形成される。この感磁部(2)の形成は、例え
ば第3図Aに示すように基板(1)上に順次例えば全面
的に例えばNiFe系合金よりなる第1の強磁性金属薄膜
(11)、これの上にこの金属薄膜(11)に対して高温処
理によっても拡散の生じない例えばAl2O3よりなる非磁
性絶縁中間層(13)、さらにこれの上に第2の例えば同
様にNiFe系合金よりなる強磁性金属薄膜(12)、またさ
らにこれの上に例えばAl2O3よりなる同様に高温処理に
よって金属薄膜(12)に対して拡散の生じない絶縁層
(15)を被着形成する。 次に、図示しないがこれの上に最終的に得る感磁部
(2)のパターンに応じた例えばフォトレジストよりな
るマスクを形成し、これをマスクとしてイオンエッチン
グによって絶縁層(15)、第2の強磁性金属薄膜(1
2)、非磁性絶縁中間層(13)及び第1の強磁性金属薄
膜(11)をエッチングし、第3図Bに示すように所要の
パターンを有する感磁部(2)を形成する。 その後、第3図Cに示すように全面的に表面絶縁層例
えばSi3N4等の絶縁層(14)を被着し、図示しないが所
要のマスクを形成し、プラズマエッチング等によって選
択的に電極コンタクト窓(14a)及び(14b)を穿設す
る。 第3図Dに示すようにこれら電極コンタクト窓(14
a)及び(14b)を通じて電極金属層(3)及び(4)を
被着形成感磁部(2)の窓(14a)及び(14b)内の特に
薄膜パターン絶縁層(15)が被着されていない金属薄膜
(11)及び(12)の端縁の端面においてのみ連接させて
形成すると共に、さらにバイアス導体(5)を形成す
る。これら電極金属層(3)及び(4)とバイアス導体
(5)はそれぞれ金属を全面的に蒸着しこれをフォトエ
ッチングによってパターニングして同時に形成し得る。
前方の電極金属層(3)は感磁部(2)の長手方向と直
交する方向に延在するように形成され更にこれより後方
に屈曲導出するようになされる。 感磁部(2)の第1及び第2の強磁性金属薄膜(11)
及び(12)の厚さは数百Å程度に、非磁性絶縁中間層
(13)の厚さは両薄膜(11)及び(12)間に交換相互作
用に比し静磁的結合が支配的に生ずる厚さで数百Å以下
とする。 そして、第1図及び第2図で示すように少くとも感磁
部(2)を有する部分上にSiO2等の絶縁層(6)を介し
て上層のシールド磁性体(7)を被着する。そして、こ
の感磁部(2)の前方端が臨むように基板(1)から上
部シールド磁性体(7)に跨って磁気記録媒体との対接
ないしは対向面(8)を研磨する。 このような構成において電極金属層(3)及び(4)
間において両強磁性金属薄膜(11)及び(12)に同方向
のセンス電流を通ずるものであるが、この場合感磁部
(2)の各第1及び第2の強磁性金属薄膜の磁化困難軸
方向はセンス電流の通電方向に選定され、すなわち磁気
記録媒体からの信号磁界の印加方向に形成される。そし
て、このような構成において電極金属層(3)及び
(4)間にセンス電流iを通電し、一方バイアス導体
(5)にバイアス電流を通ずることによって所要のバイ
アス磁界を感磁部(2)に与える。このようにすれば磁
気記録媒体との対接ないしは対向面に対接ないしは対向
する磁気記録媒体からの記録に基づく信号磁界が感磁部
(2)にその磁化困難軸方向及びセンス電流iの通電方
向に与えられ、これによって電極金属層(3)及び
(4)間の抵抗変化に基づく例えば電圧変化として電気
的出力として導出される。 尚、上述した例においては第1及び第2の強磁性金属
薄膜(11)及び(12)がそれぞれNiFeより構成された場
合であるが、他の磁気抵抗効果を有する例えばNiFeCo系
合金あるいはNiCo系合金等によって構成することができ
る。 また感磁部(2)は、両強磁性金属薄膜(11)(12)
に対してMR効果を有するものによって構成する場合に限
らず一方についてはMR効果がほとんどないか全くない金
属薄膜によって構成することもできる。しかしながらい
ずれの場合においても両強磁性金属薄膜(11)及び(1
2)が非磁性絶縁中間層によって静磁的に結合された状
態でその飽和磁束密度、厚さ等の選定によって両薄膜
(11)及び(12)の磁束量が一致するようにしてその磁
束が両薄膜(11)及び(12)に対して全体的に閉じるよ
うにして単磁区構造として磁壁の発生が生じないように
する。 〔発明の効果〕 上述したように本発明によれば、感磁部(2)の全パ
ターンと同一パターンをもってその上面に薄膜パターン
絶縁層(15)が形成され、電極金属層(3)及び(4)
が感磁部(2)の各第1及び第2の強磁性金属薄膜(1
1)及び(12)の端面においてのみ接触するようにした
ことによって、電極金属層(3)及び(4)と第1及び
第2の強磁性金属薄膜(11)及び(12)との相互拡散に
よる磁気的特性の変化が感磁部(2)の磁気記録媒体か
らの信号に基づく抵抗変化に寄与すべき部分においては
ほとんどが影響されないようにすることができ、したが
って特性に優れたMR型磁気ヘッドを構成することができ
る。 これについて説明するに、今数百Åの厚さを有するNi
Feの初期状態における磁化B−磁界Hのヒステリシスカ
ーブを測定すると第4図に示すようになる。第4図にお
いて実線曲線は磁化容易軸方向に関するB−H特性曲線
を示し、破線曲線は磁化困難軸方向のB−H特性曲線を
示す。このような特性を有する金属薄膜上に電極金属と
しての例えばMoを全面的に被着し、250℃、2時間のア
ニール処理を行って後、同様のB−H特性曲線を測定し
たところ第5図に破線及び実線によって示すような磁化
困難軸方向及び磁化容易軸方向のB−H特性が変化し、
また300℃2時間のアニール処理を施した場合の同様の
B−H特性曲線は、第6図の破線及び実線を示すように
なった。第5図で示されるように250℃2時間のアニー
ル処理をした場合、磁化困難軸及び磁化容易軸方向の各
保磁力Hch及びHceはかなり大きくなり、異方性の分散も
悪くなっていることがわかるが、この場合まだ飽和磁束
密度Bsの変化はほとんど見られない。ところが、300℃
2時間アニール処理したものにおいては、第6図より明
らかなように飽和磁束密度Bsについても大幅に低下して
いることがわかる。しかしながら、いずれのアニール処
理を施したものについても透過率μの劣化は大きくなっ
ている。そして、FeNi,FeCo,NiCo,NiCoFe等の金属薄膜
上に他の金属、例えばTi,Wなどを被着した場合の同様の
アニール処理を施した場合においても、その磁気特性の
変化は上述した例とほとんど同様であった。尚、Moに変
えてAg,Al,Cr等の他の金属では、さらにその特性の変化
が著しかった。 これに比し、本発明による磁気ヘッドにおいては、そ
の感磁部(2)の磁気記録媒体からの信号磁界の検出に
寄与する主たる部分においては、絶縁層(15)を被着し
て直接的に電極金属層(3)及び(4)の被着を回避す
るようにしたので上述した磁気的特性の変化による感磁
部(2)の機能の低下を回避することができ、感度の高
いMR効果型磁気ヘッドを得ることができる。 そして、さらにその第1及び第2の強磁性金属薄膜
(11)及び(12)間に介在させる非磁性絶縁中間層(1
3)として、また表面の絶縁層(15)として特にAl2O3
るいはSi3N4を用いるときは強磁性金属薄膜(11)及び
(12)に対する拡散が例えばSiO2、あるいはSiOを用い
る場合に比し、上述した熱処理工程によってもほとんど
生じないことによって、この絶縁層による感磁部(2)
の磁気的特性の劣化を回避することができることが確か
められた。 また、特に絶縁層(13)及び(15)としてAl2O3を用
いる場合、このAl2O3は最もFeNi等の第1及び第2の強
磁性金属薄膜に対する拡散の影響が小さいことによって
安定した特性を有する感磁部(2)を構成する上で好ま
しく、さらにAl2O3はNiFe,FeCo,NiFeCo等の各金属薄膜
のエッチング、特にイオンエッチングの選択性がほとん
どないことによって第3図で説明したように第1の強磁
性金属薄膜(11)、非磁性絶縁中間層(13)及び第2の
強磁性金属薄膜(12)、絶縁層(15)を全面的に形成し
てこれを同時にパターン化して感磁部(2)を構成し得
ることから、層(13)及び(15)としてAl2O3を用いる
場合は感磁部(2)のパターン化製造が極めて有利とな
る。 また、表面絶縁層(14)としてSi3N4薄膜によって構
成する場合は、これに対する選択的エッチングが比較的
容易に行われることから、これに対する電極コンタクト
窓(14a)及び(14b)の穿設が容易に行い得るという利
益を有する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a magnetoresistance effect type magnetic head. SUMMARY OF THE INVENTION According to the present invention, there is provided a magnetic sensor comprising a magneto-sensitive portion having a laminated structure in which at least one of first and second ferromagnetic metal thin films having a magnetoresistance effect is laminated via a non-magnetic insulating intermediate layer. In the resistance effect type magnetic head, the attached portion of the electrode to the magneto-sensitive portion is connected directly at the end faces of the first and second ferromagnetic metal thin films of the magneto-sensitive portion while avoiding direct connection on the electrode. Thus, a magnetoresistive effect magnetic head having stable and excellent magnetic characteristics and excellent reliability is constructed by avoiding deterioration of magnetic characteristics due to contact between the electrodes and the ferromagnetic metal thin film. [Prior Art] In a magnetoresistive effect magnetic head (hereinafter referred to as MR type magnetism), a magnetoresistive effect (hereinafter referred to as MR type magnetoresistive element) in which a magnetically sensitive portion, that is, a magnetoresistive effect element is laminated via a nonmagnetic insulating intermediate layer
Effect), two of which are MR
It is composed of a laminated body of two ferromagnetic thin films having an effect, and sense currents in the same direction are passed through both thin films.
MR type magnetic heads are disclosed, for example, in JP-A-61-182620 and JP-A-62-52711. In the MR type magnetic head having such a configuration, the magnetically sensitive portions are laminated by magnetoresistive thin films that are magnetostatically coupled by the interposition of the non-magnetic intermediate layer, so that the magnetic thin films are mutually opposed by the sense current in the same direction. Parallel magnetization is generated so that a single domain structure is formed as a whole, the generation of domain walls is avoided, and the generation of Barkhausen noise is suppressed. In such an MR type magnetic head, for example, as shown in a sectional view of FIG. 7, a magnetic sensitive portion (2) is formed on a substrate (1), and electrode metal layers (3) and (4) are formed on both ends thereof. ) Is applied so that the sense current i passes between the metal layers (3) and (4) of both electrodes. In this case, the surface insulating layer (14) is deposited on the surface of the magnetic sensing part (2), and the electrode metal layers (3) and (4) are applied to the magnetic sensing part (2). Electrode contact windows (14a) and (14b) are formed, and a bias conductor (5) for applying a required bias magnetic field thereto is formed across the magnetic sensing portion (2) through the insulating layer (14). Is done. An upper shield magnetic body (7) is deposited on the magnetic sensing part (2) via the insulating layer (6) including at least the magnetic sensing part (2). (8) is a surface facing or facing the magnetic recording medium, the front end surface of the magnetic sensing portion (2) facing this surface (8), and recording on the magnetic recording medium from this surface (8) side. The signal magnetic field given by the information and the energizing direction of the sense current i are selected to have a parallel relationship,
A bias current is applied to the bias conductor (5) in a direction orthogonal to the sense current i, and a required bias magnetic field is applied to the magnetic sensitive section (2) so that the magnetic sensitive section (2) has a linear change in resistance. It is made to work in the good parts. The magnetic sensing part (2) has first and second ferromagnetic metal thin films (11) such as permalloy (NiFe alloy) having MR effect.
And (12) are laminated via a non-magnetic insulating intermediate layer (13), and the electrode metal layers (3) and (4) are formed of a metal layer such as molybdenum (Mo) or tungsten (W). The electrode contact window (14) formed in (14)
It is applied so as to be connected to the magnetic sensing part (2) through a) and (14b) so as to straddle the ferromagnetic metal thin film (12) above the magnetic sensing part (2). In this configuration, the resistance change due to the signal magnetic field from the magnetic recording medium in the magnetic sensing unit (2) is taken out as a voltage change by applying a sense current to read out the recording on the magnetic recording medium. [Problems to be Solved by the Invention] According to the above-mentioned MR type magnetic head, Barkhausen noise can be effectively improved, but especially as a magnetic thin film constituting the magnetic sensing part (2). When a metal thin film such as permalloy is used, a magnetic head device provided with the magnetic head during the heat treatment step in the process of manufacturing the magnetic head after the formation of the magnetic sensing portion (2), or during use after the completion of the magnetic head However, there is a problem in the change over time and reliability that the characteristics are deteriorated due to the temperature rise due to the contact with the magnetic medium. According to the present invention, when a metal thin film is used as the magnetic thin film of the magnetic sensing part (2), in which such characteristic deterioration or reliability deterioration is caused, the contact part between the metal thin film and the electrode metal layers (3) and (4). In this paper, we will investigate what happens when these metals are diffused, and based on this, solve the above-mentioned problems. That is, as described above, when the direction of the sense current and the direction of the signal magnetic field from the magnetic recording medium are selected to be parallel to the magnetic sensitive section (2), the sense current is passed through the magnetic sensitive section (2). The one electrode metal layer (3) must be applied at the front end of the magneto-sensitive portion (2), that is, at the end facing the magnetic recording medium or facing the opposing surface (8). Deterioration of the magnetic characteristics is a particular problem because it greatly contributes to the signal reproduction of the magnetic sensing section (2). [Means for Solving Problems] In the present invention, a substrate (1) is shown in FIG. 1 which is an enlarged plan view thereof and in FIG. 2 which is an enlarged sectional view taken along the line AA.
A first and a second, at least one of which has a magnetoresistive effect
The ferromagnetic metal thin films (11) and (12) of (1) are laminated with a non-magnetic insulating intermediate layer, and a magnetic sensitive section (2) is provided. The pair of electrode metal layers (3) and (4) are electrically connected in a limited manner particularly at the end face of the magnetic sensing part (2). That is, several hundreds of thin films, for example, several hundreds, are formed on the upper second ferromagnetic metal thin film (12) with the same pattern as the first and second ferromagnetic metal thin films (11) and (12) constituting the magnetic sensing part (2). A thin-film pattern insulating layer (15) having a thickness of Å is applied, and a surface insulating layer (14) is applied thereon. Window for electrode contact (14
a) and (14b) are perforated so that the electrode metal layers (3) and (4) are at the end faces or sides of the first and second ferromagnetic metal thin films (11) and (12) of the magnetosensitive portion (2). Only the edges are directly connected and electrically connected. In FIGS. 1 and 2, parts corresponding to those in FIG. 7 are designated by the same reference numerals, and duplicate description will be omitted. [Operation] According to the above-described configuration of the present invention, the electrode metal layers (3) and (4) are applied to the first and second ferromagnetic metal thin films (11) and (12) of the magnetic sensing part (2). Are connected to each other only at their edges, so that even if this contact causes a problem in the magnetic characteristics, the main sense current i in the magneto-sensitive portion (2) of both electrodes (3) and (4). Since the direct contact between the electrode metal layers (3) and (4) is avoided in the current-carrying part, the deterioration of the magnetic characteristics is avoided, and thus the deterioration of the characteristics of the magnetic sensitive section is effectively avoided. You. [Example] An example of the present invention will be described in detail with reference to FIGS. 1 and 2. The substrate (1) can be composed of a magnetic substrate such as a Mn-Zn ferrite or a Ni-Zn ferrite, and if necessary, a magnetically sensitive part (2) is provided thereon via an insulating layer (not shown). Is formed. For example, as shown in FIG. 3A, the magnetically sensitive portion (2) is formed on the substrate (1) sequentially on the first ferromagnetic metal thin film (11) made of, for example, a NiFe-based alloy. A non-magnetic insulating intermediate layer (13) made of, for example, Al 2 O 3 , which does not cause diffusion even when subjected to high temperature treatment on the metal thin film (11), and a second, for example, NiFe alloy The ferromagnetic metal thin film (12) is formed, and an insulating layer (15) made of, for example, Al 2 O 3 which does not cause diffusion into the metal thin film (12) is formed by high-temperature treatment on the ferromagnetic metal thin film (12). Next, although not shown, a mask made of, for example, a photoresist corresponding to the pattern of the magnetically sensitive portion (2) to be finally obtained is formed on the insulating layer (15) and the second layer by ion etching using the mask as a mask. Ferromagnetic metal thin film (1
2), the non-magnetic insulating intermediate layer (13) and the first ferromagnetic metal thin film (11) are etched to form a magnetic sensitive portion (2) having a required pattern as shown in FIG. 3B. Thereafter, as shown in FIG. 3C, a surface insulating layer (eg, Si 3 N 4 etc.) is deposited over the entire surface, a required mask (not shown) is formed, and selective etching is performed by plasma etching or the like. Electrode contact windows (14a) and (14b) are drilled. As shown in FIG. 3D, these electrode contact windows (14
The electrode metal layers (3) and (4) are applied through (a) and (14b). In particular, the thin film pattern insulating layer (15) in the windows (14a) and (14b) of the magnetosensitive part (2) is applied. The metal thin films (11) and (12) which are not formed are connected and formed only at the end faces of the edges, and the bias conductor (5) is further formed. The electrode metal layers (3) and (4) and the bias conductor (5) can be simultaneously formed by depositing metal on the entire surface and patterning the metal by photoetching.
The front electrode metal layer (3) is formed so as to extend in a direction orthogonal to the longitudinal direction of the magnetic sensing part (2), and is bent and led out further rearward. First and second ferromagnetic metal thin films (11) of the magnetic sensing part (2)
The thickness of (12) and (12) is about several hundred Å, and the thickness of the non-magnetic insulating intermediate layer (13) is predominantly magnetostatically coupled between the two thin films (11) and (12) as compared with exchange interaction. The thickness shall be several hundred mm or less. Then, as shown in FIGS. 1 and 2, an upper shield magnetic body (7) is deposited on an area having at least a magnetic sensitive portion (2) via an insulating layer (6) such as SiO 2. . Then, the surface (8) that is in contact with or faces the magnetic recording medium is polished from the substrate (1) to the upper shield magnetic body (7) so that the front end of the magnetic sensing portion (2) faces. In such a configuration, the electrode metal layers (3) and (4)
The sense current in the same direction passes through both ferromagnetic metal thin films (11) and (12) between them, but in this case, the magnetization of the first and second ferromagnetic metal thin films of the magnetic sensing part (2) is difficult. The axial direction is selected as the sense current conducting direction, that is, the direction in which the signal magnetic field from the magnetic recording medium is applied. Then, in such a configuration, a sense current i is passed between the electrode metal layers (3) and (4), while a bias current is passed through the bias conductor (5) to apply a required bias magnetic field to the magnetosensitive portion (2). Give to. With this configuration, a signal magnetic field based on recording from the magnetic recording medium that is in contact with or facing the magnetic recording medium is applied to the magnetic sensing portion (2) in the direction of its hard axis and the sense current i. Direction, which is derived as an electrical output, for example as a voltage change based on the resistance change between the electrode metal layers (3) and (4). In the example described above, the first and second ferromagnetic metal thin films (11) and (12) are made of NiFe, respectively. It can be composed of an alloy or the like. The magnetic sensitive section (2) is composed of both ferromagnetic metal thin films (11) (12).
On the other hand, it is not limited to the case where the thin film has the MR effect, and one of the thin films can also be formed by a metal thin film having little or no MR effect. However, in both cases, both ferromagnetic metal thin films (11) and (1)
In the state where 2) is magnetostatically coupled by a non-magnetic insulating intermediate layer, the magnetic flux amounts of both thin films (11) and (12) are matched by selecting the saturation magnetic flux density, thickness, etc., and the magnetic flux is The thin films (11) and (12) are closed as a whole so that no domain wall is generated as a single domain structure. [Advantages of the Invention] As described above, according to the present invention, the thin film pattern insulating layer (15) is formed on the upper surface of the magnetic sensing part (2) with the same pattern as all the patterns, and the electrode metal layers (3) and ( 4)
Are the first and second ferromagnetic metal thin films (1
Mutual diffusion between the electrode metal layers (3) and (4) and the first and second ferromagnetic metal thin films (11) and (12) by making contact only at the end faces of 1) and (12). It is possible to prevent the change in the magnetic characteristics due to the magnetic field due to the signal from the magnetic recording medium of the magnetic sensitive section (2) from being largely affected, so that the MR type magnetic field having excellent characteristics can be prevented. A head can be configured. To illustrate this, Ni, now having a thickness of several hundred
FIG. 4 shows the hysteresis curve of the magnetization B-magnetic field H in the initial state of Fe. In FIG. 4, the solid line curve shows the B-H characteristic curve in the easy magnetization direction, and the broken line curve shows the B-H characteristic curve in the hard axis direction. For example, Mo as an electrode metal was entirely deposited on the metal thin film having such characteristics, annealed at 250 ° C. for 2 hours, and then a similar BH characteristic curve was measured. BH characteristics in the hard axis direction and the easy axis direction change as shown by the broken line and solid line in the figure,
Further, the similar BH characteristic curve in the case of performing the annealing treatment at 300 ° C. for 2 hours became to show the broken line and the solid line in FIG. As shown in FIG. 5, when the annealing treatment is performed at 250 ° C. for 2 hours, the coercive forces Hch and Hce in the directions of the hard axis and the easy axis are considerably large, and the dispersion of the anisotropy is poor. However, in this case, there is almost no change in the saturation magnetic flux density Bs. However, 300 ℃
It can be seen that the saturation magnetic flux density Bs is significantly reduced in the one annealed for 2 hours, as is apparent from FIG. However, the deterioration of the transmittance μ is large in any of the annealing treatments. Further, even when the same annealing treatment is performed when a metal thin film such as FeNi, FeCo, NiCo, NiCoFe is applied with another metal, for example, Ti, W, etc., the change in the magnetic characteristics is the same as that described above. And almost the same. It should be noted that other metals such as Ag, Al, and Cr in place of Mo had a remarkable change in their characteristics. In contrast, in the magnetic head according to the present invention, an insulating layer (15) is directly applied to the magnetic sensing portion (2) at a main portion contributing to detection of a signal magnetic field from the magnetic recording medium. Since the deposition of the electrode metal layers (3) and (4) is avoided on the MR element, it is possible to avoid the deterioration of the function of the magnetically sensitive portion (2) due to the change in the magnetic characteristics described above, and the MR with high sensitivity can be avoided. An effect type magnetic head can be obtained. Further, the non-magnetic insulating intermediate layer (1) interposed between the first and second ferromagnetic metal thin films (11) and (12) is further added.
3) and especially when using Al 2 O 3 or Si 3 N 4 as the insulating layer (15) on the surface, when diffusion to the ferromagnetic metal thin films (11) and (12) is, for example, SiO 2 or SiO In comparison with the above, since it hardly occurs even in the heat treatment step described above, the magnetic sensing part (2) formed by this insulating layer
It was confirmed that the deterioration of the magnetic properties of the can be avoided. Further, particularly when Al 2 O 3 is used as the insulating layers (13) and (15), this Al 2 O 3 is stable because the influence of diffusion on the first and second ferromagnetic metal thin films such as FeNi is the smallest. It is preferable for constructing the magnetically sensitive portion (2) having the above characteristics, and Al 2 O 3 has almost no selectivity for etching metal thin films of NiFe, FeCo, NiFeCo, etc. As described above, the first ferromagnetic metal thin film (11), the non-magnetic insulating intermediate layer (13), the second ferromagnetic metal thin film (12), and the insulating layer (15) are entirely formed and When Al 2 O 3 is used as the layers (13) and (15), the patterned production of the magnetic sensitive portion (2) becomes extremely advantageous because the magnetic sensitive portion (2) can be simultaneously patterned to form the magnetic sensitive portion (2). Further, when the surface insulating layer (14) is made of a Si 3 N 4 thin film, selective etching of the surface insulating layer (14) is relatively easy. Therefore, the electrode contact windows (14a) and (14b) are formed in the surface insulating layer (14). Has the advantage that it can be easily performed.

【図面の簡単な説明】 第1図は本発明による磁気ヘッドの一例の略線的拡大平
面図、第2図は第1図のA−A線上の拡大断面図、第3
図A〜Dは本発明による磁気ヘッドの感磁部の製造工程
図、第4図〜第6図は本発明の説明に供するB−H特性
曲線図、第7図は従来構造の磁気ヘッドの断面図であ
る。 (1)は基板、(2)は感磁部、(3)及び(4)は電
極金属層、(11)及び(12)は第1及び第2の強磁性金
属薄膜、(13)は非磁性絶縁中間層、(14)は表面絶縁
層、(15)は薄膜パターン絶縁層である。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an enlarged schematic plan view of an example of a magnetic head according to the present invention, FIG. 2 is an enlarged sectional view taken along the line AA of FIG. 1, and FIG.
FIGS. 6A to 6D are manufacturing process diagrams of the magnetic sensing part of the magnetic head according to the present invention, FIGS. 4 to 6 are BH characteristic curve diagrams used for explaining the present invention, and FIG. 7 is a conventional magnetic head. It is sectional drawing. (1) is a substrate, (2) is a magnetic sensitive section, (3) and (4) are electrode metal layers, (11) and (12) are first and second ferromagnetic metal thin films, and (13) is a non-magnetic layer. A magnetic insulating intermediate layer, (14) a surface insulating layer, and (15) a thin film pattern insulating layer.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 福山 宗克 東京都品川区北品川6丁目7番35号 ソ ニー株式会社内 (56)参考文献 特開 昭61−182620(JP,A)   ────────────────────────────────────────────────── ─── Continuation of front page    (72) Inventor Munekatsu Fukuyama               6-7-35 Kita Shinagawa, Shinagawa-ku, Tokyo So               Knee Co., Ltd.                (56) References JP-A-61-182620 (JP, A)

Claims (1)

(57)【特許請求の範囲】 1.基板上に、 少なくとも一方が磁気的抵抗効果を有する第1および第
2の強磁性金属薄膜が非磁性絶縁中間層を介して積層さ
れた感磁部が設けられ、 該感磁部上に、絶縁層を介して一対の電極金属層が、そ
れぞれ上記絶縁層に穿設した電極コンタクト窓を通じて
上記第1および第2の強磁性金属薄膜のほぼ側端縁にお
いてのみ電気的連結され、 上記絶縁層は、上記電極金属層と上記感磁部との相互拡
散を阻止する絶縁層である ことを特徴とする磁気抵抗効果型磁気ヘッド。
(57) [Claims] At least one of the first and second ferromagnetic metal thin films having a magnetoresistive effect is laminated on the substrate via a non-magnetic insulating intermediate layer, and a magnetic sensitive section is provided on the magnetic sensitive section. A pair of electrode metal layers are electrically connected to each other only through the electrode contact windows formed in the insulating layer at substantially the side edges of the first and second ferromagnetic metal thin films. A magnetoresistive effect type magnetic head, which is an insulating layer for preventing mutual diffusion between the electrode metal layer and the magnetic sensing part.
JP62274042A 1987-10-29 1987-10-29 Magnetoresistive magnetic head Expired - Fee Related JP2668897B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62274042A JP2668897B2 (en) 1987-10-29 1987-10-29 Magnetoresistive magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62274042A JP2668897B2 (en) 1987-10-29 1987-10-29 Magnetoresistive magnetic head

Publications (2)

Publication Number Publication Date
JPH01116915A JPH01116915A (en) 1989-05-09
JP2668897B2 true JP2668897B2 (en) 1997-10-27

Family

ID=17536154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62274042A Expired - Fee Related JP2668897B2 (en) 1987-10-29 1987-10-29 Magnetoresistive magnetic head

Country Status (1)

Country Link
JP (1) JP2668897B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0434713A (en) * 1990-05-30 1992-02-05 Sony Corp Magneto-resistance effect type thin film head
JPH06251336A (en) * 1993-02-25 1994-09-09 Sony Corp Magnetoresistive effect type magnetic head

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61182620A (en) * 1985-02-07 1986-08-15 Matsushita Electric Ind Co Ltd Thin film magnetic head

Also Published As

Publication number Publication date
JPH01116915A (en) 1989-05-09

Similar Documents

Publication Publication Date Title
US5768066A (en) Magnetoresistive head having an antiferromagnetic layer interposed between first and second magnetoresistive elements
EP0221540B1 (en) Magnetic transducer head utilizing magnetoresistance effect
US5327313A (en) Magnetoresistance effect type head having a damage immune film structure
JPH05266434A (en) Magneto-resistance effect reproducing head
JP2001250208A (en) Magneto-resistive element
JP2004152334A (en) Magnetic sensor, its manufacturing method and magnetic recording and reproducing device employing the sensor
US7099124B2 (en) Magnetoresistive-effect thin film, magnetoresistive-effect element, and magnetoresistive-effect magnetic head
JP2002246671A (en) Method of manufacturing magnetic detection element
US6120920A (en) Magneto-resistive effect magnetic head
JP2668897B2 (en) Magnetoresistive magnetic head
JP2661068B2 (en) Magnetoresistive magnetic head
EP0482642B1 (en) Composite magnetoresistive thin-film magnetic head
JPH08235542A (en) Magnetic reluctance effect element
JP2508475B2 (en) Magnetoresistive magnetic head
JP2596010B2 (en) Magnetoresistive magnetic head
JPH0922510A (en) Magneto-resistance effect element and its manufacture, and magnetic recorder and its manufacture
JPH0473210B2 (en)
JPH04167214A (en) Magnetoresistance effect type magnetic head
JPH09260742A (en) Magnetoresistance effect device
JPH07334818A (en) Thin-film magnetic head and its production
JP2000113419A (en) Magnetic head provided with magnetoresistive element
JPH1125428A (en) Magneto-resistance effect type head and its initialization method
JP3233115B2 (en) Magnetoresistive head and method of manufacturing the same
JPS63181108A (en) Magneto-resistance effect type magnetic head
JPH0918069A (en) Magnetic reluctance device and its formation process

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees